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ABSTRACT Lithium battery for electric vehicle exhibits poor performance in durability and discharging
efficiency under cold environment, therefore the traction battery must be heated to some suitable operation
temperature before charging process begins. Self-heating by discharging current of the battery is recognized
as a high-efficient and cost-effective method. However, the discharging current affects both the capacity
degradation rate and heating time for lithium-ion battery greatly charged at low temperatures. Therefore,
the discharging strategy should be optimized based on the parameters of the battery capacity fade rate and
heating time, and it’s the motivation of this research. The parameters of the Thevenin equivalent circuit
model are set up and the temperature-rise model is identified by test data. To determine the optimal battery
discharging current for heating, the dynamic programming algorithm is adopted The capacity fade rate and
heating time is analyzed by setting different weighting factors in the heating process of battery temperatures
rising from −10◦C to +5◦C. Compared with constant current discharging method, the multi-objective
optimization self-heating method can decrease the battery capacity fade by 5.65%, the heating time is by
1.82%, and the power consumption by 3.04%. Therefore, it can be concluded that the proposed multi-
objective optimization can optimize heating time and energy consumption at same time, with minimize
capacity degradation.

INDEX TERMS Lithium-ion battery, battery equivalent circuit model, temperature-rise model, self-heating
method, dynamic programming algorithm.

I. INTRODUCTION
Lithium batteries have become the main energy storage
system for electric vehicles (EVs)due to their long cycle life,
high energy density and excellent power performance [1].
However, the characteristics of lithium-ion batteries are
affected by ambient temperature significantly [2]. As the tem-
perature decreases, the internal resistance increases during
the process of charging and discharging [3]. At low temper-
atures (for lithium ion phosphate (LFP) battery, it is ordinary
below 0 ◦C, and for LiNiMnCoO2 (NCM) battery it is
below −10 ◦C), the all-electric range(AER) of EVs declines
greatly [4], making permanently damage on battery [5].
It is caused by decreases in electrolyte conductivity [6] and
reaction kinetics [7], as well as the slowdown of diffusion rate
for lithium ions in the cathode [8] under low temperatures.
So far, it has been difficult to solve the problem of poor

low-temperature performance of lithium batteries by inno-
vations in battery materials [9]. Therefore, it is usually nec-
essary to heat the battery to a suitable temperature before
operating at low temperatures.

The heating method can be classified into three cate-
gories by heating source, including external heating, internal
heating and a combination of internal and external heating.
Song et al. [10] heated batteries by air convection, i.e., by
heating the air-duct of the battery pack. The energy effi-
ciency is low for this method due to its unnecessary energy
loss during the heating process. Zhu et al. [11] established
a warm-up management strategy based on the electric and
thermal performance analysis and aging model of LFP bat-
teries, which aimed at reducing the operating cost of EVs.
The battery is heated from −10◦C to 2◦C by liquid heating,
and the operating cost per cycle of the EV is reduced by
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$50 compared to the case of the non-preheated condition.
However, the method of heating by liquid causes a tem-
perature gradient within the battery, adversely affecting the
consistency of the battery pack. Zhang et al. [12] heated the
battery using a broadband metal film that was powered by
an external power source. Heated batteries can release 50%
of the rated capacity compared with the case when batteries
cannot be discharged without heating. Murashko et al. [13]
used a plate heat exchanger for the heat transfer in battery
pack thermal management system. The broadband metal film
does not affect the cooling of the battery and has good thermal
insulation properties, but EVs are powered by a plurality of
cells through a series of parallel-connected battery packs [14].
The cells are closely arranged together. When the method
of external heating is applied, the uneven heating of the
individual cells will cause the local temperature of the battery
pack to rapidly increase. The consistency of the battery pack
will deteriorate, and the cycle life will be greatly shortened.
In severe cases, it will cause thermal runaway, resulting in
more serious accidents. Therefore, compared with the exter-
nal heating method, the main advantage of the internal heat-
ingmethod is high energy efficiency and the ability to achieve
uniform heating of the battery because of the heat generated
by resistance during charge and discharge. Ji and Wang [15]
divided battery packs into two groups for simulation. After
the DC/DC boost, the two groups of batteries were alternately
charged and discharged at a certain frequency to heat the
batteries, obtaining an ideal temperature rise effect in the
end. However, the heating process causes a current that is too
large, and the battery charge voltage is significantly higher
than the charge cut-off voltage, increasing the possibility of
lithium dendrites. Zhang et al. [16] established a frequency-
domain model for 3.1 Ah lithium-ion batteries and proposed
to use sinusoidal alternating current to internally heat the
batteries. However, the heating process has been accom-
panied by the problem of a high transient voltage, with a
maximum recorded battery voltage in experiments of 4.5 V.
In practical applications, if the amplitude and frequency of the
alternating current (AC) are not properly selected, the battery
may be over-voltage, causing some damage to the battery.
Mohany et al. [17] exploited the increased internal resistance
of battery to improve the capability and the current is shaped
as bi-directional pulses to minimize total energy discharge.
Zhao et al. [18] proposed to use a large current pulse to heat
LFP batteries with a rated capacity of 12 Ah. The battery
is heated from −10◦C to 3◦C by 18 charge and discharge
cycles, and the charge and discharge cut-off voltages are
set as 2.1 V and 3.6 V, respectively. However, when this
method is applied, the battery will often be charged at a high
rate at low temperatures, thus causing serious damage to the
battery. Ruan et al. [19] heated a battery from −15◦C to
+5.6◦C within 338 seconds via a high-frequency alternat-
ing current, with a constant polarization voltage set as the
boundary condition. However, the experiment only proved
that the battery had no obvious capacity fade after heating
30 times at low temperatures and could not guarantee a good

battery state of health after 30 heating cycles. Zhang et al. [20]
internally heated a battery by inserting a nickel foil heating
element inside a lithium-ion battery, which can raise the
battery temperature from −20◦C to 0◦C in 12.5 s with a
power consumption of 2.9% of its rated capacity. However,
the method requires a complex manufacturing process and a
high production cost, which will not be easily accepted. The
heating method that combines internal heating with exter-
nal heating is more effective than a single form of heating.
Sun [21] did not rely on an external power source to heat
batteries, resulting in a small discharge rate of the battery sup-
ply energy to the electric film by using the heat generated by
resistances. When the ambient temperature was −17◦C, the
battery temperature reached 8◦C, and the discharge energy
increased by 0.36031-fold compared to the unheated battery.
Jaguemont et al. [7] presents an electrical and thermal model
of an lithium-ion battery pack to evaluating the losses under
low temperature. Wang et al. [22] developed all-climate bat-
tery (ACB) using a new cell structure with an internal heating
element. By the method, the ACB cell withstands more than
500 fast-charge cycles while the conventional cell incurs
20% capacity loss after only 12 cycles. This kind of heating
method is of high efficiency and less degradation, however
it is very challenging to change the battery structure and
production process. Zhang et al. [23] also used a combination
of internal and external methods to heat batteries using a
positive temperature coefficient (PTC) heater supplied by
the batteries. The PTC heater, which is located among the
single cells in the battery pack, enables battery temperature
increases from−20◦C to−2◦C within 3000 seconds, and the
power consumption is 13% of the rated capacity. However,
the combination of internal and external heating increases
the complexity of design and the manufacturing cost of the
battery pack design.
When the battery is discharged at low temperatures or high

rates, the lithium ion potential embedded in the negative elec-
trode is low, which easily causes lithium ions to be plated on
the negative electrode surface in the form of metal and cannot
be embedded in the negative electrode lattice. The lithium
ions attached to the negative electrode surface gradually form
lithium dendrites and eventually pierce the diaphragm, caus-
ing an internal short circuit [24]. Therefore, battery aging will
depend on whether battery continuous charge current or pulse
charging current is applied at low temperatures [25].
By the literatures above mentioned, it can be concluded

that the effective low temperature heating method is a hot
issue in the world, however, few studies have investigated
the optimal charging method under low temperature, taking
depreciation rate and the heating time as parameters.
The LFP batteries are chose as object. Based on the

Thevenin equivalent circuit model, battery temperature-
rise model and battery aging model, the heat generated
by resistance at low temperatures is used for the inter-
nal battery heating. The model parameters affected by the
battery temperature and State of Charge (SOC), therefore
the optimal discharge current was solved by the dynamic
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programming(DP) algorithm, which set the heating time
and the capacity fade as the optimization objectives and the
polarization voltage as the state variable.

Additionally, the influence of different weighting factors
on the optimization result is discussed.

II. LITHIUM-ION BATTERY MODEL AND
PARAMETER ACQUISITION
A. EXPERIMENTAL MATERIALS AND
EQUIPMENT PLATFORM
A 32650 LFP battery is the testing object, and the basic
parameters of the battery are shown in Table 1.

TABLE 1. Battery parameters.

FIGURE 1. Test platform for battery.

The experimental platform is shown as Figure 1. The tem-
perature sensor is placed in the middle of the battery, and
the insulating film covers the entire side of the battery. The
data collected by the temperature sensor are transmitted to the
computer through the temperature measuring device, and the
battery test system is controlled by the computer. The related
equipment parameters are shown in Table 2.

B. BATTERY EQUIVALENT CIRCUIT MODEL AND
PARAMETER IDENTIFICATION
The Thevenin equivalent circuit model can simulate the real
electrical performance of the lithium battery [26], therefore
is adopted to simulate the battery discharge process, shown
in Figure 2. Rris the ohmic internal resistance, Ur is the
voltage at both ends of Rr, Cp and Rp, respectively, represent
the polarization capacitance and the polarization resistance,
Up is the polarization voltage, Rtotal is the battery internal
resistance, UOCV is the open circuit voltage(OCV), E is the

TABLE 2. Equipment parameters.

FIGURE 2. Thevenin equivalent circuit model.

terminal voltage, and I is the discharge current. The circuit
mathematical model is described in equation (1).U̇p = −

Up
RpCp

+
I
Cp

E = UOCV − Up − IRr
(1)

Referring to the experimental procedure for measuring
the OCV of the battery in [27], the OCV is obtained at
every 10% SOC at different temperatures in the range of
−10◦C to 25◦C, as shown in Figure 3. The OCV of the battery

FIGURE 3. Battery OCV curves at different temperatures.
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gradually increases with the increase of SOC. Under the SOC
range of 10%∼ 50%, the OCV of the battery slowly increases
with the increase of SOC.When the SOC is greater than 50%,
the increase rate of the OCV of the battery increases signifi-
cantly. In the process of SOC increased from 90% to 100%,
the OCV of battery is correspondingly increased to 40 mV.
However, the OCV will be gradually decreased with the
temperature decreasing, and the drop rate is approximately
0.6 mV /◦C. Therefore, it can be seen that the influence of
battery SOC on the OCV is significantly greater than that of
ambient temperature.

To obtain the parameters for battery model at different
temperatures and SOCs, the charging and discharging tests
are performed, taking the hybrid pulse power characteris-
tics (HPPC) test process as reference. The large charging
and discharge rate will lead to significant heat generation,
therefore, the charging and discharge rate in our tests are set
as 0.75C and 1C respectively. The accuracy of the parameters
is equivalent. The parameters for battery model are identified
by a combination of excitation response analysis and the least
squares method.

The recursive least square method [28] is an effective
solution for parameter estimation. Based on the parame-
ters estimation and the Thevenin equivalent circuit model,
the mathematical model of the battery can be established as
shown in equation (2):

E(s) = UOCV (s)−
(

Rp
RpCps+ 1

+ Rr

)
I (s) (2)

The output of the observation is y (s) = UOCV (s) − E(s),
the input is I(s), and the model transfer function is

Y (s) =
RrRpCps+ (Rr + RP)

RpCps+ 1
U (s) (3)

The sampling period T = 1 s, and equation (3) is trans-
formed into a differential equation as shown in equation (4):

UOCV (k)− E(k)

=
RpCp

RpCp + T
[UOCV (k − 1)− E(k − 1)]

+
RrRpCp + Rp + Rr

RpCp + T
I (k)−

RrRpCp
RpCp + T

I (k − 1) (4)

By substituting the current pulse and the voltage response
at each SOC at different temperatures into equation (4),
the battery model parameters are identified, and the results
are shown in Figure 4.

From Figure 4 a), it can be seen that the ohmic resistance of
the selected battery at a certain temperature is basically con-
stant over the whole SOC range. The ohmic resistance at envi-
ronmental temperature is approximately 0.01 �. The ohmic
resistance gradually increases as temperature decreases. The
ohmic resistance increases by approximately 10 mV if the
temperature increases 5◦C. All abovementioned indicate
that ohmic resistance is mainly affected by environmental
temperature, not SOC.

FIGURE 4. Parameter identification results at different temperature
conditions and SOCs. (a) Identification of ohmic resistance.
(b) Identification of polarization resistance. (c) Identification of
polarization capacitance.

According to Figure 4 b), the polarization resistance of the
selected battery changes as SOC changes at a certain temper-
ature. At both ends of the battery SOC, the battery internal
resistance changes more rapidly, and the resistance value is
greater. When the battery is in the middle range of SOC,
the polarization resistance changes relatively smoothly, and
the resistance value is lower. In addition, the battery polariza-
tion resistance is also affected by ambient temperature; the
polarization resistance increases approximately 7 mV when
the ambient temperature decreases by 5◦C.
Figure 4 c) shows that the polarization capacitance has

a wave-like rise tendency as SOC increases at room tempera-
ture. When the battery temperature is from −10◦C∼+5◦C,

VOLUME 6, 2018 44039



J. Du et al.: Multi-Objective Optimization Discharge Method for Heating Lithium-Ion Battery at Low Temperatures

the trend of the polarization capacitance across the entire
SOC range is basically the same. As the SOC increases from
10% to 90%, the polarization resistance gradually increases
and reaches amaximum at 90%SOC. The polarization capac-
itance decreases with the increase in the SOC. In addition,
the polarization capacitance is greatly affected by ambient
temperature; the polarization capacitance decreases 0.008 F
when the ambient temperature decreases by 5◦C.
To sum up, the internal parameters of the battery equivalent

model are mainly affected by the battery SOC and ambient
temperature, so changes in battery SOC and temperature
should be considered when the battery equivalent model is
established.

In previous section, the battery model is set up by using
MATLAB/ Simulink and The parameters for the simula-
tion model are obtain by abovementioned methods. In order
to verify the accuracy of battery parameters, the current
obtained by dynamic stress test (DST) are put into the battery
simulation model. Furthermore, the output voltage results
are compared between that of the battery model and tests as
shown in Figure 5. Themaximum error is nomore than 0.05V
shown as Figure 6.

C. ESTABLISHMENT AND VERIFICATION OF THE
BATTERY TEMPERATURE-RISE MODEL
The heat generated by the battery can be classified as irre-
versible heat and reversible heat. Irreversible heat includes

FIGURE 5. The comparison of terminal voltage between simulation and
experimental values.

FIGURE 6. The voltage error between experimental and simulation
results.

Joule heat and concentration polarization heat. Reversible
heat is also called reaction heat, which is the energy
released or absorbed by the electrochemical reaction in
order to maintain the energy balance of the whole reaction.
As described in [29], the battery heat model selected in this
paper is shown as equation (5):

Qt = QJ + Qr = I (E − UOCV )+ IT
∂UOCV
∂T

(5)

The direction of current is positive when charging and
negative when discharging. E is the terminal voltage of the
battery during charging and discharging, UOCV is the OCV
of the battery, Qt is the total heat production power during
charging and discharging, QJ is the heat production power of
irreversible heat, and Qr represents the reaction heat, which
depends on the battery charge and discharge currents and the
effective entropy potential. The entropy potential is greatly
affected by the battery SOC and varies with different chem-
ical compositions [30]. During the charging and discharging
of the battery, a voltage drop is generated at both ends of
the internal resistance when the current flows through the
internal resistance of the battery, and it is the main reason for
the difference between the battery terminal voltage and the
OCV [31].

QJ = I (E − UOCV ) = I2Rr + I2pRp (6)

The temperature rise of the lithium-ion battery is effected
by the heat production, heat conduction and thermal diffu-
sion [32]. When the battery is working at low temperatures,
it not only produces heat but also generates heat radiation
and convection to the outside, dissipating a portion of the
heat, where the amount of heat dissipated by thermal radiation
is negligible relative to the amount of heat dissipated by
thermal convection. The dissipated power when the battery
is in thermal convection with the external environment can
be expressed by equation (7):

Qdis = −hA(T − T∞) (7)

Where, h is the equivalent heat transfer coefficient, A is the
battery surface area, T is the battery temperature, and T∞ is
the ambient temperature.

In summary, the heat balance equation for the battery in the
heating process is

mc
dT
dt
= QJ + Qr + Qdis

= I2Rr + I2pRp + IT
∂UOCV
∂T

− hA(T − T∞) (8)

Where, m is the battery mass, and c is the battery heat
capacity. As equation (5) shows, the battery’s total rate of
heat generation is effected by the current, resistance, entropy
potential, equivalent heat transfer coefficient and battery tem-
perature. Therefore, the greater the current and the resistance
are, the greater the battery heat rate; the higher the equiva-
lent transfer coefficient and the battery temperature are, the
greater the heat dissipation of the battery and the smaller the
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total heating rate of the battery. The battery temperature-rise
model is established considering the change of battery inter-
nal resistance and entropy coefficient caused by the change of
battery temperature and SOC in the process of battery heating
to ensure the accuracy of the temperature-rise model.

According to equation (8), we can obtain a linear dif-
ferential equation for the battery temperature, as shown in
equation (9):

dT (t)
dt
= (

I ∂VOCV
∂T

mc
−
hA
mc

)T (t)

+
I2Rr
mc
+
I2pRp
mc
+
hAT∞
mc

(9)

The continuous time system of equation (9) is discretized.
Laplace transformation is applied in a sampling period to the
left and right sides of equation (9); the original equation can
be expressed as

sT (s)− T (t0) = (
I ∂VOCV

∂T

mc
−
hA
mc

)T (s)

+ (
I2Rr
mc
+
I2pRp
mc
+
hAT∞
mc

)
1
s

(10)

In equation (10), t0 is the initial moment and t is the current
moment. Under periodic sampling conditions, t0 = kT0,
t0 = (k+1)T 0, k = 0, 1, 2, 3 · · · ; Then, equation (10) can
be rewritten as

sT (s)− T (kT0) = (
I ∂VOCV

∂T

mc
−
hA
mc

)T (s)

+(
I2Rr
mc
+
I2pRp
mc
+
hAT∞
mc

)
1
s

(11)

Rearranging equation (11), we derive

T (s) =
T (kT0)

s+
hA−I ∂VOCV

∂T
mc

+
1

s(s+
hA−I ∂VOCV

∂T
mc )

· (
I2Rr + hAT∞

mc
+
I2pRp
mc

)

(12)

Laplace inverse transformation of equation (12) yields
equation (13):

T ((k + 1)T0) = e−
hA−I

∂VOCV
∂T

mc tT (kT0)

+
mc

hA− I ∂VOCV
∂T

(1− e−
hA−I

∂VOCV
∂T

mc t )

·(
I2Rr + hAT∞

mc
+
I2pRp
mc

) (13)

The entropy coefficient of the battery is an important
parameter for calculating the heat of reaction. The coefficient
of entropy change is obtained from [33]. The temperature
and the OCV are first-order fitted for a certain SOC. The
slope of the first-order function is taken as the coefficient
of entropy change. Figure 7 shows the entropy coefficient

FIGURE 7. Entropy coefficient for SOC = 50%.

of SOC at 50%. The entropy change coefficients at different
SOCs are calculated by using this method, and the entropy
change coefficient curves for 10% SOC intervals are obtained
as shown in Figure 8. The entropy change coefficient changes
irregularly as SOC increases [34]. When the SOC is in the
range of 10%∼90%, the entropy change coefficient is greater
than zero. When the SOC is greater than 90%, the entropy
change coefficient is less than zero. The value of the battery
entropy change coefficient is small, which is always in the
range of −0.2∼+1.8 mV/◦C.

FIGURE 8. Entropy coefficient curve for different SOCs.

According to the reaction heat equation, a small entropy
coefficient means that the reaction is a small part of the heat
production. It also shows that the vast majority of heat is
generated by Joule heating during battery discharge heating
and that reaction heat does not contribute much to the battery
temperature rise.

The battery heat dissipation during heating can be
expressed by the equivalent heat transfer coefficient [35]. The
equivalent heat transfer coefficient is an important parameter
in the conservation of energy model, which can affect the
accuracy of the battery temperature model [36]. An insula-
tion film is attached around the battery for proper insulation
during the experiment in order to reduce the battery heat
convection in the heating process.When the battery is cooling
at low temperatures, according to the law of conservation
of energy, the battery equivalent heat transfer coefficient is
shown as equation (14):

mc
dT
dt
= −hA(T − T∞) (14)
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Where, m = 145g, c = 1.13Jg−1 ◦C−1 [32], and T∞ =
−10 ◦C. Assuming that h is a constant, equation (14) can be
expressed as equation (15):

ln(T− T∞) = −
hA
mc

t + B (15)

B can be obtained from the initial value. ln(T − T∞) is
linear with t, and the equivalent heat transfer coefficient can
be derived from the slope of the curve. The curves of T and
ln(T−T∞) during battery cooling are shown in Figure 9. The
relationship between ln(T−T∞) and tis approximately linear,
and the result of equivalent thermal transfer coefficient h is
25.45 Wm−2K−1.

FIGURE 9. Curves of a) battery temperature and b) ln(T− T∞) when the
battery cools down.

The entropy coefficient and the equivalent heat transfer
coefficient are substituted into equation (13) to obtain the
battery temperature-rise model. For the battery temperature
model simulation and low temperature constant current dis-
charge heating experiment, 2.4 C and 2.8 C are selected.
The results of the simulation and experimental are shown
in Figure 10. It can be seen from the figure that when the
battery is heated by constant current discharge at different
current magnifications, the simulation result of the battery
temperature-rise model is substantially consistent with the
actual temperature change of the battery, and the maximum
error during the heating process does not exceed 1◦C. It can
be proven that the temperature-rise model established in this
paper is valid and reliable.

FIGURE 10. Comparison between the model estimated temperature curve
and the actual temperature curve under different discharge currents
heating at low temperatures. (a) Comparison between the model
estimation temperature and actual measurement temperature of 12 A
constant current discharge heating at low temperatures. (b) Comparison
between the model estimation temperature and actual measurement
temperature of 14 A constant current discharge heating at low
temperatures.

III. MULTI-OBJECTIVE OPTIMIZATION OF DISCHARGE
CURRENT FOR INTERNAL HEATING IN BATTERIES
The heating time and the capacity fade rate are important
evaluation indexes of the heating method in the process of
battery discharge for heating at low temperatures. However,
there is a tradeoff between the capacity fade rate and the heat-
ing time in the heating process. How to choose an appropriate
discharge current to weight these two factors is a key issue in
the research of battery heating at low temperature.

A. THE DETERMINATION OF THE BOUNDARY
CONDITIONS OF DISCHARGE CURRENT
According to the battery temperature-rise model established
in this paper, the heat generated by the battery discharge
should be greater than the heat dissipated to the outside world
so that effective heating of the battery is achieved at low
temperatures. Therefore, the determination of the boundary
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conditions of discharge current is needed in applying the
method of discharge for battery heating at low temperatures.
The maximum discharge current during the progress of heat-
ing is the maximum discharge current (4 C) specified in the
battery manual. The minimum discharge current should meet
the requirement of equation (16):

I2Rr + I2pRp + IT
∂UOCV
∂T

− hA(T − T∞) > 0 (16)

Because the ohmic resistance and the polarization resis-
tance of the battery are affected by the temperature and SOC,
the minimum value of the discharge current gradually varies
with the change of the battery temperature and SOC during
heating process at low temperatures. The discharge current
up boundary in the process of heating battery at an ambient
temperature of −10◦C is shown in Figure 11.

FIGURE 11. The boundary conditions of discharge current during battery
heating.

It is found that the change of battery SOC during heating
process at low temperatures is relatively small by our tests.
Therefore we can ignore its effect of temperature on the
boundary conditions of the discharge current. As a result,
the minimum value of discharging current only varies with
temperature.

B. ESTABLISHMENT OF AN OPTIMIZING
OBJECTIVE FUNCTION
The battery capacity depreciation model is important to
realize the optimal objective. The battery degradation is
influenced by temperature, charge/discharge rate, internal
resistance and SOCgreatly. In this research, the battery degra-
dation model [37] is shown in equation (17).

Qloss = 0.0032e
−

(
15162−1516C_Rate

R(|285.75−Tbat |+265)

)
(Ah)0.849 (17)

where,Qloss is the percentage of capacity loss;C_Rate is cur-
rent rate; R is the gas constant; Tbat is the battery temperature;
Ah is ampere-hour throughput.

The parameters for battery degradation model for LiFePO4
is obtained from charge/discharge testing cycles by alter-
nating constant current experiments under 5◦C and 45◦C

respectively. Due to the limit of maximum discharge current
capability for thermal chamber, the maximum discharge rate
for the selected battery can only be set as 3 C. The bat-
tery capacity fade is primarily the result of loss of active
lithium associated with anode degradation [38], therefore,
the battery degradation model would be suitable for higher
current rate with acceptable errors and no lithium deposition,
if the battery has the same material and the discharge current
doesn’t cause lithium precipitation. The 4 C is not enough to
induce lithium deposition, therefore, the battery degradation
model can be used normally in the temperature range of
−20◦C∼+10◦C and when the discharge current rate is in the
range of 0.5 C∼4 C.
To construct the optimization objective function, the heat-

ing process is first divided into N phases, every 1◦C rise of
the battery is denoted as a heating phase, and the parameters
of the battery degradation model are considered constant in
each heating phase. According to the temperature-rise model
established in this paper, with 1T = 1 in equation (9),
the time required for the jth heating phase is

tj =
mc(

Ij
∂VOCV
∂T − hA

)
T (j)+ I2j Rr,j + I

2
p,jRp + hAT∞

j = 1, 2, 3 · · ·N (18)

Ampere-hour integral estimation has a very low compu-
tational complexity and is widely used [39]. The change of
SOC in the jth heating phase is

1SOC =

tj∫
0
Ijdt

3600Cap
(19)

Where, Cap is the rated capacity of the battery, and the unit
is Ah.

When the sampling time of the batterymanagement system
is 1t, the number of samples in each heating phase is

Mj =
tj
1t

(20)

Since Ah = I · t , substituting equation (18) into equation
(17) gives the capacity fade of the jth heating phase as

Qloss,j = 0.0032e
−

(
15162−1516C_Rate

R(|285.75−Tbat |+265)

)
(Ij · D1)0.849 (21)

D1 =
mc(

Ij
∂VOCV
∂T −hA

)
T (j)+I2j Rr,j+I

2
p,jRp+hAT∞

(22)

where, Qloss is the percentage of capacity loss; C_Rate is
the battery discharge rate, R is the ideal gas constant, A is
the surface area of the battery, Ij is the discharge current
for the jth heating phase, T (j) is the battery temperature in
the jth phase, and Rr,j and Rp,j, respectively, correspond to
the ohmic resistance and polarization resistance for the jth
heating phase, which are affected by the current battery tem-
perature and SOC. tj is the time of the jth heating phase, and
Ip,j,k is the current of the kth sampling time of the polarization
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resistorRp,j(Ij) in the jth heating phase, which can be obtained
by the full response formula of the first-order RC circuit:

Ip,j,k = Ij(1− e
−

k1t
Rp,jCp,j )+

Up,j

Rp,j(Ij)
e
−

k1t
Rp,jCp,j (23)

Where, Up,j is the polarization voltage at the start of the jth
discharge heating process.

The discretization of formula (21) can be expressed (24)
and (25), as shown at the bottom of this page.

The battery capacity fade in the entire heating process is

Qloss =
N∑
j=1

Mj∑
k=1

0.0032e
−

(
15162−1516C_Rate

R(|285.75−Tbat |+265)

)
(Ij · D3)0.849

(26)

Where (27), as shown at the bottom of this page.
The total time of the entire heating process is (28), as

shown at the bottom of this page.
The battery capacity degradation and heating time do not

have the same order of magnitude. To make the optimization
objective function contain both variables, the paper normal-
izes the battery capacity fade and heating time by min-max
standardization, and the original data are linearly converted
so that the result value is mapped to [0-1]. The conversion
function is shown in equation (29):

x∗ =
x −min

max−min
(29)

Where, max is the maximum sample data, and min is the
minimum sample data.

Refer to [40], the trade-off between capacity degradation
and heating time may be captured by the use of a weight
factor. When 1t = 1 is set as the system sampling time,
the objective function of the optimization heating method
proposed in this paper can be expressed as

f = min

α
N∑
j=1

Q∗loss,j + (1− α)
N∑
j=1

t∗j

 (30)

Where, α is the weight factor, andQ∗loss,j and t
∗
j are the bat-

tery capacity fade and heating time after the standardization,
respectively.

In this paper, the polarization resistance and capacitance
are parallel in the Thevenin equivalent circuit model, meaning
that the pressure drop of the polarization resistance cannot
be abrupt. Therefore, the initial polarization voltage of each
discharge heating phase is equal to the termination polariza-
tion voltage corresponding to the previous discharge heating
phase. The initial polarization voltage of each heating phase
is set as the state variable in this paper, and the state transition
equation is

[Ij(1− e
−

36C/Ij
Rp,j(Ij)Cp,j(Ij) )+

Up,j

Rp,j(Ij)
e
−

36C/Ij
Rp,j(Ij)Cp,j(Ij) ]Rp,j(Ij)

= U1(j+1) j = 1, 2 . . .N− 1 (31)

At the end of the discharge heating process, the current in the
polarization resistor is considered to have reached a steady
state current, which is IN . The polarization voltage at the
beginning of the last heating phase can be obtained from
equation (31), which is the state variables UP,N = INRp,N .
At the start of discharge heating, since the voltage across the
polarization resistor is zero, the state variable Up,1 of this
heating phase is zero.

C. USING THE DYNAMIC PROGRAMMING ALGORITHM
TO OBTAIN THE DISCHARGE CURRENT
The dynamic programming (DP) algorithm is one of the
most effective mathematical methods to solve the global
optimization problem. It can be applied in the multi-objective
optimization system of discharging for internal heating of
lithium-ion batteries and the optimal control strategy of dis-
charging current for heating. The dynamic programming
strategy for optimal heating discharge current involves much
calculation so that it is difficult to utilize in online applica-
tions and other areas. However, the global optimal solution
obtained through offline optimization can determine the limit
of the target function range, which is of great value to other
current control strategy evaluations. Therefore, the dynamic
programming algorithm is widely used in offline global opti-
mization of nonlinear systems.

The dynamic programming algorithm (DP) is used to solve
the function of the proposed electric heating method in this
paper.

Qloss,j =
Mj∑
k=1

0.0032e
−

(
15162−1516C_Rate

R(|285.75−Tbat |+265)

)
(Ij · D2)0.849 (24)

D2 =
mc(

Ij
∂VOCV
∂T − hA

)
T (j)+ I2j Rr,j + Ij(1− e

−
k1t

Rp,jCp,j )+ Up,j
Rp,j(Ij)

e
−

k1t
Rp,jCp,j + hAT∞

(25)

D3 =
mc(

Ij
∂VOCV
∂T − hA

)
T (j)+ I2j Rr,j + Ij(1− e

−
k1t

Rp,jCp,j )+ Up,j
Rp,j(Ij)

e
−

k1t
Rp,jCp,j + hAT∞

(27)

t =
N∑
j=1

Mj∑
k=1

mc(
Ij
∂VOCV
∂T − hA

)
T (j)+ I2j Rr,j + Ij(1− e

−
k1t

Rp,jCp,j )+ Up,j
Rp,j(Ij)

e
−

k1t
Rp,jCp,j + hAT∞

(28)
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The stage variable is the heating phase, which is divided
by the change of the battery temperature. Each heating phase
is denoted by j, j = 1, 2, . . .N.
The state variable Up,j is the polarization voltage at the start

of the jth heating phase.
The decision variable Ij is the discharge current in the jth

heating phase.
The allowed decision set is shown in equation (32):

Dj(Ij) = {Imin ≤ Ij ≤ Imax} (32)

The state transition equation is shown in equation (33):
Up,j+1=8(Up,j, Ij)[Ij(1−e

−
36Cap/Ij
Rp,jCp,j )+ Up,j

Rp,j
e
−

36Cap/Ij
Rp,jCp,j ]Rp,j(Ij)

j = 1, 2 . . .N− 1
Up,N = Rp,NIN
Up,1 = 0

(33)

The compensation function selects the weighted sum of the
battery capacity fade and heating time after normalization in
the jth heating phase as

Vj = αQ∗loss,j + (1− α)t∗j (34)

The target optimal value function fj represents the mini-
mum of the weighted sum of the battery capacity fade and
heating time from the jth to the Nth heating phases.

fj = min

α
N∑
j=1

Q∗loss,j + (1− α)
N∑
j=1

t∗j

 (35)

The Nth heating phase is increased from the initial stage
when applying the dynamic programming algorithm, and the
optimal objective function of this phase is set as zero, which
is fN+1 = 0.

Therefore, the DP model of the heating optimization prob-
lem is 

fj(Up,j) = min
Ij∈Dj(Ij)

[vj(Up,j)+ fj+1(Uj+1)]

j = N,N− 1, . . . 1
fN+1 = 0

(36)

The progress of using the dynamic programming algorithm
to solve the current is shown in Figure 12. The inverse method
is used in the calculation process.

First, the extreme value of fN is obtained, and the opti-
mal discharge current in the Nth stage is obtained, which
is IN,opt = MN(U1,N). Substituting Up,N and IN,opt into
fN gives the expression fN for Up,N, which is PN(Up,N).
According to the state transfer equation, PN(Up,N) is further
expressed as PN(ϕ(Up,N−1, IN−1)). After storing IN,opt and
fN, fN−1 is calculated by the same method to obtain IN−1,opt
and fN−1, which are further expressed as MN−1(Up,N−1,opt)
and PN−1(ϕ(Up,N−2, IN−2)). After storing IN−1,opt and fN−1,
fN−2 is calculated. Through such forward projections, each
phase discharge current Ij,opt can be expressed as a function of
Up,j in the form Mj(Up,j). According to the initial condition,

FIGURE 12. Flow chart of the dynamic programming algorithm to solve
for current.

which is Up,1 = 0, and the state transition equation, which is
Up,j = ϕ(Up,j−1, Ij−1), the optimal discharge current of each
stage, Ij., is obtained by calculating from front to back.

IV. SIMULATION AND EXPERIMENTAL RESULT
ANALYSIS
A. THE RESULTS OF THE DISCHARGE HEATING
OPTIMIZATION METHOD
Considering the polarization resistance between 90%∼100%
SOC is significant high, therefore the initial SOC is set as
90% for heating process. For the weighting factor of the
optimization goal changing from 0 to 1, the optimization
results of the proposed electric heating method are shown
in Figure 13. The temperature range of battery heating is
−10◦C∼+5◦C.As seen from Figure 11, when the weight fac-
tor is 0, the optimal discharge current obtained by the multi-
objective optimization heating method is a constant value
(20 A), which is the maximum value of the discharge current

FIGURE 13. The discharging current for different weight factors.
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boundary condition. The weight factor is 0, this means that
the influence of the battery heating process on the capacity
fade can be completely ignored. The heating time is reduced
as much as possible so that the discharge current remains at
a maximum. When the weighting factor is greater than 0, the
initial discharge current at the beginning of battery heating
at low temperatures is 6.7 A. The optimal heating discharge
current gradually increases on this basis with the gradual
increase of the battery temperature during heating. The opti-
mal discharge heating current will increase to 15.06∼19.08 A
when the battery reaches the target temperature of 5 ◦C.
The optimal discharge currents obtained under different

weighting factors were used to simulate the battery heating
at low temperatures, and the heating time and capacity fade
under different weighting factors were obtained as shown
in Figure 14. As shown in Figure 14, regardless of what the
weight factor value is, the amount of battery capacity fade
caused by each low-temperature heating process is 10−5Ah.
The heating time increases with the increase of the weighting
factor, while the capacity fade decreases with the increase of
the weighting factor as an overall trend. This further shows
that the heating time and capacity fade during battery low-
temperature discharge heating have an inverse relationship.
When theweighting factor is increased from 0 to 0.1, the heat-
ing time and the capacity fade are greatly changed. With
the gradual increase of the weighting factor, the change of
the heating effect caused by each change of 0.1 gradually
decreases. When the weighting factor continues to increase
from 0.5, the increase of the heating time and the decline of
the capacity fade are obviously slowed down.

FIGURE 14. The capacity fade in heating process for different weight
factors.

In addition, as seen from Figure 12, the curve has a small
fluctuation in the range of the weighting factor from 0.3 to
0.4. When the weight factor is 0.4, the heating time and
capacity attenuation values are greater than those for the
weight value of 0.3. This is due to the non-linear relationship
between the battery internal and external parameters (includ-
ing temperature and SOC).

Figure 15 shows the curves of the prediction by the battery
model, the curves of the actual temperature and the error
curve between the above two when the weighting factors are

FIGURE 15. Comparison of the temperature predicted by battery model
with the temperature measured in the test when the weight factor is
a) 0.1, b) 0.5 and c) 0.9.

0.1, 0.5 and 0.9. In the process of heating the battery temper-
ature from −10◦C to 5◦C, the error between the predicted
temperature of the battery model and the actual measured
temperature of the battery is controlled within 1◦C. It can be
proved that the battery temperature-rise model established in
this paper is valid
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B. THE RESULTS OF THE CONSTANT-CURRENT
DISCHARGING METHOD
The capacity degradation and energy consumption during
the heating process varies at the different discharge rate.
Therefore, they are selected as decision variables to find
the optimal value of constant current discharge rate.
Figure 16 shows the capacity degradation and energy con-
sumption for different discharge rate in the range of 2C∼4C.
The capacity fade is minimum at the discharge rate
of 2.4C (12A), and the power consumption is at flat low value
area. Therefore, 2.4C is an optimal discharge rate value for
constant discharge method to compare its performance with
that of optimal discharge strategy.

FIGURE 16. The performance capacity degradation and energy
consumption at different discharge rates.

C. ANALYSIS OF THE WEIGHT FACTOR
To verify the effectiveness of the proposed heating method
and provided a reference for choosing a reasonable weight
factor, it is compared with the constant current discharge
heating method by a 2.4 C discharge rate. The range of the
weight factor for the proposed method covers 0.1∼0.9, and
the discharge current is set as12 A for the constant current
discharge heating method based on the analysis in former
section. The battery capacity fade by two methods after the
heating process are compared shown as Table 3.

From the results in TABLE 3, the degradationmay be looks
not obvious especially when the weight factor is larger than
0.5 in only limited discharge cycles, however, in practical
applications, the capacity degradation difference influenced
by various discharge method will be significant by amounts
cycles after long-term use.

To compare the effectiveness of the two kinds of heating
methods, the evaluating indicator is proposed as follows:

γα,Qloss =
Qlosscc − Qlossα

Qlosscc
× 100% (37)

γα,t =
tcc − tα

tcc
× 100% (38)

In equations (37) and (38), γα,Qloss and γα,t , respectively,
represent the percentage of savings in the capacity fade and

TABLE 3. The capacity fade comparison between the optimal and
constant-current discharging heating method.

heating time of the optimized heating method relative to the
constant current discharge heating method. Qlossα and tα ,
respectively, represent the capacity fade and heating time
corresponding to the weight factor∝. Qlosscc and tcc, respec-
tively, represent the capacity fade and heating time of the 12A
constant current discharge heating method. The result of the
comparison is shown in Figure 17.

FIGURE 17. Comparison of multi-objective optimization for heating
batteries at different weight factors and constant current discharge
battery heating.

As seen from Figure 17, the heating time required for the
heating method proposed in this paper is basically the same
as that of the 12 A constant current discharge method when
the weight factor is 0.5. However, the capacity fade of the
heating method proposed in this paper is 5.65% less than
that of the constant current heating method. When the weight
factor is less than 0.5, the heating time of the heating method
proposed in this paper is 7.28%∼39.85% less than that of
the constant current heating method. In addition, when the
weight factor is greater than 0.1, the capacity fade of the
heating method proposed in this paper is 3.22%∼5.64% less
than that of the constant current heating method. According
to the optimized heating method proposed in this paper,
the discharge current varies with the change of the internal
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parameters of the battery, which is caused by the change of
SOC. Therefore, the battery heating method proposed in this
paper not only helps to reduce the capacity fade of the battery
but also achieves the purpose of balancing the capacity fade
and heating time.

D. COMPARISON OF POWER CONSUMPTION
To further illustrate the advantages of the proposed optimiza-
tion methods, this paper compares the heating method and
the constant current discharge heating method based on the
power consumption. In this research, the power consumption
refers to the power consumption during the heating process.
For convenient, changing rate of SOC in the heating phase is
adopted to characterize it as shown in equation (19).

1SOC =
N∑
j=1

tj∫
0
Ijdt

3600Cap
(39)

The power consumption of the optimization heating
method corresponding to different weighting factors are com-
pared with that of the 12 A constant current discharge heating
method. The comparison result is shown in Figure 18.

FIGURE 18. Power consumption of two heating methods during the
heating process.

As seen from Figure 18, the power consumption in the
heating process gradually increases with the weighting factor.
When the weighting factor is increased to the range of 0.9∼1,
the power consumption of the method proposed in this paper
is the same as that of the constant current discharge heating
method whose current value is 12 A, and the value of the
power consumption is 32.82%. In addition, when the weight-
ing factor is 0.5, the power consumption of the optimization
heating method in the heating progress is 29.24%, which is
obviously smaller than that of the constant current discharge
heating method. To sum up, compared with the constant
current discharge heating method, when the weighting factor
is 0.5, the corresponding capacity fade decreases by 5.65%,
the heating time decreases by 1.82% and the power consump-
tion decreases by 3.04%. Therefore, the optimization heating
method proposed in this paper can effectively reduce the

capacity fade and the power consumption without increasing
the heating time.

V. CONCLUSION
Based on the Thevenin equivalent circuit model and the bat-
tery temperature-rise model, combined with parameter recog-
nition, a self-heating method is proposed. The method takes
the capacity fade rate and heating time as the optimization
target, and the DP algorithm as global optimization strategy
to obtain the optimal current curve.

The results of the simulations and experiments show that
the optimal discharge strategy have different emphasis on the
capacity fade and heating time during different heating stages.
For example, in the process of the battery temperature being
increased from −10◦C to +5◦C, compared with the constant
current discharge method, both the capacity fade and power
consumption are all decreased, however the heating time has
no significant increasing with 0.5 weighting factor. By the
experiment results, it can be found that the capacity fade is
decreased by 5.65%, the heating time decreased by 1.82%,
and the power consumption decreased by 3.04%. However,
if the weight factor is less than 0.5, the heating time of the
optimization heating method is less than that of the constant
current discharge heatingmethod by a decreasing from 7.28%
to 39.85%. Otherwise, if the weight factor is greater than 0.1,
the capacity fade of the optimization heating method is less
than that of the constant current discharge heating method
by a reduction from 3.22% to 5.64%. Therefore, the optimal
self-heating method proposed in this paper can improve the
heating efficiency and reduce heating time, with minimum
batter capacity fade under low temperature by changing the
weight factor.
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