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ABSTRACT Homography is an important concept that has been extensively applied inmany computer vision
applications. However, accurate estimation of the homography is still a challenging problem. The classical
approaches for robust estimation of the homography are all based on the iterative RANSAC framework.
In this paper, we explore the problem from a new perspective by finding four point correspondences between
two images given a set of point correspondences. The approach is achieved by means of an order-preserving
constraint and a similarity measurement of the quadrilateral formed by the four points. The proposed method
is computationally efficient as it requires much less iterations than the RANSAC algorithm. But this method
is designed for small camera motions between consecutive frames in video sequences. Extensive evaluations
on both synthetic data and real images have been performed to validate the effectiveness and accuracy of the
proposed approach. In the synthetic experiments, we investigated and compared the accuracy of three types
of methods and the influence of the proportion of outliers and the level of noise for homography estimation.
We also analyzed the computational cost of the proposed method and compared our method with the state-
of-the-art approaches in real image experiments. The experimental results show that the proposed method is
more robust than the RANSAC algorithm.

INDEX TERMS Homography estimation, order-preserving constraint, similarity measurement.

I. INTRODUCTION
Homography estimation has wide applications in process-
ing multiple images and video sequences, such as robot
navigation [2], tracking and mapping [3], augmented real-
ity [4], [27], image mosaics [5], [6], [23]–[25], finding
point correspondences [7]–[9] and image registration [28].
In general, a homography model can be computed from a
set of corresponding feature points extracted from the image
pairs or two frames in a video sequence [1]. However, accu-
rate estimation of the homography is still a challenging prob-
lem in computer vision.

The most common homography estimation technique
is the RANSAC method [10], which is adopted in most
of the reported works [4]–[9], [23]–[25], [27], [28].
On the android platform Cheng et al. [4] developed mobile

augmented reality (MAR) application based on planar nat-
ural features that are registered using the 2D homography
matrix Xiong and Pulli [5] implemented fast image stitching
on a mobile phone through homography estimating between
two images. Sun et al. [8] proposed an efficient line match-
ing algorithm based on planar homography from a pair of
calibrated aerial photogrammetric images. Zhang et al. [9]
investigated a homography estimation algorithm by employ-
ing a contour model to track and locate the texture-less
object in highclutter environments. Du and Padir [24] studied
the infinite homography method for an intelligent portable
aerial surveillance system in order to develop a low-cost,
light-weight unmanned aerial vehicle. Lim and Park [27] pre-
sented an efficient method from singleview to multiple-
view conversion using the estimated infinite homography.
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Lou and Gevers [28] explored an image alignment method
by incorporating piecewise local geometric models in which
the homography is employed for matching the planar
regions.

Although homography estimation based on the RANSAC
method [10] is effectively utilized in many reported studies,
the RANSAC method is very computationally expensive due
to its iterative nature. To reduce its complexity numerous
extensions have been proposed to improve the RANSAC
method [11]–[17]. Chum and Matas [13] first presented a
randomized RANSAC algorithm to increase the speed of
model parameter estimation under a broad range of con-
ditions Bhattacharya and Gavrilova [16] utilized the topo-
logical information to improve RANSAC feature matching.
Márquez-Neila et al. [17] introduced a procedure to reduce
the number of samples required for fitting a homography to
a set of noisy correspondences using the RANSAC method.
This was achieved by means of a geometric constraint that
detects invalid minimal sets. However, all these improve-
ments are still based on the RANSAC framework.

Generally speaking, finding the correct correspon-
dence point between two images is a key problem
for homography estimation. To reduce the iteration
times in RANSAC, Bhattacharya and Gavrilova [16] and
Márquez-Neila et al. [17] investigated an order-preserving
constraint on correspondence points. The image point order-
preserving constraint, which was previously proposed in
Ferrari et al. [18], was applied to remove mismatches for
triples of regions. However, Márquez-Neila’s method [17]
presented three-point order-preserving in selecting random
four-point correspondences.

Inspired byMárquez-Neila et al. [17] and Ferrari et al. [18],
we explored the four-point order restriction to estimate the
homography between two images. Supposing that the initial
matches between two views are given, we determine the rela-
tive order of the four correspondence points using the normal-
ized data and the similarity distance. Then, the homography
is estimated by minimizing the sum of the squared Euclidean
distance between the detected points and the reprojected
points [1]. In the synthetic experiments, we investigated the
accuracy of the three types of methods and the influence of
the proportion of outliers and the level of noise for homog-
raphy estimation. In real image experiments, we compared
our method with the RANSAC algorithm. The experimental
results show that the proposed method is more robust than
the RANSAC algorithm. In addition, our method reduces the
computational cost of RANSAC.

The rest of this paper is organized as follows: Section II
briefly describes some related work. In Section III we present
the proposed method. Data normalization is first introduced,
and the order-consistent constraint is proposed by the relative
order of two sets of feature points and the minimum of the
similarity distance using the normalized data. The proposed
homography estimation method is evaluated using synthetic
data and real images in Section IV and the conclusions are
given in Section V.

II. RELATED WORK
Suppose the projection matrices of two images are [I, 0]
and [A, a], and a space plane is defined by π = [vT , 1]T ,
the homography between the two images of the planar surface
π in the scene is expressed by an explicit function [1]

H = A− avT

In general, the plane π can not contain either of the two
camera centers [1]. That is to say, At least four pairs of
corresponding points (non-collinear) are needed to estimate
the homography between the two images.

Under the framework of RANSAC algorithm, hypothetical
correspondences are necessary, and non-collinear four point
correspondences are selected randomly to estimate an initial
homography between two views or an image and a space
plane [1].

To reduce the repetitive fitting model,
Márquez-Neila et al. [17] presented a geometric constraint
on three points order-preserving in each random sam-
ple (selecting four point correspondences). As illustrated
in Fig. 1, the corresponding points A′, B′ and C′ in the second
image have the same relative order as points A, B and C in the
first image. If this geometric constraint does not hold, this set
of correspondences selected in each random sample should
be discarded. Therefore, when the homography is fitted, this
geometric constraint is applied up to four times. A similar
constraint was previously used to remove mismatches in
Ferrari et al. [18], and it was applied to estimate homography.

FIGURE 1. Paradigm of geometric constraint in two images: (a) Points A,
B and C in first image, (b) Corresponding points A′ , B′ and C′ .

However, this constraint only considers the order-
preserving relationship between points A, B and C and
corresponding points A′, B′ and C′ in two images.
Because of the importance of shape recognition in com-

puter vision and multimedia applications involving shape
analysis, image retrieval, and visualization, polygon sim-
ilarity measurement has attracted the attention of some
researchers in recent years. Werman and Weinsahll [19] pre-
sented the expression for the 2D similarity distance, which
is invariant to affine transformation or similarity transforma-
tion, assuming a known correspondence between the point
sets. Nguyen and Hoang [20] proposed a generic approach
for the polygonal measurement by digitization and similar-
ity transformation in the projection space. Nacera et al. [21]
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employed the polygonal approximation to represent the out-
line shape of an object and proposed a recognition method
based on polynomial curve similarity measurement. Most
such methods carry out polynomial curve fitting to establish
shape similarity or to identify object shape.

Therefore, the feature point order-preserving constraint
and the similarity measurement are investigated to find four
point correspondences between two images in this paper.
Compared with the RANSAC method the proposed method
does not need many iterations for the estimation of the
homography and thus requires less computation time.

III. PROPOSED METHOD
In this paper, we assume that the camera follows a pinhole
model, and only points in front of the camera are visible. If a
set of point correspondences between two images is known,
we can select four point correspondences to compute the
homography. The configuration of the four-point is usually
constructed by a set of ordered points in two views (see
in Fig.2).

FIGURE 2. Paradigm of the changed four-point shape in two images:
(a) Convex (b) Cross shape and (c) Concave.

The numbers 1, 2, 3, 4 in Fig. 2 represent the four feature
points in one image, and the four feature points in another
image are numbered 1′, 2′, 3′, 4′, respectively. The dashed
line represents the corresponding path of each point. It can
be seen from Fig. 2 that the three cases occur during the
different camera positions or the different corner detection
between two images. Fig. 2(a) depicts the convex-order for
four correspondence points; Fig. 2(b) depicts the twist-order
for four correspondence points; and Fig. 2(c) depicts the
concave-order for four correspondence points between the
two images.

In fact, the proposed method, in essence, addresses two
problems in this paper. The first problem is whether the
relative order of points 1, 2, 3, 4 and that of points 1′, 2′, 3′,
4′ is consistent; and the second is whether the fitting error

of the homography approaches a minimum. We describe the
proposed method in the following.

A. OUTLINE OF THE PROPOSED METHOD
The overall flow of the proposed method is shown in Algo-
rithm 1, where {P1,P2} are the set of the initial feature
point correspondences between two images I1 and I2 using
the SURF operator in OpenCV [21], and

{
P̂1, P̂2

}
are the

normalized data of {P1,P2}.

Algorithm 1 The Proposed Method
1: input: I1, I2, {P1,P2}

2: procedure: NormalizedData({P1,P2})
3: {P1,P2} ←

{
P̂1, P̂2

}
;

4: while Q (k) > ε or Q (k) < Q (k−1) do
5: random selected

{
p̂1i ↔ p̂2i

}
(i = 1, 2, 3, 4);

6: estimated order-consistent constraint;
7: ds← norm

(
p̂1i, p̂2i

)
;

8: if ds < T
9: H ← homography

(
p1i, p2i

)
;

10: Q (k)←
n∑
j=1

(
d2
(
p2j,Hp1j

)
+ d2

(
p1j,H

−1p2j
))

11: end
12: k ← k+1;
13: end while
14: return H ;
15: end procedure

We select four initial matched points randomly
{
p̂1i ↔ p̂2i

}
(i = 1, 2, 3, 4) in

{
P̂1, P̂2

}
and determine the corrected point

correspondences according to the order-consistent constraint
and the similarity distance ds. Suppose that the four point dis-
tances

{
p̂1i ↔ p̂2i

}
(i = 1, 2, 3, 4) are the correctly matched

points; a homographyH can then be estimated. Furthermore,
the homography may be optimized by minimizing the objec-
tive function Q (k), where Q (k) is the re-projective error
between the matched points in the two images I1 and I2.

B. STAGE 1: NORMALIZATION
Most methods exploit data normalization to improve the
accuracy of results and reduce the effect of coordinates
changes of the measurement data [1], [31]. Here, we assume
that space objects are composed of n three-dimensional
points. The two images I1 and I2 are obtained by a rigid trans-
formation. It is important to carry out the data normalization
in the 2D homography estimation [1].

Let P1 =
{
p11, p12, · · · , p1n

}
be the set of 2D image

points in I1, and let P2 =
{
p21, p22, · · · , p2n

}
be the set

of 2D image points in I2, where
{
p1j =

(
x1j, y1j

)}n
j=1 and{

p2j =
(
x2j, y2j

)}n
j=1. The set of 2D feature points in the

image are normalized by the following steps.
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1) Calculate the centers p1c =
(
x∗1 , y

∗

1

)
and p2c =

(
x∗2 , y

∗

2

)
of two point sets P1 and P2 in terms of equation (1).

x∗i =
n∑
j=1

xij
/
n, y∗i =

n∑
j=1

yij
/
n, (i = 1, 2) (1)

2) Normalize the position of the image point set by equa-
tions (2) and (3).

P̃1 =
{
p11 − p1c, p12 − p1c, · · · , p1n − p1c

}
(2)

P̃2 =
{
p21 − p2c, p22 − p2c, · · · , p2n − p2c

}
(3)

3) Compute the 2-norm of the normalized data P̃1 and P̃2
by equations (4) and (5).

D1=
{∥∥p11−p1c∥∥2 , ∥∥p12−p1c∥∥2 , · · · , ∥∥p1n − p1c∥∥2}

(4)

D2=
{∥∥p21−p2c∥∥2 , ∥∥p22 − p2c∥∥2 , · · · , ∥∥p2n−p2c∥∥2}

(5)

4) Determine the max 2-norm in D1 and D2 by d1 =
max (D1) and d2 = max (D2)

5) Normalize the scale of the image point set from equa-
tions (6) and (7).

P̂1 = P̃1/d1 (6)

P̂2 = P̃2/d2 (7)

The above normalization enables us to compare the two
sets of image points in the different images under the same
position and scale.

C. STAGE 2: ORDER-CONSISTENT CONSTRAINT AND
SIMILARITY MEASUREMENT
The correct point matches between the two images are
very important for accurate homography estimation. In this
section, an order-consistent constraint for four points in the
two images is introduced. The order-consistent constraint
consists of the relative order of two sets of feature points and
the minimum of the similarity distance using the normalized
data.

As illustrated in Fig. 3, p̂11, p̂12, p̂13, p̂14 represent the
normalized feature points inI1, and points p̂21, p̂22, p̂23, p̂24
are the correspondences in I2. The relative order of two sets
of feature points is determined via the following steps.

First, we compute the vectors
−−−→
p̂11p̂12,

−−−→
p̂12p̂13,

−−−→
p̂13p̂14,

−−−→
p̂14p̂11

and
−−−→
p̂21p̂22,

−−−→
p̂22p̂23,

−−−→
p̂23p̂24,

−−−→
p̂24p̂21 for four points in the two

images, respectively.
Next, the upper and lower directions of these vectors along

the x axis direction are determined using the normalized
coordinates. If the vector direction is upper, the vector is
marked by ‘‘1’’. Otherwise, the vector is marked by ‘‘0’’.
Let the vector direction sets be S1 and S2 which are given
by S1 = {1, 1, 1, 0} and S2 = {1, 1, 1, 0}, as shown in Fig. 3.
Finally, the relative order between the two sets of the

normalized points is definitively established from the vector
direction.

FIGURE 3. An illustration of four feature point normalization.
Points p̂11, p̂12, p̂13, and p̂14 are on the first image, and points p̂21, p̂22,
p̂23, and p̂24 are on the second image.

The similarity measurement is extensively applied
in shape recognition, image retrieval, and visualiza-
tion [19]–[21], [29], [30]. Nacera et al. [21] proposed a two-
step matching algorithm using a shape similarity between
the input image and its reference image. Luo et al. [29], [30]
proposed a stacked extreme learning machine with sparse
autoencoder and a quantized kernel least mean square scheme
using the similarity measurement of two arbitrary random
variables for data analysis. In this paper, we aim to find
the matches of adjacent frames in video sequences. Thus,
the camera motion between the two adjacent frames is rela-
tively small, and the similarity distance between the two sets
of normalized points is reinforced for the feature point match
and is defined by

d2s
(
p̂1j, p̂2j

)
=

4∑
j=1

(∥∥p̂1j − p̂2j∥∥) (8)

where p̂1j (j = 1, 2, 3, 4) are the normalized points in the first
image, and p̂2j (j = 1, 2, 3, 4) are the normalized points in
the second image.

Therefore, the matching between the two normalized point
sets

{
p̂1j
}
(j = 1, 2, 3, 4) and

{
p̂2j
}
(j = 1, 2, 3, 4) is obtained

by comparing their vector direction sets S1 with S2 within a
threshold T subject to

d2s
(
p̂1j, p̂2j

)
≤ T (9)

D. STAGE 3: HOMOGRAPHY ESTIMATION
After selecting four point correspondences from the hypo-
thetical point matches in two images, we can estimate the
homography.

Suppose that four points p1j (j = 1, 2, 3, 4) are chosen ran-
domly from the point set P1 in I1 and that four corresponding
points p2j (j = 1, 2, 3, 4) are obtained from the point set P2
in I2.H is a regular matrix representing a homography and is
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written by

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33


Thus, our homography is estimated from equation (10)

λj · p2j = H · p1j (10)

where λj (j = 1, 2, 3, 4) is a scalar.
Let a popular loss function [1] Q

(
p1j, p2j

)
(j = 1, · · · , n)

be

Q
(
p1j, p2j

)
=

n∑
j=1

(
d2
(
p2j,Hp1j

)
+d2

(
p1j,H

−1p2j
))
(11)

where d (·, ·) stands for the squared Euclidean distance [1].
After the initial homography is estimated, we select the
optimum homography H that minimizes the loss func-
tion (11) [1].

IV. EXPERIMENTAL RESULTS
In this section, we report the experiments on both syn-
thetic data and real images to verify the proposed method.
In the synthetic experiment, we study the influence of the
proportion of outliers and noise levels on the homography
estimation. In the real image experiments, we analyze the
computational cost of the proposed method and compare our
method with other related methods.

A. SYNTHETIC EXPERIMENTS
The synthetic data were generated as follows. First, the intrin-
sic matrix of the simulated camera is

K =

 1000 0.03 320
0 960 240
0 0 1


The two rotation vectors and two rotation angles are

r1 = (0.44, 0.21, 0.87)T , θ1 = π/8

r2 = (0.82, 0.41, 0.40)T , θ2 = π/6

and the two translation vectors are

t1 = (20, 4, 250)T t2 = (40, 50, 320)T

Second, we generated 50 space points randomly and two
simulated images were obtained by the simulated camera
parameters. The simulated images are 800 × 800 pixels in
size. Finally, we add a randomGaussian value with mean zero
and standard deviation δ ∈ [0, 5.0] pixels to the 2D image
points

The first synthetic experiment is to validate the order-
consistent constraint. The image points were added to the
Gaussian noise with a standard deviation of 5.0 pixels. The
first 30 are inliers, and the remaining 20 are outliers. After the
image points were normalized by the III.B method, the order-
consistent constraint is validated using the normalized data.

TABLE 1. The influence of the threshold on the matching rate.

In this experiment, we run many random tests for four cor-
respondences points between the two synthetic images. The
four red numbers in Fig. 4 represent the order of feature points
in the two images, where the order of the convex shape is (6,
23, 17, 25), that of the cross shape is (6, 8, 30, 23), and that
of the concave shape is (12, 22, 29, 25).

We also tested the matching rate by varying the similarity
distance threshold. The result is listed in TABLE 1, where
four thresholds are presented. At each threshold, we run
50 trials. This is a clear demonstration that when the similarity
distance threshold is less than 0.5, the four point correspon-
dences between two images are matched with a higher correct
rate. The experimental results corroborate the proposed con-
straint.

We performed some comparative experiments based on the
normalized points and non-normalized points for homogra-
phy estimation between the two synthetic images. 50 points
in the two synthetic images were generated, and each point
was added 2.5 and 4.5 pixels Gaussian noises. We randomly
chose corresponding points from 50 points to compute the
homography. The homography was repeated 30 times, and
the average of the reprojection errors were compared. The
results are shown in TABLE 2. We can see that data normal-
ization substantially improves the accuracy of the estimated
homography.

TABLE 2. The average of the reprojection error using homography based
on the normalized points and non-normalized points.

In the second experiment, we added Gaussian noise with
a standard deviation of 3.0 pixels to the image point.
The proportion of inliers is varied from 30% to 60%.
The proposed method and the RANSAC method [1, 10]
were performed to compute the homography between the
two images. In the proposed method the similarity dis-
tance threshold is set at 0.3. The experiment was repeated
50 times. The Euclidean distances between the computed
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FIGURE 4. Experimental results with the order-consistent constraint: (a) Convex, (b) Cross shape and (c) Concave.

homography and the true homography were calculated
at the different inlier proportions, and the average dis-
tance is illustrated in Fig. 5. We can see that when the

proportion of the inliers is less than 45%, the RANSAC
method [1, 10] has a higher fitting error for the estimated
homography.
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FIGURE 5. Average error of the estimated homography at different inlier
proportions.

Finally, the proportion of outliers is chosen as 60%, and
the image points have added Gaussian noise with standard
deviations at 1.0, 2.0, 3.0, 4.0 and 5.0 pixels.We estimated the
homography using the proposed method and the RANSAC
method [1, 10], and the Euclidean distances [1] between
the computed homography and the true homography were
calculated at different noise levels. The similarity distance
threshold is set at 0.3 in the proposed method. 50 trials were
carried out in this experiment, and the average error at each
noise level is plotted in Fig. 6. These results indicate that
the proposed method is very effective and outperforms the
RANSAC method at the higher noise levels (4.0 pixels and
5.0 pixels).

We also found that the RANSAC method needs to fit more
than 260 homographies compared to the proposed method
that needs to fit only approximately 10 homographies. These
experimental results with the synthetic data prove that the
proposed method reduces the number of fitted homographies
and has better robustness.

B. REAL EXPERIMENTS
This section presents two experiments with the static real
images and one experiment with a dynamic image sequence.
Our goal here is to verify the correct rate of the true inliers
and the computation cost using the proposed method.

In these experiments, the SURF key point detector [26]
is first used, and the putative correspondence set between
two images is obtained by taking the brute-force descriptor
matcher in OpenCV [22]. The threshold value is less than
0.2 times the Euclidean distance between one feature point
from the first image and the other feature point from the sec-
ond image.

First, we performed the experiment to verify the correct
rate of the true inliers. Fig. 7 shows an example, where
figure (a) includes five inliers (marked by green lines)

FIGURE 6. Average error between computed homography and true
homography at different noise levels.

and seven outliers (marked by red dotted lines), and fig-
ure (b) includes six inliers (marked by green lines) and
seven outliers (marked by red dotted lines). The RANSAC
method [1] (FindHomography function in OpenCV [21])
and the proposed method were implemented to find the
correct matches. When the sum of the squared Euclidean
distance is set to 3, the number of correct matches is
5 using the RANSAC method and the proposed method
(shown in Fig. 7(c) and (e)). We can see that there are two
mismatches (marked by red ellipses in Fig.7 (c)) using the
RANSAC method. Furthermore, the proposed method only
needs to estimate the homographies twice, whereas the
RANSAC method requires 173 times.

In another group of experiments, the RANSAC method
found 5 matches by fitting 239 homographies along with two
mismatches (marked by red ellipses), as depicted in Fig. 7 (d).
The proposed method only determines four correct matches
by fitting 7 homographies (shown in Fig.7 (f)). The proposed
method thus greatly reduces the number of fitted homogra-
phies.

Next, we applied the proposed method, the RANSAC
method and the Márquez-Neila method [17] to a panoramic
image mosaic. The SURF detector [23] and brute-force
matcher in OpenCV [22] were adopted in this experiment.
Fig. 8 (a) and (b) compare the image mosaic results for a pair
of images using three kinds of methods. Fig. 8 (c) shows the
stitching result by the proposed method, Fig. 8 (d) illustrates
the result using the RANSACmethod [1], and Fig. 8 (e) is the
result usingMárquez-Neila’s method [16]. From the stitching
effect point of view, image (c) is better than images (d) and
(e). We also find that the building in the top left corner of the
stitching result is enlarged in Fig. 8 (d) and (e).

Furthermore, we measured the computation time of the
proposed method, the RANSAC method and the Márquez-
Neila method [17]. The experiment was run on an Intel(R)
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FIGURE 7. Real image experiments. (a) includes five inliers and seven
outliers, and there are six inliers and seven outliers in (b); (c) and (d) are
the matching results with the RANSAC method, (e) and (f) are the
matching results using the proposed method. In these experiments,
the size of the left image is 250×444 pixels, and that of the right image is
500×888 pixels. Green lines represent the inliers and red dotted lines
stand for the outliers. The mismatches found by the RANSAC method are
marked by red ellipses.

Core(TM) CPU i7-5500U @ 2.40GHz, 4GB RAM and Win-
dows 7 Professional 32bit OS. We tested 50 pairs of images
by fitting 100 homographies. Table 3 shows the computation
times of the three methods. The computation of the Márquez-
Neila method [17] is faster than that of the RANSACmethod,
whereas our method performs the fastest.

Finally, we present a real image sequence experiment.
A video of an award posted on a wall is taken in this experi-
ment. The putative correspondence points are achieved using
the SURF detector and brute-force descriptor matcher in
OpenCV [22] for each frame of the video. We compared the

FIGURE 8. Image stitching experiments. (a) and (b) two original images,
(c) the stitching result with the proposed method, (d) the stitching result
using the RANSAC method [1], and (e) the stitching result using the
Márquez-Neila method [17].

RANSAC method (implemented by adopting FindHomogra-
phy in OpenCV [22]) and the Márquez-Neila method [17]
with the proposedmethod. The putative feature point matches
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FIGURE 9. Real video image experiments. (a) Putative feature point matches in green ‘‘o’’ and the estimated homography that covered the outline of the
awards on the per fame (marked in red line); (b) The number of putative matches with each video frame; (c) The computed time of homography for the
RANSAC method with OpenCVŠs FindHomography, Márquez-NeilaŠs method [17] and the proposed method.

are marked by a green ‘‘o’’ in Fig. 9 (a), and the esti-
mated homography overlaid on each frame in the video
is marked by red lines. Fig. 9 (b) presents the number of

putative matches on each frame, and Fig. 9 (c) displays
the execution times of the homography estimation for the
RANSAC method with OpenCV’s FindHomography, the
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TABLE 3. Time to fit 100 homography on 2.40GHz CPU and 4GB RAM.

TABLE 4. Comparison of iterative times using the proposed method and
the RANSAC method.

Márquez-Neila method [17] and the proposed method.
These experimental results further indicate that the pro-
posed method significantly reduces the computation time for
videos.

In addition, we compared the number of iterations using
the proposed method and the RANSAC method [1] while the
homography was estimated using 30 frames of the sequence
in Fig. 9. The number of iterations for calculating homogra-
phy is listed in Table 4. The experimental result demonstrates
that the proposed method requires much less iterations than
the RANSAC algorithm for homography estimation. Here the
RANSAC algorithm is implemented using the FindHomog-
raphy function in OpenCV [21].

V. CONCLUSIONS
We have described a fast and accurate homography estima-
tion in this paper. The main contributions of this work are
the order-preserving constraint-based normalized data and
the similarity measurement of four point correspondences
between the two images. Under the presence of large noise
and outlier proportions, the proposed method achieved a
higher correct rate of point matches to estimate the homogra-
phy.

In the synthetic experiments, larger noises and outlier
proportions were added to the feature points. The proposed
method requires fewer iterations and achieves higher accu-
racy, under different levels of noise and outlier ratios. When
the proportion of inliers is above 45%, the correct rate of
point matches of the proposed method is below that of the
RANSAC method. The proposed method was clearly less
computationally expensive than the RANSAC method and
Márquez-Neila’s method [17] in the experiment with real
images. In the future, we will apply the proposed method to
the mostpervasive digital apparatuses, such as mobile phones
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