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ABSTRACT Road-based mass transit systems are an effective means to combat the negative impact of
transport that is based on private vehicles. Providing quality of service in this type of transit system is
a priority for transport authorities. In these systems, travel time (TT) is a basic factor in quality of service.
This paper presents a methodology, based on data mining, for analyzing TT in a mass transit system that is
planned by timetable. The objective of the methodology is to understand the behavior patterns of TTs on the
different routes of the transport network, as well as the factors that influence these patterns. To achieve this
objective, the methodology uses clustering techniques to process the GPS data provided by the vehicles of
the public transport fleet. The results that were obtained when implementing this methodology in a public
transport company are presented as a use case, demonstrating its validity.

INDEX TERMS Road-based mass transit systems, travel time, intelligent transportation systems, data
mining, pattern clustering, global positioning system.

I. INTRODUCTION
According to the International Energy Agency, there were an
estimated 900 million passenger light-duty vehicles on our
roads worldwide in 2015, a figure that is projected to grow to
2 billion by 2040 [1]. There is widespread agreement that road
transport systems based on the use of private vehicles have
a negative impact. This impact includes degradation of the
environment, health and safety on roads, aspects that are par-
ticularly pronounced in densely populated areas. The World
Health Organization estimates that approximately 3 million
people die every year due to health problems caused by pollu-
tion [2]. One way to mitigate the negative impacts associated
with this type of transport system is to develop efficient public
transport systems that provide quality of service. Intelligent
Transport Systems (ITS) are an effective means to meet this
challenge. Therefore, in modern societies and in the new
paradigm of the smart city, ITS has a fundamental role to play.

For public road transport systems to be an alternative to
transport based on the use of private vehicles, they must pro-
vide quality of service to make them attractive to the general
public. In the context of road-based mass transit systems, one
of the most important factors that affect quality of service

is timetable adherence. Adherence means punctuality in the
frequency between services or scheduled stop times. For it
to be reliable, information is required on travel time (TT)
behavior according to time and space parameters on the
transport network. This paper presents a methodology based
on data mining for analyzing TT behavior in a context of
mass transit systems planned by timetable, based on the GPS
data provided by the vehicles of the public transport fleet.
The proposed methodology provides information on the TT
behavior of the lines according to the time of year, time of day
and section of the route. It also evaluates quality of service
based on punctuality, according to criteria and metrics that
are widely used by transport agencies and the academic com-
munity working in this field. In addition, it provides a useful
framework for making TT forecasts. Thus, transport planning
may be geared towards efficiency and quality of service and it
becomes possible to provide reliable information to the public
transport user. Specifically, the proposal consists of using
classification techniques to study TT behavior in mass transit
systems planned by timetable; the originality of this approach
lies in the fact that existing works on this topic have mostly
looked at planning by frequency. It should also be pointed

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

32861

https://orcid.org/0000-0002-8313-5124
https://orcid.org/0000-0003-1433-3730


T. Cristóbal et al.: Systematic Approach to Analyze TT in Road-Based Mass Transit Systems Based on Data Mining

out that the required data are commonly used by transport
companies and agencies, and therefore do not require the
deployment of infrastructure other than that which already
exists in mass transit systems. The proposal is consistent
with the current ITS paradigm: continuous observation of
what happens in the transport network, continuous processing
of the data produced by these observations and continuous
improvement of the services provided, in order to make trans-
port systems more efficient, safe, sustainable and adapted to
the needs of users [3]. Moreover, the proposed methodology
may be used to facilitate implementation of traffic control
strategies that prioritize public transport vehicles [4], a key
aspect of the smart city paradigm. The objective is to have
better knowledge of travel time behavior that will enable
subsequent studies to focus more on the routes and thus
introduce measures to reduce this time or its variability.

The rest of this article is organized into five more sec-
tions. The second section lists works related to the proposed
methodology. The methodology is described in the third
section. Next, the results of a use case implementing the
methodology in the study of the travel time of a bus line of
a public transport company are presented. The fifth section
is a discussion of the results, and the final section draws the
conclusions.

TABLE 1. List of abbreviations.

A. LIST OF ABBREVIATIONS
Table 1 contains a list of abbreviations used throughout this
paper.

II. RELATED WORKS
In order to achieve the objectives of efficiency and quality of
service in public transport, a fundamental requirement is to
understand the mobility needs and habits of people. Based on

this information, the three basic processes on which public
transport is based—transport network design, service plan-
ning and operations control—may be carried out with guaran-
tees. In [5] a global reviewwas conducted of themethods used
to design and schedule a transport network, and in relation to
quality assessment, [6] provides an exhaustive review of the
methods used to analyze behavior and to evaluate the main
parameters that affect it. Technological advances, especially
in mobile communications, sensors and computing, have
enabled Intelligent Transport Systems to be developed that
adapt transit systems to the needs of their users, to be more
efficient and to provide greater quality of service. A common
feature of this type of system is that it provides information
on what happens in the transport network by performing an
analysis of its time–space behavior from large amounts of
data [7]. In this context of themassive use of data, datamining
is a field that is increasingly used in transport engineering.
A review of the literature in which data mining has been
used to solve some of the problems in transport systems is
presented below. Depending on the data source used, these
works may be classified into two groups: those based on data
related to the movements of travelers in the transport network
and those that use data related to the location of the vehicles
in the transport network. In both groups there are works that
address the three main problems that need to be addressed to
achieve efficiency and quality of service.

The works that use data associated with the movements
of travelers include studies that: seek to acquire information
about the profiles and usage habits of transport network
users [8]; measure the use of the network infrastructure by
travelers [9]; make predictions about travel times and develop
personalized information services for the user [10], [11],
based on records generated by the use of the Smart Card
Automated Fare Collection system (SCAFC). In [12], socio-
demographic factors are also taken into account: location
of shopping centers, sports areas, residential areas, etc. The
works that propose techniques to obtain mobility patterns of
mass transit system users may be grouped into two categories
according to the analysis carried out in [13]: those based on
statistical methods capable of supplying a self-explanatory
model when treating them as the result of a stochastic process,
and those that use neural networks. In order to predict total
demand in transit systems, based on time series of trips
completed during certain time intervals, the use of statistical
models is proposed in [14] and neural networks are used
in [15]; as an example ofmixed procedures, a process to select
the generated functions before applying the neural network is
introduced in [16]; in [17], the result of two different models
of networks is analyzed using time-dependent parameters
(trend, cycle and periodicity) in the observed demand data;
and a new hybrid optimization algorithm is developed in [18],
with set theory and neural network techniques, to predict
the volume of passengers by road. As an example of other
methods, in [19] the space–time behavior of travelers in a
metro network based on the use of cards is studied using
clustering techniques.
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The location data of public transport vehicles have been
used mainly to improve the design of the transport network,
to evaluate the quality of service and to make travel time
forecasts. The following works are examples of how different
issues are tackled with these data: [20] proposes a method-
ology to evaluate the road network from the point of view
of travel time stability through statistical distribution func-
tions. In [21], by means of clustering techniques developed
by the authors, the impact of demand and traffic on oper-
ational performance is analyzed. By gathering information
on passengers boarding and alighting from vehicles, [22]
looks at how to avoid overcrowding, which, together with
delays in arrival times, can dissuade people from using public
transport services; and in [23], diagnostic diagrams of service
reliability are generated to determine how the variability of
service attributes affects the behavior of travelers. In [24],
a methodology for improving the design of the transport
network is proposed: it detects the stop, classifies it, generates
routes and estimates stop times by processing the vehicle GPS
data using clustering techniques. Reference [25] proposes a
new metric to evaluate the punctuality of buses using vehicle
location data. In [26], the causes of scheduling irregularities
are analyzed. In the context of road-based mass transit sys-
tems planned by frequency, in [27] and [28], location and
passenger movement data are processed using the Gaussian
Mixture Models (GMM) clustering technique and ad-hoc
metrics with the aim of selecting the best cluster to evaluate
quality of service taking into account the day coverage.

With regard to travel time forecasts by processing location
data using machine learning techniques, a wide range of stud-
ies have been conducted on this subject. In [29], neural net-
works are used, and classification techniques are used in [30]
with k-nearest neighbors regression (kNN), and in [31],
k-means and v-means clustering. There are also a consider-
able number of proposals that tackle travel time predictions
using state models and time series. For example, state mod-
els, more specifically Kalman filters, are used in [32] and
time series in [33] and [34]. Lastly, a hybrid model using
Support Vector Machines (SVM) and Kalman filters is
proposed in [35].

III. METHODOLOGY
This paper was developed in the context of road-based inter-
city or long-distance mass transit systems. In this type of
system, TT is an important criterion for providing quality of
service. Firstly, because travelers want their journeys to last
as little as possible, and secondly, because travelers expect
punctuality. To achieve these objectives, accurate travel time
estimates are needed, and the problem that arises when mak-
ing these estimates is that travel time depends on factors such
as traffic conditions, the travelers who board or alight from
the vehicle at each stop on the route, the weather conditions
at the time of the bus journey, etc.

This section describes a methodology for systematically
analyzing travel time to improve quality of service and iden-
tify the factors that affect the travel time on each journey.

Identifying these factors makes it possible to obtain
TT behavior patterns for the different routes of the transport
network and acquire a more precise knowledge of how this
time varies, and thus:
• Improve the design of the transport network. Once the
factors that affect the routes are known, the routes can
be redesigned to reduce travel time.

• Plan more reliably. If the variations in travel time are
known, more accurate estimates may be made.

• Control operations more efficiently. If the factors that
affect travel time on a route and how this time varies
depending on when the route is traveled are known, this
greater understanding will enable real-time measures to
be adopted that guarantee quality of service.

• Improve quality of service. If travel times are reduced
and the reliability of service planning increased, quality
of service will improve.

FIGURE 1. General diagram of the methodology.

Themethodology used, as illustrated in Fig. 1, was inspired
by the process-oriented methodology called CRossIndustry
Standard Process for Data Mining (CRISP-DM) [36]. This
study mainly followed two stages of this methodology: data
preparation and modeling. In the first—data preparation—
the data that form the basis of this study were merged and
complemented. The second phase—modeling—incorporated
modeling tools, based on clustering techniques, which were
used to identify the factors that affect the travel time of a route
and to obtain its patterns of behavior.

A. FORMALIZATION
This section describes the formal model used to analyze TT.
This formalization had two objectives. The first was to ensure
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that themethodology can be applied to different types of road-
based mass transit systems, and was achieved by applying
standards related to conceptual models of public transport
systems. The second was to ensure that the information
provided is useful, and was achieved by using criteria and
metrics for evaluating quality of service in public transport
that are widely used by transport agencies and the academic
community.

To achieve the first objective, the methodology was based
on Transmodel (Reference Data Model for Public Trans-
port) [37]. At the first level of formalization, the transport
network was represented. At this level, the entities involved
are the nodes and the arcs that physically link the nodes.
The nodes represent places in the transport network where
transport-related activity takes place: passengers boarding
and alighting, schedule controls, ticket sales, etc. Each of
these activities are attributes of the entity node, which is
represented by ni, with the subscript i being the identifier
of the node. The set of nodes of the transport network is
denoted by N , N = {ni}. The N nodes are connected by
arcs that represent the routes taken by vehicles and travelers,
giving rise to a directed graph; this set of arcs is represented
by A and gives rise to the physical graph of the transport
network, represented by G, G = (N , A). For the purposes
of the methodology, the nodes of interest are the passenger
boarding and alighting nodes, which will be given the generic
name of stop, and the schedule control nodes. The set of nodes
that fall within these categories is represented by P, where
P ⊆ N . The arcs of interest are those that represent the routes
followed by the buses carrying passengers; the set formed by
arcs of this category is represented by W , where W ⊆ A. P.
On this first level of formalization, the next entity is the route,
which is defined as the path followed by the vehicles of the
fleet, and comprises an ordered sequence of arcs. Each route
is represented by ri, where the subscript i is the identifier
of the route. If route ri has n arcs, then ri is specified by
n-tuple (ai, . . . , an), where ai, . . . , an ∈ W . From the route
entity, the line entity is defined: a set of very similar routes
from the topological point of view (usually a round trip)
represented by li, where the subscript i is the identifier of the
line. The set of lines in the transport network is represented
by L, L = {li}.
The second level of formalization is associatedwith service

scheduling. This scheduling, represented by S, is organized
into basic planning units, si, so S = {si}. Each si planning
unit is defined as a set of ordered operations, in which the
start and end times and the nodes at which the route starts
and ends are specified. For the methodology, there are two
aspects of interest at this level. The first is how to specify the
calendar dates on which an si service must be performed, and
the second is the minimum unit of time to be considered in
the schedule plan. Specification of the calendar dates is done
through a schema in which the different types of calendar
day are described. Examples of the most common types
are: day of the week, work day, public holiday, weekend,
school period, etc. As for the smallest unit of time used for

scheduling, this is usually a minute. Each of the completed
operations of a line service—a route completed by the cor-
responding vehicle—is called a Vehicle Journey, represented
by VJ. The VJ set of all the routes of a line l is represented by
VJl ; to express the VJ set of a line l completed in a period of
time T the notation VJlT is used.

Of special interest are the criteria and metrics used to
evaluate quality of service in mass transit systems where two
types of schedule are distinguished: those based on frequency
of service and those based on timetables. The first type is
used in urban or short-distance transport [38]. The second
type is used for intercity or long-distance transport, where TT
and punctuality are two basic criteria for assessing quality
of service. In general, the travel time of a VJ on route r ,
represented by TTr, is formally expressed as a function of two
times: the dwell time at each stop, DW, and the time, RT, that
it takes to cover each arc of the route:

TTr =
Ns∑
n=1

DWn +

Na∑
n=1

RTa (1)

Where Ns is the number of stops on ri, DWn the time the
vehicle remains stationary at stop n of the route (dwell time),
Na the number of arcs on the route and RTa the travel time of
arc a of the route.

The methodology was developed to analyze travel time in
a context of an intercity or long-distance mass transit system.
For this type of system, a metric used to evaluate punctuality
is Run Time Variation (RTV) [39]. The calculation of this
metric is expressed below:

RTV = (Np)−1x
Ns∑
n=1

|OTn − STn|
OTn

(2)

Where Ns is the number of stops on route ri, OTn the
observed time of arrival at stop n and STn the scheduled time
of arrival at stop n. The value (OTn – STn) is the deviation
from the scheduled arrival time at stop n, which is represented
by TDn. If this value is positive, it indicates a delay with
respect to the planned time, a value of zero indicates that the
arrival time at the stop is on schedule, and a negative value
indicates the vehicle has arrived at the stop ahead of time.

Another aspect that the methodology takes into account is
the cost incurred by non-adherence with VJ timetables [40].
In the case of timetabled bus lines, it is assumed that the trav-
eler arrives at the stop moments before the vehicle is sched-
uled to pass by [41]. Therefore, themethodology assumes that
the cost of non-adherence with a VJ timetable, represented by
the variable COST, is the time cost for the travelers on that
VJ of having to wait at the stop, represented by TIn.

COST =
Np−1∑
n=1

|OTn − STn| × TIn (3)

B. DATA PREPARATION PHASE
The objective of this phase is to obtain the basic data required
to analyze travel time. These data are obtained from the
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records stored in the transport database (TDB). For the pur-
poses of this methodology, the entities of interest in the TDB
represent the activities that are planned and carried out in the
transport network, comprising the following data:
• Geographical location of line stops. These locations are
given by their GPS coordinates: latitude and longitude.

• Estimated stop arrival times for each planned VJ. This
information is necessary to evaluate the punctuality dur-
ing the period of analysis.

• The data that represent relevant events that occurred
during the VJ, especially periodic updates of the vehicle
GPS coordinates during the line services and the data
used to ensure integrity.

• The total number of passengers that board and alight at
each stop on the route, obtained from traveler payment
records.

TABLE 2. VLR data structure.

The basic data for this methodology are supplied by the
readings that indicate the location of the vehicle at a given
moment in time. The location of each vehicle is acquired
periodically and stored in a data structure named Vehicle
Location Record (VLR), this structure is shown in Table 2.
The set of all location records is represented by {VLR}.
The subset of {VLR}, comprising the locations obtained for
vehicles on line l routes, in the period T , is represented as
{VLR}l,T . The set {QVLR} is obtained from {VLR}. {QVLR}
is an integral dataset that guarantees the reliability of the
results obtained by the methodology. In this case, integrity
means that all records in the dataset {QVLR} comply with
the following properties:
• They contain a GPS reading of good quality, mean-
ing that it was obtained using the signal provided by
at least three GPS satellites and that the reading is
less than 10 seconds old. These data properties were
obtained from the protocol data used by the vehicle’s
GPS receiver.

• They were obtained on a VJ that completed a route,
meaning that it went through all the planned stops in a
coherent fashion (having covered all the planned arcs).

All the data for the {QVLR} dataset were acquired through
a filtering process (see Fig. 1). The subset of {QVLR}, com-
prising the locations obtained for vehicles on line l routes in
the period T , is represented as {QVLR}l,T . From the {QVLR}
dataset, the arrival times at each of the stops on the route are
obtained for eachVJ; {OT} represents the arrival time dataset.

From all the arrival times for all the VJs, the three
datasets—{OT}l,T , {TD}l,T and {RTD}l,T—to be used in the
next phase of the data mining project, the modeling phase,
were constructed for each line l at each instant of time T .

The dataset {OT}l,T . This set was used to obtain the behav-
ior patterns of arrival times of the line analyzed during the
time period T . Table 3 shows the structure of dataset {OT}l,T .

TABLE 3. Structure of the data associated with each element of the
dataset {OT}.

The dataset {TD}l,T was obtained by calculating, for each
data record, the deviation of the recorded arrival time from the
scheduled arrival time. This dataset was used to obtain the
behavior pattern of the deviations of the arrival times from
the schedule and is therefore an indicator of the cost of said
deviations. Table 4 shows the structure of dataset {TD}l,T .

TABLE 4. Structure of the data associated with each element of the
dataset {TD}.

The dataset {RTD}l,T (Relative TimeDelay), was obtained
by applying the following transformation to each data record
of {TD}l,T : Let TDn be the deviation in the recorded arrival
time of a vehicle on a VJ at stop n, and let DTn − 1 be
the deviation at stop n − 1 on that same VJ, thus defining
the relative deviation in the arrival time at stop n on the VJ
(denoted as RTDn) as RTDn = TDn – TDn−1. A positive
value for RTDn means that the vehicle has traveled the section
between stops n − 1 and n in a time longer than planned,
a value equal to zero means that the vehicle has traveled the
section in the planned time and a negative value means that
the vehicle has traveled the section in less time than planned.
The dataset {RTD}l,T was used to identify the sections that
cause the VJ to run early or late and to understand the pattern
that the relative deviations follow in these sections. Table 5
shows the structure of dataset {RTD}l,T , thus avoiding a
cumulative effect in the TD.

TABLE 5. Structure of the data associated with each element of the
dataset {RTD}.

C. MODELING PHASE
The objective of this phase is to gain an understanding of
the TT behavior of the VJ according to different variables.
For a traveler on the route, TT is the time consumed in
going from the origin stop to the destination stop of their
journey. The ultimate goal is to understand the TT behavior
at each and every stop on the route. Specifically, the aim is to
understand how certain time-dependent factors, such as the
type of calendar day and the time of day, affect the behavior
of these times. Also, to understand how the deviations from
the scheduled arrival times at stops, TDn, develop depending
on the section of the route. A final objective is to identify on
which sections of the route deviations from the scheduled TT
are generated according to the type of calendar day, and time
of day.
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Themethodology employed clustering techniques to group
the different TT data according to their similarity; this type of
clustering technique was chosen because they are capable of
handling large datasets that are frequently used in the context
of transport, specifically the k-medoids algorithm [43], which
is one of the most robust against noise. A medoid may be
defined as the element of a group whose average dissimilarity
to all elements in the group is minimal. It is the point located
the closest to the center in the whole group.

Once a cluster solution has been obtained, the next step is to
evaluate the validity of the solution. There are various ways of
carrying out this evaluation, which may be broken down into
three categories [44]. The first category consists of techniques
based on external metrics, which measure the coincidence
of the groups with previously generated labels for that class.
The second category consists of techniques that use internal
metrics, which measure the intrinsic information of each
dataset. Finally, the third category consists of techniques that
use relative metrics, which are based on the comparison of
several different clustering solutions. For the purposes of this
study, an internal index was chosen to measure the quality of
the clusters in the first instance: the silhouette function [45].
This measures the consistency of the segments generated,
based on the tightness and separation of its elements, and is
computed by the following formula:

s(i) =


1−

a(i)
b(i)

, if a(i) < b(i)

0, if (a(i) = b(i)
b(i)
a(i)
− 1, if b(i) < a(i)

(4)

In Formula (4) a(i) is the average distance from object i
to the other objects within the cluster and b(i) is the smallest
average distance from i to all the objects of each of the clusters
to which i does not belong.

The k-Medoids clustering technique was applied to
datasets {OT}l,T , {TD}l,T and {RTD}l,T .

IV. RESULTS
This section presents the results obtained in a use case of
the methodology. The use case consisted of analyzing the
behavior over one year of the arrival times at the stops on
a line of the public transport company Global Salcai-Utinsa.
This is a company that operates on the island of Gran Canaria
(Canary Islands, Spain) and is the main intercity transport
company on this island; it has a fleet of 304 vehicles operating
on a transport network with 2686 stops, 110 different routes
and 2395 daily routes. Every year, its vehicles travel around
25,000,000 kilometers, transporting 20,000,000 passengers.

With regard to the tools used, in the data preparation phase,
Oracle was used for the database system and Pentaho for inte-
gration and visualization. In the modeling phase, the RStudio
framework was used; more specifically, the PAM function of
the Cluster package [46], selecting the Euclidean distance as
the metric for calculating the dissimilarities between the data
and without determining the initial medoids.

TABLE 6. Scheduled VJs on the analyzed line service Monday to Friday
(excl. public holidays).

The line selected was number 210, and all the VJs of this
line follow the same route. With regard to the route followed
by the bus line, it should be noted that it starts in the city of
Las Palmas de Gran Canaria, which is the island’s main traffic
hub, and ends in the city of Arucas, one of the largest popula-
tion nuclei on the island. It crosses urban areas and non-urban
areas, and some of its stops are near health, educational and
commercial centers. Therefore, it is an illustrative use case of
a bus line since the travel times of its different VJs are affected
by different factors related to demand, the calendar, the time
of day, traffic conditions, etc. Fig. 2(a) shows an aerial view
of the line service with the location of each of its stops,
with those considered significant for this study highlighted
in red, as will be explained below. In Fig. 2(b) the same bus
line is represented schematically, distinguishing between the
different types of road that it transits. The route has 30 stops
and one control point, and covers a distance of 23 kilometers.
The period studied was the whole of 2015. In this period,
the VJs were scheduled according to three types of calendar
day: the first (type 0), was Monday to Friday, excluding
public holidays, the second (type 1), Saturdays, and the
third (type 2), Sundays and public holidays. Table 6 shows
VJ schedule planning on the days pertaining to the first type
(Monday to Friday, excluding public holidays). For this type
of day, it may be seen that the first VJ started at 06:30, that
between 07:10 and 20:40 a VJ started every 40 minutes, and
that the last two VJs started at 21:30 and 22:15. Table 7 shows
VJ schedule planning on the days pertaining to the second and
third type (Saturdays, Sundays and public holidays). On these
days, a VJ was scheduled for every hour between 08:40 and
20:40, with the last two VJs starting at 21:30 and 22:15.

TABLE 7. Scheduled VJs on the analyzed line service for Saturdays,
Sundays and public holidays.

As for the arrival time at each of the stops, the schedule
provided for the same travel time for each stop regardless
of the type of day and time of day of the VJ. The smallest
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FIGURE 2. (a) Aerial view of the stops on line 210 (those considered significant in red). (b) Schema of the type of sections on the line.

TABLE 8. Arrival time at each stop on the line.

unit of time established in this schedule is a minute. Table 8
shows the planned arrival times for each of the 30 stops on the
route. The first stop, stop 0, is not included in Table 8 since
it is assumed that the vehicle starts the VJ at the scheduled
time. The control point, labeled number 17, has also not
been included in the table. Each stop on the line has been
identified in the order of arrival following the set route; the
stops correspond to the labeled points 0 to 16 and 18 to 30.

According to data from the TDB, the 10 stops that were
most used by the passengers on this line in 2015 were: 0, 1,
2, 3, 6, 20, 21, 26, 29 and 30. Table 9 shows the number

TABLE 9. Number of users of the bus line that boarded or alighted at
each stop in 2015.

of passengers that board and alight at each of these stops.
In Fig. 2(b) these stops are represented with numbered icons;
the number indicates the order of that stop on the route, with
the exception of the origin stop.

A. RESULTS OF THE DATA PREPARATION PHASE
Table 10 shows each dataset that was processed in the data
preparation phase. These data refer to the year studied (2015).
The total number of position readings obtained from the
entire vehicle fleet after completion of all the VJs of all
the lines defined in the transport network was 51,499,404.
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TABLE 10. Number of elements of the datasets used in the methodology.

During this year, 9675 VJs were scheduled for the analyzed
bus line. Of these 9675 scheduled VJs, when applying the
filtering process, 6092 VJ were classified as complete and
coherent from 158,300 location readings. From this integral
set of location readings, the three datasets used in the mod-
eling phase were created: {OT}210,2015, {TD}210,2015 and
{RTD}201,2015.

B. RESULTS OF THE MODELING PHASE
The objective of this phase is to obtain a pattern that describes
the travel time behavior of the VJs on the analyzed bus line.
This knowledge would help understand how the travel time
varies depending on the type of calendar day and the time of
day and the section of the route studied.

FIGURE 3. Value obtained with the silhouette function for each of the
different clusters.

The first step of this phase consisted in modeling TT
behavior in 2015. To this end, the k-Medoid clustering tech-
nique was applied to the dataset {OT}210,2015. Nine clustering
processes were carried out, generating from 2 to 10 clusters,
evaluating in each process the segmentations created with the
silhouette function. Fig. 3 contains the average value obtained
in each of the nine different cluster groupings, showing that

the consistency values decrease as the number of clusters
used increases. As an example of the segmentations that
were created, Fig. 4 shows the results obtained for the three
groupings with the highest value in the metric: the results
for two, three and four clusters. The vertical axis represents
the arrival time from the start of the VJ, and the horizontal
axis the stops analyzed. The three vertical lines represent
the three sections into which the route was initially divided:
urban, intercity, and urban section. Each graph shows the
scheduled time (red line), the medoid of each resulting cluster
group (blue line) and the elements classified in each cluster
group (gray lines). As may be observed, using two clusters
(Fig. 4(a) and 4(b)) the average cohesion value evaluated
with the silhouette function is 0.45, and the cohesion val-
ues of each of the two clusters are 0.52 (Cluster 1) and
0.36 (Cluster 2). In the case of three clusters, the average
value for the silhouette function was 0.35, with the cohesion
values for each of the clusters 0.40 (Cluster 1), 0.44 (Clus-
ter 2), and 0.21 (Cluster 3) (see Fig. 4(c), 4(d) and 4(e)).
Finally, using four clusters in the group, the average cohe-
sion value for the four clusters was 0.34, the value of
each being 0.37 (Cluster 1), 0.36 (Cluster 2), 0.20 (Clus-
ter 3), and 0.33 (Cluster 4) (see Fig. 4(f), 4(g), 4(h) and 4(i)).
In this evaluation of the cluster groups, the two groups
that produced the highest values were those obtained using
two and three clusters. Although the group using two clus-
ters produced the highest average consistency and cohe-
sion value, the group of three clusters gave more precise
information about arrival time behavior at the stops. If we
compare both groups, we can conclude that the group using
three clusters is a refinement of the result obtained with
two clusters, and that three TT behavior patterns may be
distinguished: Cluster 1 groups the VJs that arrive at the
stops in a shorter time, Cluster 2 groups those that take more
time than the VJs in Cluster 1, and Cluster 3 groups the VJs
with the latest arrival times. In addition, the number of data
records in each of the three clusters is significant; 1,777 in
Cluster 1; 2,411 in Cluster 2; and 1,904 in Cluster 3. For the
above reasons, the grouping of three clusters was taken as the
reference for classifying TT behavior.

The second step of the modeling phase consisted of
obtaining the behavior patterns for the deviations from the
arrival times at the selected stops on the route. To this end,
the reference grouping of three clusters was used. There-
fore, three patterns were generated, which were defined as
the difference function between the observed arrival time
and the scheduled arrival time. Fig. 5 shows the data gen-
erated with this difference function grouped in each clus-
ter: Cluster 1 Fig. 5(a), Cluster 2 Fig. 5(b) and Cluster 3
Fig. 5(c). The vertical axis represents the deviation of the
arrival times from the scheduled times and the horizontal
axis, the selected stops. The three vertical red lines represent
the same as in Fig. 4. Each graph shows the medoid of
the cluster group (blue graphs) and the deviations from the
scheduled arrival time for each VJ from each cluster group
(gray graphs).
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FIGURE 4. Result of clustering the dataset {OT}210,2015, with two, three and four clusters using the k-Medoid technique.

The third step of the modeling phase identified the sections
that generated delay and the sections in which there was a
reduction in delays. For this, a group of three clusters was
created with the dataset {RTD}210,2015. The results are shown
in Fig. 6. The vertical axis represents the relative deviation
of the VJ at each stop, and the horizontal axis the stops
analyzed. As in the previous two figures, the three vertical
red lines represent the three sections into which the line route
was divided. Each graph shows the medoid of each of the
three resulting cluster groups (blue graphs) and the elements
classified in each cluster group (gray graphs).

V. DISCUSSION
From the results obtained in the analysis of the arrival times
at stops, it may be concluded that these times do not follow
a single pattern, as was assumed in the bus timetable. From
these results three behavior patterns were obtained. The first
pattern relates to the VJs that reach the stops on the route
in the least amount of time (Cluster 1, Fig. 4(c)), the second
pattern, the VJs that take longer than the first cluster (Clus-
ter 2, Fig. 4(d)), and the third, the VJs that take the most

time to reach the stops (Cluster 3, Fig. 4(e)). The pattern of
Cluster 1—the cluster with the greatest schedule adherence—
is represented by its medoid, which indicates a deviation from
the schedule that rarely exceeds 5 minutes, the time threshold
considered tolerable according to studies carried out by var-
ious public transport agencies (see Fig. 5(a)). Nevertheless,
it is noteworthy that a considerable number of VJs arrive
before the scheduled time (in Fig. 4(c) the VJs below the
red line representing the schedule and in Fig. 5(a) with TD
the VJs with negative values). Non-adherence with schedules
when arriving ahead of time is an event that should not occur
on routes that are planned by timetables. Conversely, another
behavior evinced by the results is that the greatest VJ delays
accumulate on the final part of the route, specifically from
stop 20 onwards—the first stop of the county road section
as shown in Fig. 2(b). On this final part of the route, delays
generally exceed 5 minutes, and in the clusters that show
behavior patterns of greater deviation from the schedule, this
may even exceed ten minutes. This fact is also relevant to
VJ scheduling, since it implies that part of the time planned
between the end of the delayed VJ and the next to be carried
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FIGURE 5. Result of the clustering process with 3 clusters applied to the dataset {TD}210,2015.

FIGURE 6. Result of the clustering process with 3 clusters applied to the dataset {RTD}210,2015.

out by the same vehicle—a time interval planned so that the
driver can rest and the passengers board the vehicle for its
next VJ—is consumed by the delay and may result in the late
departure of the next VJ to be made by that vehicle. Finally,
another generalized behavior revealed by the results is that
the deviations in arrival times at the stops are maintained or
increase at the following stops on the route. This behavior can
be clearly seen in the forms of the medoids in the three graphs
of Fig. 5.

As has already been mentioned, it is clear from the results
that the scheduling of arrival times assuming constant values
at each stop on the route is not realistic. This statement
is supported by the fact that the resulting clusters have a
considerable number of samples and their medoids acquire
different forms. The question that arises now is how to ana-
lyze the relationship between them and the type of day and
time of day. To conduct this analysis, contingency tables
have been used to represent the frequency with which these
patterns occur on different types of day and times of day.
Fig. 7 shows these tables for the grouping of three clusters.
To analyze the relationship with the type of calendar day,
two contingency tables were obtained; one with the months
of the year (Fig. 7(b)) and another with the days of the week
(Fig. 7(c)). To analyze the time of day, four contingency tables
were obtained; one with the time of day at which VJs began

on ‘‘Monday to Friday excluding public holidays’’ (Fig. 7(d)
with VJs between 06:00 and 15:00 and 7(e) with VJs between
16:00 and 22:00); another with the time of day at which
VJs began on Saturdays (Fig. 7(f)); and another with the
time of day when VJs began on Sundays and public holidays
(Fig. 7(g)). In the tables shown in Fig. 7(b) and 7(c) it may be
seen that, in the month of August and on Sundays or public
holidays, the most frequent pattern is Cluster 1: the VJs
that takes the least amount of time to arrive at the stops.
In the tables that associate the clusters with the time of day
(Fig. 7(d), 7(e), 7(f) and 7(g)) it is clear that arrival time
behavior varies depending on the type of day; the behavior
is different from Monday to Friday, on Saturdays and on
Sundays and public holidays. Moreover, for each of these
types of day, the behavior varies according to the time of day.
From the results it may be concluded that, in order to adapt
a timetable to reality, different forecasts should be used that
take into account the following:
• The time of year; August differentiated from the rest of
the months of the year.

• The type of day, differentiating Monday to Friday
excluding public holidays, Saturdays, and Sundays and
public holidays.

• Time of day, differentiating time periods and type
of day.
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FIGURE 7. Graphs created with the grouping of three OT clusters. (a) Medoids; (b) contingency table of clusters with months of the year;
(c) contingency table of clusters with days of the week; (d) contingency table of clusters with VJs on work days (type 0) until 15:00;
(e) contingency table of clusters with VJs on work days (type 0) from 16:00 onwards; (f) contingency table of clusters with VJs on
Saturdays (type 1); (g) contingency table of clusters with VJs on Sundays and public holidays.

In the analysis of the results obtained in the classifications
of the dataset {RTD}201,2015 formed by the deviations from
schedule from one stop to the next on the route, the points
of inflection in the medoids are of special interest. These
points indicate a change in the behavior of the deviations from
the planned schedule, as discussed in Section 3.3, in which
the usefulness of this dataset was described. The possible
changes are: a section in which the delay decreases; a section
in which the delay is maintained; and a section in which the
delay increases. In order to improve punctuality, the inflection
points marking the beginning of a section in which delays are
generated are particularly relevant, since once these sections
have been identified, they can be studied to determine the
causes of this behavior. At stops 3, 6, 21, 26 and 29 all the
medoids have inflection points (see Fig. 6(a), 6(b) and 6(c)).
Of these stops, those that begin a section in which a delay
is generated are stops 3 and 21 in all the medoids, and stop
29 only in the medoid associated with Cluster 3. The section
that begins at stop 3 ends at stop 6, the section that begins
at stop 21 ends at stop 26, and the section that begins at
stop 29 ends at stop 30. To study the possible causes of this
behavior in these sections, it would be necessary to analyze
the influences of the DW and RT times on the TT of these
sections. If we consider the users of the stops located in
these sections, these stops are not the most frequented on the
route; this leads to the conclusion that the DW time is not the
main cause of the slowness of the vehicle in these sections.
To analyze the effect of the RT time on the TT of these routes,
the information provided by the transport company’s geo-
graphic information system was used and it may be observed

that a factor that both routes have in common is that they run
along single-lane roads in both directions and without any
road signs that prioritize public transport vehicles. It could
therefore be concluded that the reason for deviations from
the schedule in these sections is due to the low speed of the
vehicles owing to the conditions of the roads alongwhich they
travel. A source of valuable information to analyze the causes
of the low speed of these vehicles is GPS readings indicating
when vehicles are stationary in these sections, since these
readings may follow a pattern that enables these causes to be
identified, but this is a subject that falls outside the scope of
this paper.

Finally, it should be noted that the proposed methodology
enables information on TT behavior to be obtained with-
out specialist knowledge, which would otherwise be neces-
sary if traditional methodologies, based mainly on statistical
methods, were used.

VI. CONCLUSIONS
This paper has presented a methodology for analyzing TT
in a context of a road-based mass transit system planned by
timetables. The methodology, based on data mining, uses the
location data of vehicles from the public transport fleet as
initial data. It enables the TT of the different scheduled routes
to be systematically analyzed, guaranteeing the validity of
the results by subjecting the data to validation processes.
In addition, in order for the methodology to be suitable for
implementation on the greatest possible number of mass
transit systems, it has been formalized using standard data
models and metrics. From the methodological point of view,
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the proposal is based on the k-Medoids clustering technique,
used to obtain the TT behavior patterns of the VJs, and the
silhouette function, used to evaluate the consistency of the
clusters.

In the modeling phase, three sets of input data were used.
The first dataset, made up of the recorded arrival times at
stops, was used to obtain the TT behavior patterns of the
analyzed routes. The second dataset, containing the devia-
tions from the scheduled stop times, was analyzed to under-
stand the behavior of these deviations and to detect where
the greatest cost is incurred in terms of quality of service.
The third dataset, containing the relative deviations in arrival
times at each of the stops, was used to obtain information
about the TT behavior in the different sections of a route. This
information enables the identification of the sections on the
route in which scheduled TT deviations occur (late or early
arrival). Once these sections have been identified, they may
be analyzed individually to detect the places and causes of
these deviations.

This paper presents a use case in which the TT of a trans-
port line of a public transport operator was analyzed, using
real data provided by the operator. The results have provided
information about the TT behavior of this line according to
different types of day and times of day. This information
enables possible improvements in the scheduling of stops,
making it more reliable and thus improving quality of service.
It has also made it possible to identify the sections of the route
in which the greatest schedule deviations occur.
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