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ABSTRACT In order to address the inconvenience of having to stop to charge the battery of an electric
vehicle, wireless on-road charging technology, also known as charge-while-driving, has garnered much
attention in recent studies. However, wireless charging devices may have a higher charge cost than traditional
plug-in charging devices. Therefore, a multi-objective route optimization model based on model predictive
control is established in this paper to determine an optimal route for drivers to coordinate wireless and plug-
in charging strategies. To reduce the complexity of the proposed model due to its bilinear terms, the Big-M
approach is employed to exactly linearize the bilinear terms by introducing dummy variables and additional
constraints, which leads to a mixed integer linear programming model that can be solved efficiently. Finally,
two systems are tested, including a real-world road map in Xi’an city to demonstrate the effectiveness of the
proposed model.

INDEX TERMS Electric vehicles, mixed integer linear programming, plug-in charging, route optimization,
wireless charging.

I. INTRODUCTION
Electric vehicles (EVs) have been developing rapidly due to
their economic, environmental, and social benefits [1]–[9].
Due to the large amounts of sustainable energy accommo-
dated by electric power systems, electric power is considered
environmentally benign [10]–[13] EVs significantly reduce
greenhouse gas emissions compared with gasoline-driven
vehicles. EVs are powered by electric motors, with the energy
usually stored in batteries. The first EV appeared follow-
ing the discovery of electromagnetism in the 1880s [14].
EVs were popular in the 1890s and early 1900s. However,
with the invention of the internal combustion engine in the
20th century and the subsequent mass production of gasoline
vehicles, the EV lost its position in the automobile market.
During the last few decades, the environmental impact of
petroleum-based vehicles, as well as increasing oil prices,

have led to renewed interest in EVs. It is reported that the
U.S. market share of plug-in EVs (PEVs) increased from
0.14% in 2011 to 0.81% during the first eight months of 2016.
California, the largest PEV regional market in the U.S., has
over 223,000 registered PEVs [15]. EVs are expected to be a
viable alternative to diesel- and gasoline-burning vehicles.

Traditional EVs (e.g., PEVs) need to recharge their batter-
ies through home charging or public charging (e.g., charging
stations), a process which is impacted by the availability and
efficiency of the charging facilities. The issues that make
charging inconvenient, such as limited charging facilities and
the long wait time at charging stations, greatly limit EV
adoption [16].

On the other hand, inductive power transfer (IPT) and
wireless power transfer (WPT) technologies have been well
developed in the past decade. In 2007, researchers from
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MIT designed one of the first pieces of WPT equipment
which can transfer 60 watts with nearly 40% efficiency [17].
In 2010, Lee et al developed a 220 W WPT prototype with
95% efficiency [18], and Wu et al. [19] implemented an IPT
lighting system with 96% efficiency. Later, in 2013, a 7 kW
WPT prototype with 90% efficiency was developed [20]. The
advancement of IPT and WPT technologies greatly promote
the development of wireless charging EVs. For example,
the researchers fromOakRidgeNational Laboratory (ORNL)
designed an 8 kW wireless charger prototype with a 200-mm
gap and 95.66% efficiency [21], and developed a 6.6 kW
dynamic wireless power transfer apparatus with 85% effi-
ciency [22]. With the convenience of wireless charging tech-
nology, electric transit buses could reduce their battery size
by twothirds [23]. For the electric cars with wireless charging
technology on major roads, the wireless charging infrastruc-
turewould theoretically allowEVs to have a large travel range
with a small battery [24]. The primary structure of a typical
CWD system is shown in Fig. 1.

FIGURE 1. A typical CWD system.

In terms of EVs, the optimal routing scheme is one of
the most popular research topics and many methods have
been proposed. To obtain the optimal routing scheme for
PEVs, Kobayashi et al. [25] divided the study into three cases:
no need for recharging, recharging only once and recharging
twice or more. Accordingly, the study developed three differ-
ent models and used Dijkstra’s algorithm to find the optimal
route with the least cost. Siddiqi et al. [26] provided a new
method: using particle swarm optimization (PSO) in the opti-
mal routing problem of PEVs. Their main models are similar,
in that they are both based on the shortest path (SP) problem.
A. Artmeier et al. proposed energy-optimal routing methods
based on the constrained shortest path (CSP) problem, solved
with Dijkstra-like algorithms in [27] and [28]. Similar to
these researchers, Lin et al. [29] proposed an optimal routing
strategy for electric commercial vehicles to minimize time
and energy cost. In their model, the electric vehicles were
commercial vehicles so load effect on energy consumption
was considered. To our knowledge, the main stream models
of optimal routing of EVs are developed from a modified
shortest path problem by adding several specific constraints
and objectives, and most researchers currently focus on the
optimal routing scheme of PEVs, while wireless charging
EVs have been less frequently addressed.

However, with the development of wireless charging tech-
nology, it can be foreseen that hybrid plugin charging and
wireless technology will coexist in the future. Moreover,
both wireless charging and plug-in charging have advantages
and disadvantages. Plug-in charging is a mature, higheffi-
ciency technology, but it is inconvenient: EV Supply Equip-
ments (EVSEs) or EV chargers are difficult to access and
consume considerable time to charge. In contrast, wireless
charging technology is convenient, but it is complicated and
still in the early stages of development, which means effi-
ciency is lower than traditional plug-in charging technology
and the cost to charge is very high. Therefore, new problems
will appear to choose the route while coordinating plug-in
and wireless charging methods. These problems will appear
in the near future when wireless charging technology is fully
developed and exist for a long time until plug-in charging
is completely replaced by wireless charging. However, few
research studies have focused on the routing problem for
coordinating plug-in and wireless charging.

Generally, the above two objectives often conflict due to
the different characteristics of the hybrid plug-in charging and
wireless charging schemes for EVs. Specifically, the wireless
charging scheme can save time but increase cost, while the
plug-in charging scheme is economical but time-consuming.
Hence, it is advantageous to properly coordinate the two
charging schemes.

In this research, we will develop a multi-objective opti-
mization model to optimize electric vehicle routing with
hybrid wireless and plugin charging systems. The main con-
tributions are summarized as follows:

1) Amixed-integer, linear-programming-based route opti-
mization model for EVs considering CWD systems is
developed to coordinate the total time consumption and
the charge cost of hybrid wireless and plug-in charging
systems.

2) A Model Predictive Control (MPC) method is
employed to address the uncertainties in themulti-stage
problem, in which decisions are made sequentially with
updated forecasting information.

II. MATHEMATICAL FORMULATION
There are two main objectives for an EV routing optimization
problem: minimize the total time and minimize the total cost.
These two objectives can be achieved through an optimization
model and solved with the classic shortest path approach,
in which the traffic network can be modeled with graph
theories and constrained with routing constraints. To achieve
the first objective, a mathematical model can be developed,
in which the optimal route is constrained by the fact that the
optimal route must be one connecting the start node and the
terminal node. Moreover, traffic information should also be
considered as contributing to the time consumption due to
traffic congestion.

To achieve the second objective, the battery charge of the
EV for the whole trip should be bounded by the battery’s
physical constraints, such as the battery capacity limits.
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In this section, the optimization model is formulated,
including the constraints and objective which has not been
previously reported in the literature.

A. TRAFFIC CONSTRAINTS
In graph theory, a set of nodes is modeled as N and a set of
pairs of nodes or a set of branches is modeled asA. The traffic
network is represented by a directed graph G = (N ,A),
where A = {(i, j)|i, j ∈ N } [30].
Since the optimization problem seeks the optimal route

R between two terminal nodes, R is composed of a set
of optimal directed branches. Let the directed branch and
their set be xij and X = {xij|(i, j) ∈ A}, respectively. The
optimal route can be written as R = {(i, j)|(i, j) ∈ A}. The
constraints of the variables involved with the traffic network
are discussed below.

First, let xij be binary variables. If the optimal route R
includes road (i, j), then xij = 1, otherwise, xij = 0. Hence,
xij should be constrained by

xij =
{
1 if (i, j) ∈ R
0 otherwise

∀(i, j) ∈ A (1)

Second, let S = {si|i ∈ N } be the set of departing vectors
of a node, such that

si =
∑

j|(i,j)∈A
xij ∀i ∈ N (2)

The set Y = {yi|i ∈ N } is referred to as a divergence
vector in which each element yi is the total flow departing
from node i minus the total flow arriving at node i. Thus, yi
can be expressed as

yi =
∑

j|(i,j)∈A
xij −

∑
j|(j,i)∈A

xji ∀i ∈ N (3)

It is reported in [36] that for a route, we have yi = 1 for the
starting node, yi = −1 for the ending node, and yi = 0 for
other nodes, yielding

∑
j|(i,j)∈A

xij −
∑

j|(j,i)∈A
xji =

 1 (i is source)
−1 (i is destination)
0 (others)

∀i ∈ N

(4)

B. ELECTRIC CONSTRAINTS
The constraints of the traffic-network variables are presented
above, and the constraints of the electrical-network variables
(e.g., battery variables) are discussed here.

When an EV travels from node i to node j, the state of
charge (SOC) of EV batteries can be expressed as

cj = ci + crij + c
n
i ∀(i, j) ∈ A (5)

where ci and cj are the SOCs of EV batteries at node i and
node j, respectively. crij is the change in the battery states on
the road (i, j) via wireless charging, and cni is the change of
battery states at node i via plug-in charging.

Note that EV batteries have capacity limits during the
whole trip, and the SOC of EV batteries has the following
constraints

cmini ≤ ci ≤ c
max
i ∀i ∈ N (6)

where cmini and cmaxi are the lower and upper bounds of EV
battery capacities at node i.

When an EV chooses plug-in charging at node i, the change
in battery states can be written as

cni = sizci zit
z
i Pzηz ∀i ∈ N (7)

zci ∈ {0, 1} ∀i ∈ N (8)

where zci is a binary variable representing whether plug-in
charging is used at node i If plug-in charging is used, zci = 1,
otherwise zci = 0zi is a binary constant indicating whether
plug-in charging is available at node i If it is available zi = 1,
otherwise zi = 0. Additionally, tzi is the plug-in charging time,
Pz is the plug-in charging power, and ηz is the efficiency.

The change in battery states on each road can be written as

crij = xij(c
y
ij − c

d
ij) ∀(i, j) ∈ A (9)

where cyij is the charge injected into the EV when considering
inroad wireless charging (i, j) and cdij is the battery charge
consumed on road (i, j).

In addition, when an EV selects wireless charging while
driving, the change in battery states can be expressed as

cyij = yijt
y
ijPyηy ∀(i, j) ∈ A (10)

where yij is a binary parameter representing the availability
of wireless charging on road (i, j) If road (i, j) is available
for wireless charging, yij = 1, otherwise, yij = 0. tyij is

the wireless charging time on road (i, j), Py is the wireless
charging power, and ηy is the efficiency of wireless charging,
which is inversely related to the vehicle speed. In this model,
we suppose ηy = η0e−vij where η0 is the transfer efficiency
at the static condition.

Here, the time tyij should be limited by

0 ≤ tyij ≤ t
r
ij ∀(i, j) ∈ A (11)

where trij is the total time consumed on road (i, j).
Let the battery charge consumed on road (i, j) be cdij . This

intermediary variable can be expressed as

cdij = lijK ∀(i, j) ∈ A (12)

where lij is the length of road (i, j) and K is the battery charge
consumed per unit length.

C. OBJECTIVE
The optimizationmodel is expected tominimize both the total
time (i.e., Time) and the total cost (i.e., Cost) of the EV over
the entire trip. The objective can be represented as

Minimize (1− ρ)αTime+ ρCost (13)

where α is the value of time and ρ is the weight to adjust the
two sub-objectives Time and Cost .
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Total Time: The total time in (13) consists of two parts:
the time consumed on the roads and the time consumed at
the nodes for plug-in charging. Thus, the total time can be
calculated as

Time =
∑
ij∈A

trij +
∑
i∈N

tzi (14)

where trij is the time consumed on road (i, j) and tzi is the time
consumed at node i for plug-in charging.

Considering the uncertainty of traffic congestion, a param-
eter called wait time (twij ) is introduced to indicate the time
spent due to random traffic issues. Then, the time trij becomes
the sum of the predicted time t0ij and the expectation of the
uncertain wait time twij . For example, for an EV travelling over
distance lij it is predicted to move at an average speed vij and
wait for the time twij due to a traffic jam. The time consumed
on the road can be calculated as

trij = t0ij + t
w
ij ∀(i, j) ∈ A (15)

The time consumption (t0ij) when traveling over a distance
lij at a designed speed can be calculated by

t0ij =
lij
vij
∀(i, j) ∈ A (16)

The time consumed at the plug-in charging nodes can be
calculated by (17)

tzi = (tzi + t
zw
i )zci si ∀i ∈ N (17)

where tzwi is the extra waiting time to access the charge facility
due to the limited number of EVSEs, and tzwi is a dynamic
parameter similar to twij .

Total Cost: The total cost (Cost) also includes two parts:
the cost of wireless charging (Costy) and the cost for plug-in
charging (Costz), which can be expressed as

Cost = Costy + Costz (18)

The wireless charging and plug-in charging costs can be
written in the following ways

Costy =
∑
ij∈A

xijyijt
y
ijPyuy (19)

Costz =
∑
i∈N

sizci zit
z
i Pzuz (20)

where uy is electricity price of wireless charging and uz is
electricity price of plug-in charging.

III. MODEL PREDICTIVE CONTROL METHOD
In the optimal routing problem for an EV considering CWD
systems, there may be some uncertain components. In the
field of control science, Model Predictive Control (MPC)
is widely used in process control to address the uncertain-
ties [31]. In [32], a nonlinear model predictive control tech-
nique was used to control the emission of nitrogen oxides.
In [33], a nonlinear MPC algorithm and its application to

petroleum refining and the petrochemical industry were stud-
ied. In this paper, an MPC-based optimization model is for-
mulated, including the constraints and objective, which has
not been previously reported in the literature.

In an intelligent transportation system environment, all
vehicles in the system have new technologies and infrastruc-
ture to obtain information flow from a traffic control cen-
ter. Communication with the traffic control center provides
the advantage of useful information and data accessed by
vehicles.

Many methods have been proposed for traffic flow and
electric price forecasting. The traffic control center can obtain
shortterm forecast information for traffic flow and electric
price by these forecasting methods. Based on the forecasted
information from the traffic control center, the vehicle could
determine its operation at each stage. The forecasting method
is not covered in this paper, so the traffic and electric price
forecasting information is considered as a given value.

The MPC is based on an iterative, finite-horizon optimiza-
tion problem. Utilizing the output feedback results of the
actual system, the MPC obtains the optimal control measures
in the future for a period of stages through the repeated rolling
optimization of the control targets. At each optimization
stage, there is an optimal performance index for the future
finite domain. To prevent control errors that result frommodel
inaccuracies or other disturbances in the control process, only
the control commands from the first stage are executed in the
solution sequence. The rolling optimization strategy based on
actual output feedback corrects the effect of the prediction
error in real time, making the approach more robust.

The characteristics of a general system can be described by
the following state-space equations: ẋ = f (x,u,ω, t), where
x is the state of the system, u is the control decision, ω is
the disturbance variable, and t is the time variable. To meet
the requirements of online applications, the actual control
process usually uses discrete model. The discrete state-space
equations can be expressed as xk+1 = g(xk ,uk ,ωk ), where
k is the decision time stage. The control decisions uk are
supposed to be made at the discrete times k = 0, 1, 2, · · · .
At decision stage k , the controller solves the following opti-
mization problem to identify the control decisions:

min
Uk

J (Xk ,Uk ) (21)

where

Xk = {xk (k + 1), xk (k + 2), · · · , xk (k + N )} (22)

Uk = {uk (k),uk (k + 1), · · · ,uk (k + N − 1)} (23)

s.t.

xk (k + i+ 1) = g(xk (k + i),uk (k + i),ωk (k + i))

∀i ∈ 0, 1, · · · ,N − 1 (24)

L(Xk ,Uk ) ≤ 0 (25)

xk (k) = Zk (26)

where J (Xk ,Uk )is the objective function of the optimization
model, g(xk ,uk ,ωk ) is the forecasting model, L(Xk ,Uk ) is
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the set of constraints and Zk is the actual measured value of
the system state. Assuming that the optimal solution can be
expressed as {u∗k (k),u

∗
k (k+1), · · · ,u

∗
k (k+N−1)}, then only

u∗k (k) will be actually executed after this optimization. This
optimization is repeated every sampling period.

Based on this MPC approach, the EV routing problem at
the k-th step can be expressed as:

1) Obtain the real-time and forecast traffic flow informa-
tion and real-time and forecast electricity price infor-
mation from the traffic control center.

2) Utilize the traffic information and electricity price
information to solve the optimization problem, yielding
the optimal route.

3) Implement the optimal route for the first stage until
approaching a point in the road map (e.g. 30 s to reach
a point).

4) Update the forecasting information over the next sev-
eral stages from the traffic center, and go to step 2,
continuing until the EV reaches the destination.

IV. MATHEMATICAL REFORMULATION
Unfortunately, there are many bilinear terms in equations (7),
(9), (10), (17), (19) and (20), which present challenges for the
computation of the mixed integer programming. Fortunately,
these bilinear terms have a special structure in that each
bilinear term is constructed by multiplying a binary variable
and a continuous/binary variable. To simplify this model,
we take Big-M approach to exactly linearize the bilinear
terms in these constraints by introducing dummy variables
and additional constraints.

With respect to the Big-M reformulations, the expres-
sion (9) can be transformed into

crij = δijyijPyηy − xijlijK
tyij − (1− xij)M ≤ δij ≤ t

y
ij + (1− xij)M

−xijM ≤ δij ≤ xijM
(27)

where δij is a dummy variable to replace the bilinear
term xijt

y
ij.

In constraint (7), the bilinear term sizci can be replaced by θi
with the additional constraints.

θi ≤ si, θi ≤ zci , cθi ≥ si + z
c
i − 1, θi ∈ {0, 1} (28)

Furthermore, the expression of cni in (7) can be recast as

cni = θit
z
i ziPzηz (29)

Obviously, there is still a bilinear term in (25) with the
binary variable θimultiplied by the real variable tzi . This bilin-
ear term can be further replaced by the dummy variable λi
with the additional constraints{

tzi − (1− θi)M ≤ λi ≤ t
z
i + (1− θi)M

−θiM ≤ λi ≤ θiM
(30)

Finally, the expression cni can be expressed as

cni = λiziPzηz (31)

When the constraints are converted by Big-M reformula-
tion, three dummy variables are introduced into this model:
δij, a binary variable replacing xijt

y
ij

θi, a real variable replacing sizci
λi, a real variable replacing θit

z
i

Thus, the optimal model could be expressed as the follow-
ing mixed integer linear programming:

Minimize (1− β)αTime+ βCost

s.t.
∑

j|(i,j)∈A
xij −

∑
j|(j,i)∈A

xji

=

 1 (i is source)
−1 (i is destination)
0 (others)

∀i ∈ N

xij =
{
1 if (i, j) ∈ R
0 othervise

∀(i, j) ∈ A

si, zci ∈ {0, 1} ∀(i, j) ∈ A ∀i ∈ N
cmini ≤ ci ≤ c

max
i ∀i ∈ N

0 ≤ tyij ≤
lij
vij
+ twij , tzi ≥ 0 ∀(i, j) ∈ A ∀i ∈ N

si =
∑

j|(i,j)∈A
xij ∀i ∈ N

cj = ci + δijyijPyηy − xijlijK + λiziPzηz ∀(i, j) ∈ A

Time =
∑
ij∈A

(
lij
vij
+ twij )+

∑
i∈N

(λi + t
zw
i θi)

Cost =
∑
ij∈A

δijyijPyηyuy +
∑
i∈N

λiziPzηzuz{
tyij − (1− xij)M ≤ δij ≤ t

y
ij + (1− xij)M

−xijM ≤ δij ≤ xijM
∀(i, j) ∈ A{

tzi − (1− θi)M ≤ λi ≤ t
z
i + (1− θi)M

−θiM ≤ λi ≤ θiM
∀i ∈ N

θi ≤ zci , θi ≥ si + zci − 1, θi ∈ {0, 1} ∀i ∈ N

V. CASE STUDY
To better explain the proposed optimization model, two cases
are presented in this section. The proposed model was pro-
grammed in MATLAB in which the mixed integer linear pro-
gramming was solved via CPLEX 12.5. The computational
tasks were performed on a 2.0 GHz personal computer with
4 GB RAM.

A. CASE STUDY 1
In Case 1, a simple traffic network is used with starting
node 1, ending node 6, and four traffic nodes as shown
in Fig. 2. Plug-in charging is available at nodes 2 and 5, and
wireless charging is available on roads (1, 2), (1, 3), (2, 5),
and (3, 4). The corresponding parameters are provided in
TABLE 1. The detailed traffic information is available in [34].

Note that a per-unit (p.u.) system is used in Table 1 to
quantify a variety of variables in the hybrid electric and traffic
system. For example, the EV consumes 4 p.u. electricity in
one kilometer, and the power of wireless charging is 1.6 p.u.
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FIGURE 2. Traffic network of test system 1.

TABLE 1. Parameter values for case 1.

Additionally, the EV battery is assumed to be 4 p.u. power at
the starting point, which needs to be charged during the trip.

In order to investigate the impact of the weighting on
the optimal solution, different values of the weighting are
selected (i.e., ρ=0.2, 0.5, and 0.8). We use the condition
ρ=0.2 to simulate people who prefer to reach their destina-
tion as quickly as possible with little concern for cost. The
condition ρ=0.8 represents people who are not in a hurry
but try to save money consumed in this trip. The value of
ρ=0.5 will produce a balanced choice between the wireless
and plug-in charging methods.

For ρ=0.5, the optimal routes at each stage are shown
in Fig. 3, where the final route is traveling along nodes 1→
2→ 4→ 6, and the optimal charging strategy is presented in
TABLE 2, with selecting wireless charging from nodes 1 to 2
(i.e., road 1-2) and using plug-in charging at node 2. As a
result, the EV takes 15.74 p.u. of time and 12.96 p.u. of cost
during the entire trip. It can be seen that the optimal route
at stage 1 is different from that at stages 2 and 3. This is
because the MPC method is used in this optimal strategy.
When the EV receives the optimal route at time stage 1, it will
travel along the route until it reaches node 2. At this time,
the result of the optimal model shows that route 2→ 4→ 6 is
better, so the EV will execute the control construction of this
stage and travel from node 2 to 4. Then, the EV will optimize
the route again and execute the optimal result to reach the
destination.

TABLE 2. The optimal charging method of case 1.

For ρ=0.2, the optimal route is shown in Fig. 4, with
the path being 1 → 2 → 5 → 6, which contains two pairs
of nodes with wireless charging. In contrast, for ρ=0.8,
the optimal route is shown in Fig. 5 with 1→ 2→ 5→ 6,
where all the nodes have plug-in charging. Furthermore,
the optimal charging strategies in TABLE 2 indicate that the
proposed optimization model can work out the optimal route
and optimal charging strategy to trade off the minimum time
consumed with the minimum cost.

B. CASE STUDY 2
In Case 2, the proposed optimization model is tested on a real
traffic system. The real road map of Xi’an, China, presented
in Fig. 6 is used. The EV is designed to travel from Xi’an
Jiaotong University (Node 1) to the northwest corner of the
Xi’an City Wall (Node 32). At the beginning node, the SoC
is assumed as 25% which is unable to provide enough energy
for the whole trip. The wireless and plug-in charging powers
are 6 kW and 12 kW, respectively. The other parameters are
presented in TABLE 3. For convenience, the parameters are
used in unit with respect to the percent of battery capacity and
the value of time is 0.2 RMB/min considering the economic
development in Xi’an City.

TABLE 3. Parameter values for case 2.

In addition, certain practical issues are considered.
First, each road has a speed limit, such as 60 km/h,
50 km/h, or 30 km/h, and thus the road network with speed
limit information is presented in Fig. 7. Second, each EV
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FIGURE 3. Optimal route while ρ = 0.5.

FIGURE 4. Optimal route while ρ = 0.2.

FIGURE 5. Optimal route while ρ = 0.8.

FIGURE 6. The real road map of Xi’an, China.

has a minimum SoC to avoid battery damage. We take 20%
of battery capacity as the minimum SoC and reduce the
battery capacity to 20 kWh. The detailed traffic information
is available in [34].

FIGURE 7. Case 2: road network and road class.

In this case, we take three different conditions with ρ=0.2,
0.5, and 0.8 to observe the optimal solutions of the proposed
model. The optimal routes are shown in Fig. 8, 9, and 10, and
the optimal charging strategies are summarized in TABLE 4.
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FIGURE 8. Optimal route while ρ = 0.2.

FIGURE 9. Optimal route while ρ = 0.8.

FIGURE 10. Optimal route while ρ = 0.5.

When ρ=0.2, the driver chooses a low weight on ‘‘cost’’
and expects to arrive at the destination in a timely manner.
The optimal route as shown in Fig. 8 has a priority for
wireless charging and takes 48.4 min and 17.35 RMB for
a single trip. When ρ=0.8, the driver selects a high value
on ‘‘cost’’ and expects the optimal route to have a low cost.

TABLE 4. The optimal charging method of case 2.

The optimal route as shown in Fig. 9 avoids the use ofwireless
charging and extends the time of plug-in charging. As a
result, the total electricity cost is 6.04 RMB and the total time
is 54.3 min.

Further, when ρ=0.5, the driver sets the same weight for
cost and time and the corresponding optimal route is shown
in Fig. 10. The optimal route includes one road for wire-
less charging and one node for plug-in charging. Compared
with the other two cases, this case yields a balance between
the time and the cost during the trip. The detailed optimal
charging method for each stage is presented in TABLE 5
as an example demonstrating the flow of the MPC method.
It can be found that at stage 3 the optimal route changes to
3→8→11→19→26→31→32 when the traffic condition is
altered.

It is observed from Table 4 and Fig. 8, 9 and 10 that the
optimal routes are the same, determined by the specific traffic
condition. However, for the difference of the preference of
cost or time, the charging strategies are different. The dif-
ference between those three cases is the time scheduled for
wireless and plug-in charging. The proposed optimization
model can optimize both the route and the charging schemes
aligned with certain preferences.

Actually, Xi’an City has not installed wireless charging
facilities for EVs. To investigate the potential economic
and technical benefits of wireless charging, a comparison
between scenarios with and without wireless charging is
provided.

It can also be observed that the optimal route without
wireless charging (ρ=0.8) present will take 13 minutes to
utilize plug-in charging at node 2, while the presence of
wireless charging devices will change the choice of optimal
routes, reducing the plug-in charging time from 13 minutes to
6 minutes. Since wireless charging is performed during driv-
ing, this approach saves time in the trip. However, the total
charging cost is a bit higher due to the high cost of wireless
charging.
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FIGURE 11. Pareto Frontier curve.

Fig. 11 depicts a Pareto frontier curve between time and
costs, where the frontier takes on a linear relationship.

Finally, the total computational time is 29.6612 s for the
scenario when ρ=0.5. It takes 2.4216 s to find the optimal
route and charging strategy for the first stage. The conver-
gence curve is shown in Fig. 12.

FIGURE 12. Convergence curve.

VI. CONCLUSION
This paper developed a multi-objective optimization model
and a charging strategy considering hybrid wireless and plug-
in charging to seek the optimal EV route to trade off the total
time consumption and charging cost for a trip. Two cases
including practical road traffic are examined to show that the
proposed model can find the optimal route while trading off
wireless and plug-in charging according to driver preference.
Moreover, wireless charging is preferred by drivers who are
hurrying to the destination, whereas the shortest path is more
likely to be chosen by drivers who want to minimize charging
cost.

APPENDIX
BIG-M REFORMULATION
Big-M reformulations are used to convert a logic constraint
to a set of constraints describing the same feasible set, using
dummy variables and additional constraints.

As an example, consider a bilinear term bc where b is
binary, and c is a continuous variable. Let a be an introduced
dummy variable to replace the bilinear term bc. Also intro-
duce the additional constraints{

c− (1− b)M ≤ a ≤ c+ (1− b)M
−bM ≤ a ≤ bM

(32)

where M is a sufficiently large number. Note that this Big-
M reformulation is equivalent to the original formulation.
Clearly, if b is 1, a is guaranteed to be c; and if b is 0, a is
guaranteed to be 0.

When b and c are both binary variables, the bilinear term
bc can be replaced by a with the additional constraints

a ≤ b, a ≤ c, a ≥ b+ c− 1, a ∈ {0, 1} (33)

Here, only when b and c are both 1, a is equal to 1, otherwise,
a is 0.
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