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ABSTRACT In this paper, we present a distributed algorithm based on an alternating direction method
of multipliers (ADMM), which is applied to solve economic dispatch problems (EDPs). First, with the help
of two indicator functions, an EDP is transformed to an equivalent optimization problem with only equality
constraint and thus can be dealt with ADMM. Second, a centralized algorithm is proposed to solve the
transformed EDP, and furthermore, a distributed algorithm is designed with the help of finite-time average-
consensus control strategy. Compared with the existing algorithms for EDP, the distributed algorithm can
solve the economic dispatch problem on directed graphs. Moreover, the proposed algorithms can ensure that
the generator constraints are satisfied during the whole computation process. Finally, some simulation results
are also provided to demonstrate the effectiveness of the proposed algorithms.

INDEX TERMS Alternating direction method of multipliers, economic dispatch problem, finite-time
consensus algorithm, smart grid.

I. INTRODUCTION
The economic dispatch problem (EDP) is very significant
in electric power industry and has drawn much attention
by communities of systems control and power systems.
The EDP is essentially to minimize the total generation
cost under power balance constraint and power generation
constraint [1]. Till now, some algorithms have been proposed
to solve this problem, such as the gradient search method,
the classical lambda iteration method, dynamic, evolution-
ary algorithms, and heuristic techniques [1]–[4]. However,
as pointed out in [5], these algorithms are centralized, which
means that they generally require an information fusion cen-
ter to process all the data from the whole network. Thus, these
traditional algorithms can not work effectively for a very
large-scale power systems because the information exchange
may lead the information fusion center to be saturated quickly
and the centralized infrastructures may be fragile for inten-
tional attack.

To overcome the defects of centralized algorithms, many
distributed optimization algorithms have been developed for
EDPs. Generally, distributed algorithms divide an EDP of
a large-scale power system into subproblems for individ-
ual sub-regions, which can adapt to any topological net-
work and provide many advantages such as plug-and-play,

enhanced robustness, reduction in communication cost, and
better privacy and security. In recent years, many impor-
tant distributed algorithms have been proposed to solve
EDPs in a distributed fashion, varying from the Auxiliary
Problem Principle (APP) strategies [6], the incremental cost
consensus (ICC) based methods [7], [8] to Lagrangian relax-
ation (LR) based approaches [9]–[11]. In [7], an incremen-
tal cost consensus (ICC) strategy was proposed to solve an
EDP with power balance constraint. The difference between
the demand and the supply was used as a global feedback
signal in the discrete-time update law of the incremental
costs (ICs) for generators. A Laplacian-nonsmooth-gradient
consensus algorithm was proposed in [12] to solve an EDP
with power balance constraint. Furthermore, a dynamic aver-
age consensus algorithm was proposed in [13] to solve an
EDP by using the estimate of the difference of the demand
and the supply. Two classes of continuous-time projection-
based gradient algorithms were proposed in [14] to solve
EDP in an initialization-free and scalable manner. In [15],
a θ -logarithmic barrier function was firstly used to refor-
mulate the cost function and then a fast gradient based
distributed optimizationmethodwas given to guarantee incre-
mental cost consensus for generators. In [16], distributed
incremental cost consensus algorithms were proposed for
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the switching communication network among generators.
Guo et al. [17] presented a distributed economic dispatch
based on projected gradient and finite time average consensus
algorithms for smart grid systems. It is noted that all these
algorithms are only applicable for undirected communication
networks. It is essential to develop a distributed algorithm for
directed communication networks because directed commu-
nication network has lower cost than undirected ones. In [18],
a distributed bisection algorithm was proposed for a strongly
connected directed network. Yang et al. [19] presented a dis-
tributed dynamic consensus algorithm for incremental costs
to solve an EDP with minimum time steps.

Till now, EDPs have been solved mainly by using
distributed gradient method or distributed sub-gradient
method. Recently, a distributed algorithm based on alter-
nating direction method of multipliers (ADMM) has been
extended to solve distributed estimation problems as
well [9], [10], [20]. The ADMM is an algorithm that decom-
poses an original problem into smaller subproblems which
are easier to be handled, and then sequentially solves these
subproblems at each iteration. Some ADMM based solution
strategies have been proposed for distributed power systems
and multi-agent systems. For example, an ADMM approach
was developed to solve a semidefinite relaxation-based state
estimation problems for AC power systems in [21]. Some
distributd ADMM algorithms were respectively proposed
in [22] and [23] to solve the optimal power flow problem
for electrical grids. A distributed ADMM algorithm was
developed in [24] for a general unconstrained optimization
problem of a multi-agent network and its convergence rate
was proved to be O(1/k). In [25], by judiciously integrating
the proximal minimization method with ADMM, the author
proposed a distributed optimization algorithm where the con-
straints include the polyhedra constraints, which makes the
subproblems efficiently solvable. In [26], a low-complexity
algorithm was presented for problems with complicated
structures or large dimensions and used an inexact step
for each ADMM update to perform cheap computation.
To our knowledge, there are very few results using ADMM
to solve EDP. For example, an ADMM based consensus
algorithm was proposed to solve an EDP with time-varying
power demand for generators with undirected communi-
cation topology in [28]. A distributed algorithm based on
alternating direction method of multipliers is proposed to
address economic dispatch problemwith general general cost
functions [29].

Furthermore, it is noted that most distributed optimiza-
tion algorithms require a long enough time for the con-
vergence. Fortunately, some finite-time consensus control
strategies were proposed in [27] and [30] to ensure that con-
sensus can be reached in a finite time independently with
initial states. Based on some existing results on ADMM
and finite-time consensus algorithms, this paper presents two
ADMM based energy dispatch algorithms in a centralized
and decentralised fashion, respectively, for the economic
dispatch problem. The main contributions of this paper are

as follows. First, an ADMM solution strategy is introduced
to solve an EDP by defining two indicator functions to
transform the EDP such that ADMM can handle. Second,
the communication topology among generators is a strongly
connected directed network, in which the convergence analy-
sis of energy dispatch algorithms is more challenging than
that in undirected networks. Third, a distributed ADMM
based consensus algorithm is proposed to compute the the
optimal Lagrange multiplier in finite-time. The convergence
of the proposed algorithm is analyzed theoretically. More-
over, the proposed algorithm can ensure that the generator
constraints hold during the whole computation procedure.
To the best of our knowledge, generator constraints can
only be guaranteed at the final stage for most EDP solution
strategies.

This paper is organized as follows. Section II presents
some notions on graph theory and the formulation of the
economic dispatch problem. In section III, a centralized
ADMM based solution strategy is firstly proposed and then
a distributed algorithm is designed by using a finite-time
consensus strategy. Section IV gives some simulation results
to demonstrate the effectiveness of the proposed algorithms.
Section V presents some conclusion remarks and future
research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this section, some notations in algebraic graph theory [31]
are introduced for distributed systems. Then an economic
dispatch problem (EDP) is firstly formulated for a power
system.

A. GRAPH THEORY
The power system consisting of many generators can be
described by a directed graph. A directed graph can be
defined as G = (V ,E,P), where V = {1, 2, · · · ,N } is the
vertex set, E ⊆ V × V is the set of directed edge and P is
a weighted and nonnegative adjacency matrix. If node i can
receive information from node j, the edge eji belongs to the
setE and pij > 0, j 6= i. A path between node vj and node vi is
a sequence of edges (vj, vj1), (vj1, vj2) · · · (vjm, vi). A digraph
is said to be strongly connected if there is a path from vj to vi
for any pair nodes (vj, vi).

The nodes which can receive information from node vi
are called out-neighbors of node vi and belong to the set
N−i = {vj ∈ V |eij ∈ E}. The cardinality of N−i is called
the out-degree of a node vi and is denoted by d−i = |N

−

i |.
The nodes that regard node i as an out-neighbor are called the
in-neighbors of node i and are denoted asN+i = {vj ∈ V |eji ∈
E}. The in-degree of node i is d+i = |N

+

i |. If d
+

i = d−i , for
i = 1, · · · ,N , a digraph is called a balanced graph. Matrix P
is called a column(row) stochastic matrix if it is a square and
nonnegative matrix whose columns (rows) sum is 1. Matrix
P is called a double stochastic matrix if it is not only column
stochastic but also row stochastic.

In this paper, we only consider the digraph satisfying the
following assumption.
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Assumption 1: The graph G = (V ,E,P) is strongly con-
nected. Each node knows its out-degree d−i and sets the
weights on its self-link and outgoing links to be 1/(1+ d−i ).
Hence, the weight matrix P is nonnegative, column stochas-
tic, and has entries pji = 0 only if the associated edge eij /∈ E .

B. ECONOMIC DISPATCH PROBLEM
We assume that there are N power generators in the power
system. The cost function for each generator i is denoted by
fi(xi), where xi ∈ R is the output power of generator i. The
EDP can be expressed as,

min f (x) =
N∑
i=1

fi(xi), (1)

subject to the following two constraints,
(1) Generator constrains

xmini ≤ xi ≤ xmaxi , (2)

where the xmini and xmaxi are the lower and upper bounds of
the i generator capacity, respectively.

(2) Supply-demand balance constraints

N∑
i=1

xi = Pd (3)

where the constant Pd satisfies
∑N

i=1 x
min
i ≤ Pd ≤∑N

i=1 x
max
i . In this paper, the cost functions fi(·) satisfy the

assumption 2.
Assumption 2: For each i ∈ {1, . . . ,N }, the cost function

fi(·) : R+→ R+ is strictly convex and continuously differen-
tiable, where R+ denotes the set of nonnegtive real numbers.

III. ADMM BASED ALGORITHMS FOR EDPS
In this section, a centralized solution strategy is firstly pre-
sented for the economic dispatch problem with the help of
the Alternating Direction Method of Multipliers (ADMM).
Then a distributed algorithm is proposed based on a finite-
time consensus strategy.

In order to utilize the ADMM to solve the EDP, we refor-
mulate the problem (1)-(3). We firstly define two convex sets
with x = (x1, x2, · · · , xN )T , y = (y1, y2, · · · , yN )T

�1 = {x ∈ RN |xmini ≤ xi ≤ xmaxi , for i = 1, · · · ,N },

�2 = {y ∈ RN |
N∑
i=1

yi = Pd }, (4)

and two indicator function g1(x), g2(y) for the sets �1 and
�2 as follows

g1(x) =

{
0, if x ∈ �1,

+∞, otherwise,

g2(y) =

{
0, if y ∈ �2,

+∞, otherwise.
(5)

Then the EDP (1)-(3) can be transformed to the follow opti-
mization problem,

min f (x)+ g1(x)+ g2(y),

s.t x− y = 0, (6)

where x, y ∈ RN .

A. CENTRALIZED ADMM ALGORITHM
The alternating direction method of multipliers (ADMM) is a
variant of the augmented Lagrangian scheme. Compared with
the augmented Lagrangian scheme, it uses partial updates for
the dual variables. An ADMM based centralized algorithm
is given to update the primal variables x, y and the Lagrange
multiplier λ ∈ RN of the problem (6) as follows

x(k + 1) = argmin
x
Lρ(x, y(k),λ(k)), (7)

y(k + 1) = argmin
y
Lρ(x(k + 1), y,λ(k)), (8)

λ(k + 1) = λ(k)+ ρ(x(k + 1)− y(k + 1)), (9)

where the Lρ(x, y,λ) is the augmented Lagrangian function
of the problem (6) and is given as follows

Lρ(x, y,λ) = f (x)+ g1(x)+ g2(y)+ λT (x− y)

+
ρ

2
‖x− y‖2. (10)

To make the iteration schemes (7)-(9) converge to the
optimal solutions, the following assumption and definition
are made for the problem (6).
Assumption 3: [9] The unaugmented Lagrangian function

L0 = f (x) + g1(x) + g2(y) + λT (x − y) has a saddle point,
i.e., there exists an optimal solution (x∗, y∗,λ∗) such that

L0(x∗, y∗,λ) ≤ L0(x∗, y∗,λ∗) ≤ L0(x, y,λ∗) (11)

holds for all x ∈ �1, y ∈ �2, λ ∈ RN .
Definition 1: The primal residual and dual residual are

defined respectively as

r(k) = x(k)− y(k), s(k) = −ρ(y(k)− y(k − 1)). (12)

Lemma 1: [9] If the Assumption 3 holds and ρ > 0, then
the iteration (7)-(9) can converge to the optimal solution x∗,
y∗, and the optimal Lagrangemultiplier λ∗ of the problem (6),
with

lim
k→∞
‖r(k)‖ = 0 and lim

k→∞
‖s(k)‖ = 0.

Now a specific computation procedure is given for the opti-
mal solution with the centralized algorithm (7), (8) and (9).
First, combining (7) and (10) yields

x(k + 1) = argmin
x
Lρ(x, y(k),λ(k))

= argmin
x
f (x)+ g1(x)+ g2(y)

+λT (k)(x− y(k))+
ρ

2
‖x− y(k)‖22

= arg min
x∈�1

f (x)+ λT (k)(x− y(k))

+
ρ

2
‖x− y(k)‖22.
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To simplify the equation above, we choose σ (k) = λ(k)
ρ
=

[σ1, · · · , σN ] ∈ RN and get the following equivalent
equation,

x(k + 1) = arg min
x∈�1

f (x)+
ρ

2
‖x− y(k)+ σ (k)‖22

= arg min
x∈�1

N∑
i=1

fi(xi)+
ρ

2

N∑
i=1

(
xi − yi(k)+ σi(k)

)2
.

Let Ci(xi) = fi(xi)+
ρ
2

(
xi − yi(k)+ σi(k)

)2, then one has
min

N∑
i=1

Ci(xi),

s.t. xmini ≤ xi ≤ xmaxi , for i = 1, 2, · · · ,N . (13)

From the problem (13), the cost function of agent i is only
relevant to its own constraint, so the new state xi(k + 1) is
given as follows

xi(k + 1) = min{max{∇C−1i (0), xmini }, x
max
i }, (14)

for i = 1, 2, · · · ,N . ∇C−1i denotes the inverse function of
∇Ci which is the derivative of Ci. Based on the assump-
tion 2, ∇fi is continuous and strictly increasing and thus
∇C−1i is also continuous and strictly increasing. We can
adopt the bisection method to compute the numerical solution
of xi(k + 1) within a finite steps. Moreover, we can see that
the output power don’t violate the generator constraint from
the equation (14).

Similarly, from (8), (10) and σ (k) = λ(k)
ρ

, one has

y(k + 1) = argmin
y
Lρ(x(k + 1), y,λ(k))

= argmin
y
g2(y)+

ρ

2
‖x(k + 1)− y+ σ (k)‖22

= arg min
y∈�2

ρ

2
‖x(k + 1)− y+ σ (k)‖22. (15)

The problem (15) can be rewritten by the following form,

min
N∑
i=1

ρ

2

(
yi − ςi(k)

)2
,

st.
N∑
i=1

yi = Pd , (16)

where ςi(k) = xi(k+1)−σi(k). By using Lagrange multiplier
method, we can transform the problem (16) to an uncon-
strained optimization problem, that is,

L =
N∑
i=1

ρ

2

(
yi − ςi(k)

)2
+ η(Pd −

N∑
i=1

yi)

where η is the Lagrange multiplier associated with the equal-
ity constraint. On the basis of the KKT condition, one has

∂L
∂yi
= ρ

(
yi − ςi(k)

)
− η = 0 for i = 1, · · · ,N ,

Pd −
N∑
i=1

yi = 0. (17)

By solving the equations (17), we get the optimal Lagrange
multiplier,

η∗ = ρ
(Pd
N
−

∑N
i=1 ςi(k)
N

)
. (18)

Furthermore, according to the relationship ρ
(
yi− ςi(k)

)
−

η = 0, for i = 1, · · · ,N , the optimal solution yi(k + 1) is
given by

yi(k + 1) =
η∗

ρ
+ ςi(k), for i = 1, · · · ,N . (19)

Substituting xi(k + 1) and yi(k + 1) into (9) yields

λi(k + 1) = λi(k)+ ρ(xi(k + 1)− yi(k + 1)),

for i = 1, · · · ,N . (20)

From Lemma 1, the optimal solution is thus obtained for the
EDP (1)-(3).

Algorithm 1 Centralized Algorithm to Solve EDP

Input: ρ, xmini , xmaxi , xi(0), yi(0), λi(0), for i = 1, . . . ,N
Output: Optimal power x∗

for k = 0,1,· · · do
σi(k) =

λi(k)
ρ
, for i = 1, · · · ,N

for i=1,2,· · · ,N do
xi(k + 1) = min{max{∇C−1i (0), xmini }, x

max
i }

end for
ςi(k) = xi(k + 1)− σi(k), for i = 1, · · · ,N
for i=1,2,· · · ,N do

η∗ = ρ
(Pd
N −

∑N
i=1 ςi(k)
N

)
yi(k + 1) = η∗

ρ
+ ςi(k)

λi(k + 1) = λi(k)+ ρ(xi(k + 1)− yi(k + 1))
end for

end for
return x∗

Remark 1: When the cost functions are quadratic,
i.e., fi(xi) = αix2i + βixi + γi, where the coefficient
αi > 0, βi > 0 and γi > 0, the update scheme (14) has a
closed-form expression as

xi(k + 1) = min{max{
ρyi(k)− ρσi(k)− βi

2αi + ρ
, xmini }, x

max
i }.

Remark 2: From (18) and (19), the primal variable
yi(k + 1) is computed in a centralized way since computing
the optimal value η∗ requires the global information. In the
next subsection, we will propose a distributed algorithm to
compute the optimal Lagrange multiplier η∗.

B. DISTRIBUTED ADMM ALGORITHM
Based on Subsection III-A, we firstly divide the optimal
Lagrange multiplier η∗ into two parts so that each part can
be calculated in a distributed manner. Secondly, distributed
algorithms are designed for the two parts of η∗ with the help
of a finite-time consensus strategy proposed by [30].
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Firstly, we define two notations as follows,

u∗ =
Pd
N
, v∗ =

∑N
i=1 ςi(k)
N

.

Then η∗ can be expressed by

η∗ = ρ(u∗ − v∗).

Wenowpropose two distributed algorithms to compute u∗, v∗,
respectively. Firstly, a distributed algorithm is given to
compute u∗ as follows,

ui,1(k + 1) = piiui,1(k)+
∑
νj∈N

+

i

pijuj,1(k),

ui,2(k + 1) = piiui,2(k)+
∑
νj∈N

+

i

pijuj,2(k), (21)

where pli = 1/(1 + d−i ) for νl ∈ N−i ∪ {νi} and, pli = 0,
otherwise. The initial values are given by ui,1(0) = yi(0),
ui,2(0) = 1, for i = 1, · · · ,N , where

∑N
i=1 yi(0) = Pd .

Next, a distributed algorithm is proposed to compute v∗ as
follows,

vi,1(k + 1) = piivi,1(k)+
∑
νj∈N

+

i

pijvj,1(k),

vi,2(k + 1) = piivi,2(k)+
∑
νj∈N

+

i

pijvj,2(k), (22)

where the initial values are given by vi,1(0) = ςi(k),
vi,2(0) = 1 for i = 1, · · · ,N . The coefficients of linear
iterations (22) are the same with the linear iterations (21).

In order to guarantee the convergence of the ADMM itera-
tions (7)-(9), the time of computing yi(k + 1) should be finite
at each iteration. Next, we analyze the finite-time conver-
gence of the distributed algorithms (21) and (22). Since the
two algorithms have the same structure, we just analyze the
convergence of the linear iteration (21) and the convergence
analysis of the other algorithm is similar.

The convergence of the linear iteration (21) depends
on the normalized kernel of Hankel matrices. Two square
Hankel matrices with dimension j × j are constructed as
follows,

H j
i {ui,1} =


ui,1(1) ui,1(2) · · · ui,1(j)
ui,1(2) ui,1(3) · · · ui,1(j+ 1)
...

...
. . .

...

ui,1(j) ui,1(j+ 1) · · · ui,1(2j− 1),



H j
i {ui,2} =


ui,2(1) ui,2(2) · · · ui,2(j)
ui,2(2) ui,2(3) · · · ui,2(j+ 1)
...

...
. . .

...

ui,2(j) ui,2(j+ 1) · · · ui,2(2j− 1),


where j denotes the iteration time, ui,1(k) = ui,1(k) − ui,1
(k − 1), ui,2(k) = ui,2(k) − ui,2(k − 1), for k = 1, 2, · · · ,
2j− 1.

At each iteration time j, we need to check the rank of the
two Hankel matrices. Once the Hankel matrices H j

i {ui,1} and

H j
i {ui,2} becomes singular at some time for arbitrary initial

conditions ui,1(0) and ui,2(0) (i = 1, 2, · · · ,N ) except a set
of initial conditions with Lebesgue measure zero, one can
compute the normalized kernel ξi = (ξi(0), · · · , ξi(Mi−1), 1)
of H j

i {ui,1}, where Mi + 1 is minimum degree of the monic
polynomial of the Hankel matrix. From [30, Th. 1], one
has

u∗ = lim
k→∞

ui,1(k)
ui,2(k)

=
uTMi,1

ξi

uTMi,2
ξi
,

where uTMi,1
= (ui,1(0), ui,1(1), · · · , ui,1(Mi)), uTMi,2

=

(ui,2(0), ui,2(1), · · · , ui,2(Mi)). Thus, the node i can compute
u∗ within 2(Mi + 1) steps. For all the nodes, u∗ can be com-
puted with at least 2(Mu + 1) steps. Similarly, the minimum
times to compute v∗ is given by 2(Mv + 1).

A main result is given to show that the optimal solution of
the EDP can be computed in a distributed manner with the
three iterations (7), (8) and (9).
Theorem 1: If ρ > 0 in (20) and Assumption 3 holds, then

the update schemes given by the algorithms (7), (8) and (9)
together with the distributed algorithms (21) and (22) can
converge to the optimal solution x∗, y∗ and λ∗.

Proof: We firstly show that the three updates x(k + 1),
y(k + 1) and λ(k + 1) are calculated in a distributed manner.
Since η∗ can be computed via the distributed algorithms (21)
and (22), thus the update of yi(k + 1) needs no more global
information, which results in the distributed computation of
x(k + 1) and λ(k + 1).
Next, we prove that the iterations (14), (19), (20) converge

to the optimal solution of the EDP (1)-(3). From Lemma 1,
under Assumption 1, the ADMM iteration (14), (19) and (20)
converge to the optimal solution x∗, y∗ and λ∗ with the
primal residual r(k) and the dual residual s(k) satisfying
limk→∞ ‖r(k)‖ = 0, limk→∞ ‖s(k)‖ = 0. The proof is
completed.
Remark 3: From the update (14), xi(k) satisfies the local

constraint xmini ≤ xi ≤ xmaxi during the whole iteration
procedure, which is very meaningful in real energy dispatch
for power systems.
Remark 4: In this paper, we firstly proposed a centralized

algorithm to solve EDPs and then distributed algorithms are
proposed to overcome the constraint that global information
is needed to compute yi(k). Moreover, the distributed algo-
rithms can guarantee a finite-time convergence. It is noticed
that, even though the distributed algorithms are more robust,
the convergence rate of the centralized algorithm is faster than
that of the distributed one.

IV. SIMULATION RESULTS
In this section, we give some simulation results to validate the
proposed algorithms. Suppose that the power system consists
of 6 generators and the parameters of the generators are pre-
sented in Tabel 1. The demand power is given by Pd = 150.
The network topology associated with the power system is
illustrated in Figure 1.
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Algorithm 2 Distributed Algorithm to Solve EDP

Input: weight matrix P and ρ, xmini , xmaxi , xi(0), yi(0),
λi(0), for i = 1, . . . ,N
Output: Optimal power x∗

for k = 0,1,· · · do
σi(k) =

λi(k)
ρ
, for i = 1, · · · ,N

for i=1,2,· · · ,N do
xi(k + 1) = min{max{∇C−1i (0), xmini }, x

max
i }

end for
for k1 = 0,1,· · · , do

For each node νi, run the iteration (21) to get u∗

with the initial value ui,1(0) = yi(0), ui,2(0) = 1,
and store the successive values of ui,1(k) and
ui,2(k), respectively.
if k is odd then

Compute the ui,1(k) and ui,2(k), and construct
the Hankel matrix H j

i {ui,1} and H
j
i {ui,2}

if H j
i {ui,1} and H

j
i {ui,2} are singular then

Store their first defective matrix, compute
its normalized kernel ξi and compute the
average consensus value u∗,

u∗ =
uTMi,1

ξi

uTMi,2
ξi

end if
end if
Similar to computing the u∗, compute the average
consensus value v∗.

end for
for i=1,2,· · · ,N do

η∗ = ρ(u∗ − v∗), yi(k + 1) = η∗

ρ
+ ςi(k),

λi(k + 1) = λi(k)+ ρ(xi(k + 1)− yi(k + 1))
end for

end for
return x∗

TABLE 1. Generator parameters.

From the network topology, the weight matrix P is given
for the distributed algorithms (21) and (22) as follows,

P =


1/2 0 0 0 0 1/3
1/2 1/2 0 0 0 1/3
0 1/2 1/3 0 0 0
0 0 1/3 1/2 0 0
0 0 1/3 1/2 1/2 0
0 0 0 0 1/2 1/3

 .

For the updates (7)-(9), the initial values are given by
x(0) = [35, 25, 30, 28, 12, 20]T , λ(0) = 0 and y(0) = x(0),

FIGURE 1. The network topology associated with the power system.

respectively, and the parameter ρ is selected as ρ = 1. For
the distributed algorithms (21) and (22), the initial values are
given by ui,1(0) = y0i and vi,1(0) = ςi(0), respectively.

In Figure 2, the output power of each generator converges
to their optimal values, which are x∗1 = 26.50, x∗2 = 19.58,
x∗3 = 32.24, x∗4 = 17.26, x∗5 = 20, x∗6 = 34.42 at the
45th step and the output powers of all the generators satisfy
the generator constrains all the time. From Figure 3 and
Figure 4, both the primal residual ‖r(k)‖ and dual residual
‖s(k)‖ converge to zero as the iteration proceeds, which
indicates that the output powers can converge to the optimal
powers. Figure 5 shows that the supply-demand balance is
not satisfied at the initial stage but can be guaranteed after 10
iteration steps.

FIGURE 2. The evolution of the output powers.

FIGURE 3. The evolution of the primal residuals.
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FIGURE 4. The evolution of the dual residuals.

FIGURE 5. The evolution of the supply-demand balance.

FIGURE 6. The communications topology of the generator plug-and-play
case.

In the following scenario, we study the proposed algorithm
for the case of the plug-and-play. At the initial moment, all
the generators support a total load of 150. The generator 4 is
plugged out at the iteration k = 10, and thus the communica-
tion topology will be reconfigured, as illustrated in Figure 6.
From Figure 7, the remaining generators still support the total
load and the corresponding output powers of the generators
are also satisfying the constraints. At the same time, the pow-
ers converge to the optimal solutions as time goes. Thus this
experiment result demonstrates that the proposed algorithm
is still effective for the case of plug-and-play.

We further apply the proposed algorithm for the IEEE
118-bus system, where there are 54 generators and the cost

FIGURE 7. The output power under plug-and-play operation.

FIGURE 8. The evolution of the output powers of the IEEE 118-bus system.

functions are quadratic, i.e., fi(xi) = αix2i + βixi + γi, for
i = 1, 2, . . . , 54. The coefficients of the cost functions
are given in the ranges αi ∈ [0.0024, 0.0697], βi ∈
[8.3391, 37.6968] and γi ∈ [6.78, 74.33]. The communi-
cation topology is a directed cycle with nodes 1, . . . , 54.
The power demand is 4600. Figure 8 illustrates the transient
behaviors of the power allocation.

V. CONCLUSION
This paper proposed an ADMM based solution strategy for
economic dispatch problems. The original EDP was firstly
transformed to a form which ADMM can handle. Then a
centralized algorithm was proposed to compute the optimal
solution of the EDP, and furthermore, distributed algorithms
were designed to compute the optimal Lagrange multiplier.
The finite-time convergence of the distributed algorithms has
been analyzed by checking the ranks of two Hankel matrices.
Moreover, the proposed algorithms can guarantee that the
generator constraints are satisfied during the whole iteration
process. The future direction includes designing distributed
algorithms to solve economic dispatch problems with addi-
tional physical constraints, such as transmission line loss and
power flow and transmission line flow constraints.

VOLUME 6, 2018 30975



P. Li, J. Hu: ADMM-Based Distributed Finite-Time Algorithm for EDPs

REFERENCES
[1] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and

Control. New York, NY, USA: Wiley, 1996.
[2] J. P. Zhan, Q. H. Wu, C. X. Guo, and X. X. Zhou, ‘‘Fast λ-iteration

method for economic dispatch with prohibited operating zones,’’ IEEE
Trans. Power Syst., vol. 29, no. 2, pp. 990–991, Mar. 2014.

[3] G. Abbas, J. Gu, U. Farooq, A. Raza, M. U. Asad, and
M. E. El-Hawary, ‘‘Solution of an economic dispatch problem through par-
ticle swarm optimization: A detailed survey—Part II,’’ IEEE Access, vol. 5,
pp. 24426–24445, Nov. 2017.

[4] M. F. Zaman, S. M. Elsayed, T. Ray, and R. A. Sarker, ‘‘Evolutionary
algorithms for dynamic economic dispatch problems,’’ IEEE Trans. Power
Syst., vol. 31, no. 2, pp. 1486–1495, Mar. 2016.

[5] Y. Wang, S. Wang, and L. Wu, ‘‘Distributed optimization approaches for
emerging power systems operation: A review,’’ Electr. Power Syst. Res.,
vol. 144, pp. 127–135, Mar. 2017.

[6] Y. Ren, Y. Tian, and H. Wei, ‘‘Parameter evaluation of auxiliary problem
principle for large-scale multi-area economic dispatch,’’ Int. Trans. Elect.
Energy Syst., vol. 24, no. 12, 1782–1790, Oct. 2013.

[7] Z. Zhang and M.-Y. Chow, ‘‘Convergence analysis of the incremental cost
consensus algorithm under different communication network topologies
in a smart grid,’’ IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1761–1768,
Nov. 2012.

[8] W. T. Elsayed and E. F. El-Saadany, ‘‘A fully decentralized approach for
solving the economic dispatch problem,’’ IEEE Trans. Power Syst., vol. 30,
no. 4, pp. 2179–2189, Jul. 2015.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[10] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, ‘‘Optimal parame-
ter selection for the alternating direction method of multipliers (ADMM):
Quadratic problems,’’ IEEE Trans. Autom. Control, vol. 60, no. 3,
pp. 644–658, Mar. 2015.

[11] A. Kargarian, Y. Fu, and Z. Li, ‘‘Distributed security-constrained unit
commitment for large-scale power systems,’’ IEEE Trans. Power Syst.,
vol. 30, no. 4, pp. 1925–1936, Jul. 2015.

[12] A. Cherukuri and J. Cortés, ‘‘Distributed generator coordination for ini-
tialization and anytime optimization in economic dispatch,’’ IEEE Trans.
Control Netw. Syst., vol. 2, no. 3, pp. 226–237, Sep. 2015.

[13] A. Cherukuri and J. Cortés, ‘‘Initialization-free distributed coordination
for economic dispatch under varying loads and generator commitment,’’
Automatica, vol. 74, pp. 183–193, Dec. 2016.

[14] P. Yi, Y. Hong, and F. Liu, ‘‘Initialization-free distributed algorithms for
optimal resource allocation with feasibility constraints and application to
economic dispatch of power systems,’’ Automatica, vol. 74, pp. 259–269,
Dec. 2016.

[15] C. Li, X. Yu, W. Yu, T. Huang, and Z. W. Liu, ‘‘Distributed event-triggered
scheme for economic dispatch in smart grids,’’ IEEE Trans. Ind. Informat.,
vol. 12., no. 5, pp. 1775–1785, May 2016.

[16] Z. Q. Yang, J. Xiang, and Y. J. Li, ‘‘Distributed consensus based supply-
demand balance algorithm for economic dispatch problem in a smart
grid with switching graph,’’ IEEE Trans. Ind. Electron., vol. 64, no. 2,
pp. 1600–1610, Feb. 2017.

[17] F. Guo, C. Wen, J. Mao, and Y.-D. Song, ‘‘Distributed economic dispatch
for smart grids with random wind power,’’ IEEE Trans. Smart Grid, vol. 7,
no. 3, pp. 1572–1583, May 2016.

[18] H. Xing, Y. Mou, M. Fu, and Z. Lin, ‘‘Distributed bisection method for
economic power dispatch in smart grid,’’ IEEE Trans. Power Syst., vol. 30,
no. 6, pp. 3024–3035, Nov. 2015.

[19] T. Yang, D. Wu, Y. Sun, and J. Lian, ‘‘Minimum-time consensus based
approach for power system applications,’’ IEEE Trans. Ind. Electron.,
vol. 63, no. 2, pp. 1318–1328, Feb. 2016.

[20] J. F. C. Mota, J. Xavier, P. Aguiar, and M. Püschel. (2011). ‘‘A proof of
convergence for the alternating direction method of multipliers applied
to polyhedral-constrained functions.’’ [Online]. Available: https://arxiv.
org/abs/1112.2295

[21] H. Zhu and G. B. Giannakis, ‘‘Power system nonlinear state estimation
using distributed semidefinite programming,’’ IEEE J. Sel. Topics Signal
Process., vol. 8, no. 6, pp. 1039–1050, Dec. 2014.

[22] T. Erseghe, ‘‘Distributed optimal power flow using ADMM,’’ IEEE Trans.
Power Syst., vol. 29, no. 5, pp. 2370–2380, Sep. 2014.

[23] Y. Wang, L. Wu, and S. Wang, ‘‘A fully-decentralized consensus-based
ADMMapproach for DC-OPFwith demand response,’’ IEEE Trans. Smart
Grid, vol. 8, no. 6, pp. 2637–2647, Nov. 2017.

[24] E. Wei and A. E. Ozdaglar, ‘‘Distributed alternating direction method of
multipliers,’’ in Proc. CDC, Maui, HI, USA, Dec. 2012, pp. 5445–5450.

[25] T.-H. Chang, ‘‘A proximal dual consensus ADMMmethod for multi-agent
constrained optimization,’’ IEEE Trans. Signal Process., vol. 64, no. 14,
pp. 3719–3734, Jul. 2016.

[26] T. H. Chang, M. Hong, and X. Wang, ‘‘Multi-agent distributed optimiza-
tion via inexact consensus ADMM,’’ IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482–497, Jan. 2015.

[27] Y. Yuan, G.-B. Stan, L. Shi, M. Barahona, and J. Goncalves,
‘‘Decentralised minimum-time consensus,’’ Automatica, vol. 49, no. 5,
pp. 1227–1235, 2013.

[28] H. Xing, Z. Lin, and M. Fu, ‘‘An ADMM + consensus based distributed
algorithm for dynamic economic power dispatch in smart grid,’’ in Proc.
34th Chin. Control Conf., Hangzhou, China, Jul. 2015, pp. 9048–9053.

[29] G. Chen and Q. Yang, ‘‘An ADMM-based distributed algorithm for eco-
nomic dispatch in islanded microgrids,’’ IEEE Trans. Ind. Informat., Dec.
2017, doi: 10.1109/TII.2017.2785366.

[30] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and
M. Johansson, ‘‘Distributed finite-time average consensus in digraphs in
the presence of time delays,’’ IEEE Trans. Control Netw. Syst., vol. 2, no. 4,
pp. 370–381, Dec. 2015.

[31] C. Godsil and F. R. Gordon, Algebraic Graph Theory. Berlin, Germany:
Springer, 2013.

PENG LI received the B.S. degree in automation
from the Henan University of Technology, China,
in 2013, and theM.S. degree in control science and
engineering from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2016, where he is currently pursuing the Ph.D.
degree with the School of Automation Engineer-
ing. His research interests include distributed opti-
mization, multi-agent systems, and smart grid.

JIANGPING HU (SM’15) received the B.S.
degree in appliedmathematics and theM.S. degree
in computational mathematics from Lanzhou Uni-
versity, China, in 2000 and 2004, respectively,
and the Ph.D. degree in complex system modeling
and control from the Academy of Mathematics
and Systems Science, Chinese Academy of Sci-
ences, Beijing, China, in 2007. He has held vari-
ous faculty/research/visiting positions at the Royal
Institute of Technology (KTH), Sweden, the City

University of Hong Kong, Hong Kong, Sophia University, Japan, and the
University of Western Sydney, Australia. He is currently a Professor with
the School of Automation Engineering, University of Electronic Science and
Technology of China, Chengdu, China. His current research interests include
distributed control and optimization, machine learning, and sensor networks.

Dr. Hu has been serving as an Associate Editor for the journalKybernetika
since 2016.

30976 VOLUME 6, 2018

http://dx.doi.org/10.1109/TII.2017.2785366

	INTRODUCTION
	PRELIMINARIES AND PROBLEM FORMULATION
	GRAPH THEORY
	ECONOMIC DISPATCH PROBLEM

	ADMM BASED ALGORITHMS FOR EDPS
	CENTRALIZED ADMM ALGORITHM
	DISTRIBUTED ADMM ALGORITHM

	SIMULATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	PENG LI
	JIANGPING HU


