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ABSTRACT Virtual machine (VM) consolidation techniques are a means to improve energy efficiency and
the utilization of cloud data center resources. However, aggressive VM consolidation approaches lead to
physical host over-utilization and generate massive undesired VM migrations, which cause degradation of
the performance of both the hosts and the VM. Additionally, it has been a significant challenge to improve
energy efficiency and resource utilization in the data center while delivering services with guaranteed quality
of service (QoS). To address the problem, we propose an enhancing energy-efficient and QoS dynamic
virtual machine consolidation (EQVC)method, which consists of four algorithms that correspond to different
stages in VM consolidation. In this approach, we select redundant VMs from the hosts before they overload
and migrate the VMs to other hosts to save energy and guarantee QoS requirements. We also introduce a
host-model with adaptive reserved resources to prevent re-overload of hosts. To prove the effectiveness of
our proposed method and algorithms, we experiment under different workload traces from a real system.
The experimental results demonstrate that EQVC approach can significantly outperform other traditional
methods regarding energy consumption, QoS guarantees, and the number of VM migrations.

INDEX TERMS Cloud computing, energy efficiency, quality of service, virtual machine migration.

I. INTRODUCTION
With cloud computing gaining significant momentum, a large
number of data centers have been established around the
world [1]. However, the issue of high energy consumption by
data centers has become more visible and accounted for 1.5%
of the global electricity in 2010 [2]. The significant power
consumption depends on physical hosts, which run on the
data center. Data collected for the review of green computing
have shown that the energy consumption by the physical hosts
has contributed approximately 60% to the overall cost of a
data center [3]. However, based on the research [4], it has
been estimated that the average utilization of host resources
is between 15% and 20% of data centers. Therefore, it is
essential to focus on improving the utilization of data center
resources.

One method to enhance resource usage and save energy is
dynamicVMconsolidation, which has beenwidely employed

in resource management in data centers. This approach peri-
odically reallocates VMs to hosts by using live VMmigration
technology according to current resources requirements of
the VMs. Additionally, the VMs can be dynamically consol-
idated to decrease the number of active hosts, while reducing
the energy cost of the data center [5]. However, the diffi-
culty of dynamic VM consolidation has increased due to the
unpredictably fluctuating cloud workloads, and aggressive
VM consolidation leading to service level agreement (SLA)
violations and degradation of QoS because request resources
of clients’ applications are not fulfilled [6]–[9]. As a result,
the goal of the minimization of energy consumption and the
maximization of QoS is the leading challenge of dynamic
VM consolidation.

On the other hand, the process of VM consolida-
tion is always accompanied by large-scale VM migration.
Voorsluys et al. [5] studied living VM migration, and they
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indicated that VM migration not only increases the cost of
computing resources but also degrades the performance of
the overall system and causes SLA violations. Addition-
ally, massive VM live migrations increase power consump-
tion and lead to QoS degradation, which opposes the target
of VM consolidation. Recent studies [10]–[19] show that
most VM consolidation approaches concentrate on improv-
ing energy efficiency and guaranteeing QoS but generate
a large number of VM migrations. Additionally, a small
number of VM migrations prevents the VM consolidation
from improving resource utilization and energy efficiency.
Therefore, the goal of our VM consolidation is to enhance
energy efficiency and QoS with fewer VM migrations.

In this paper, we propose a VM consolidation (EQVC)
method with low energy cost for cloud providers and provid-
ing guaranteed QoS for users, while reducing the number of
VM migrations. The main contributions of the paper are as
follows:
• We propose a host overload detection algorithm that

identifies the overloaded host using the auto regressive inte-
grated moving average (ARIMA) model to predict the future
workload of the host. This algorithm detects the possibility
of host overload to prevent potential SLA violations and host
overload.
• We implement a host underload detection algorithm that

identifies the underloaded host by analyzing the host’s state
and energy efficiency. All VMs on the host are migrated and
the host is shut down to reduce power consumption.
• From the perspective of the CPU capacity loss, we find

that there are many inefficient VM migrations, which gen-
erate additional energy consumption and reduce the perfor-
mance of the VMs. We develop a VM selection algorithm
based on the loss of CPU capacity in VM migration to
improve the performance of the VMs and reduce invalid
VM migrations.
• To prevent re-overloading physical hosts, we design

an adaptive reserved resource for the hosts and apply it in
our proposed VM placement algorithm. This reduces power
consumption while improving QoS satisfaction.

The rest of this paper is as follows: we discuss the related
work in Section 2. In Section 3, we introduce the sys-
tem model, the power model, and the VM migration cost
model. Section 4 presents the VM consolidation techniques.
In Section 5, we introduce the simulation experiments and
analyze the experimental result. Finally, we conclude and
propose future research directions.

II. RELATED WORK
Nathuji and Schwan [6] first applied a dynamic VM consol-
idation method to minimize the energy cost of data centers.
They developed an energy-saving approach that consolidated
data center VMs using VM live migrations. Based on the
foundation laid in their work [6], Beloglazov and Buyya [11]
categorized the dynamic VM consolidation into four parts:
host overload detection, host underload detection, VM selec-
tion, and VM placement.

Beloglazov et al. [10] studied the process of dynamic VM
consolidation and proposed an upper static CPU utilization
threshold to determine when a host has overloaded. How-
ever, the static threshold did not satisfy the rapidly changing
cloud environments related to the dynamic and unpredictable
cloud workloads. Beloglazov and Buyya [11] implemented
an adaptive dynamic threshold to solve the problem of the
variable cloud workloads. They developed the median abso-
lute deviation (MAD), interquartile range (IQR), and local
regression (LR) based on the statistical analysis of historical
data to detect the overloaded host. Farahnakian et al. [12]
investigated a CPU usage prediction method based on the
linear regression technique to identify overloaded hosts. The
approach migrated some VMs from the hosts which may be
overloaded in the future, to reduce the possibility of host
overloading. Gupta and Pateriya [13] proposed a host work-
load forecasting method using an AR model and applied
it to the real cloud infrastructure. In contrast to the linear
regression method [12], the proposed model improved the
accuracy of predicting host overload and resulted in reducing
the probability of host overload. Li et al. [14] developed
an adaptive overload threshold based on the Bayesian net-
work (BMEN) and detected the overloaded hosts based on
the CPU utilization and the overload probability in current
hosts. In summary, host overload detection based on the pre-
diction method performs well and has been widely applied to
VMconsolidation. Therefore, in this paper, anARIMAmodel
is used for predicting the CPU utilization in host overload
detection because it forecasts accurately.

Beloglazov et al. [10] also proposed a low static CPU
utilization threshold to identify the underloaded host in which
all VMs must be migrated to other hosts. Additionally, Bel-
oglazov and Buyya [11] implemented a host underload detec-
tion algorithm for VM consolidation. This approach migrates
all the VMs from an underloaded host that has the lowest CPU
utilization to other active hosts and repeats this process until
the VM cannot be assigned to the remaining hosts. However,
the authors did not address the problem of different hosts
having varied energy efficiency. Based on the research [11],
Han et al. [15] investigated a power-aware algorithm to
identify underloaded hosts to shut down for energy-saving.
The algorithm sets a lower threshold of the CPU usage and
proposes a PE value to evaluate the energy efficiency of the
hosts. The selected host, which has the minimum PE and the
lower threshold, migrates all VMs to other hosts. However,
they also use the static threshold as a measure to determine
the underloaded hosts. Thus, we develop a dynamic candidate
list of underloaded hosts to select the underloaded hosts.

Beloglazov et al. [10] proposed two VM selection algo-
rithms: minimization of migration (MM) and highest poten-
tial growth (HPG). The MM is applied to minimize the
number of VM migrations, and the HPG selects the VM that
has the lowest CPU utilization. Beloglazov and Buyya [11]
implemented three VM selection algorithms for VM con-
solidation: maximum correlation (MC), minimum migration
time (MMT), and random choice (RC). The MC chooses
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the VMs that have the higher correlation of CPU utiliza-
tion with other VMs, the MMT selects the VMs with the
least migration time, and the RC selects the VMs ran-
domly. Li et al. [14] introduced a VM selection algorithm
based on migration and capacity awareness. The VMs were
selected by weighing the VM migration and host overload
probability based on BNEM. Jiang et al. [16] investigated
an ABC-based VM selection algorithm to select the VMs
that led to the maximum decline in energy consumption.
Khoshkholghi et al. [17] made a tradeoff between SLA
and energy to select adequate VMs. Wen et al. [18] pro-
posed a VM selection algorithm to minimize the number
of VM migrations by calculating the Euclidean distance
between the VMs’ workloads and the hosts’ workloads.
However, they did not reduce undesired VM migrations.
Thus, most of the above VM selection algorithms did
not address the impact of VM migration on the QoS of
cloud applications. Therefore, we investigate the relationship
between VMmigration and QoS and propose a VM selection
algorithm to guarantee QoS and decrease the number of
inefficient VM migrations.

Zhu et al. [7] modeled the process of VM placement as
a bin-packing problem and proposed a modification of the
FFD algorithm which establishes a new mapping between
the VMs and hosts. Their work simplified the problem
of VM placement but resulted in many VM migrations,
which had a negative influence on energy consumption and
QoS. Therefore, Beloglazov and Buyya [11] proposed a
power-aware best fit decreasing (PABFD) for VM place-
ment algorithm. The approach allocated each VM to a host
that provides the least increase of power consumption to
reduce energy consumption. However, they did not ensure
users’ QoS related to the rapidly changing cloud work-
loads. Han et al. [15] investigated a remaining utilization-
aware (RUA) algorithm for VM placement and applied a
heuristic of setting static remains CPU utilization of 0.17 to
prevent host overload. However, this approach led to the
waste of computing resourceswhen the cloudworkloadswere
stable. Our approach uses adaptive reserve CPU utilization
to make a tradeoff between preventing SLA violations and
improving the resource utilization. Li et al. [19] developed
an energy-efficient and QoS-aware model and proposed a
VM placement algorithm based on the particle swarm opti-
mization method, which sets the power consumption per QoS
value as the fitness objective. However, the approach caused
problems with being trapped in a locally optimal solution.
Gupta and Pateriya [13] proposed a VM placement algorithm
that considered the VMs’ resources requirement and hosts’
resources utilization. Li et al. [14] proposed a migration and
power-aware best fit decreasing for VM placement based on
BNEM. Khoshkholghi et al. [17] proposed the best RAM and
bandwidth placement algorithm for VM placement to find the
hosts where the selected VMs use minimum energy and are
least likely to commit SLA violations.Monil andMalony [20]
evaluated the challenge of achieving a balance between QoS
and energy consumption and devised a combined strategy to

achieve the placement of the VM using the best fit decreasing
bin packing method. Qiu et al. [21] provided a method that
considers load balancing, power consumption, and migration
costs. They regarded VM placement as a multi-objective
optimization problem and then solved the problem using
the modified genetic algorithm. Fard et al. [22] proposed
a VM placement to allocate VMs to hosts within high-
level category hosts to preserve high category host activity
and low category hosts inactivity. In summary, the above
VM placement algorithms apply only to minimizing energy
consumption, and ignored host re-overload. However, our
VM placement algorithm reduces energy consumption and
prevents host re-overload.

Compared with the above approaches, our method mini-
mizes energy cost, prevents host re-overload and decreases
the number of undesired VMmigrations without compromis-
ing QoS conditions.

III. EVALUATION MODELS AND METRICS
In this paper, the target cloud system model is the Infrastruc-
ture as a Service (IaaS) environment that consists of hetero-
geneous physical hosts. The performance of each host can
be described by the CPU capacity that is defined in millions
of instructions per second (MIPS), amount of RAM, and
network bandwidth. The system storage is network attached
storage (NAS), which enables live VM migration. The cloud
data center detects the performance of physical hosts at reg-
ular intervals.

A. SYSTEM MODEL
In a data center, the types of resources are expressed as
follows: H = {h1, h2, . . . , hi, . . . , hN } is the set of N cloud
data center hosts, and VMi = {v1, v2, . . . , vj, . . . , vm} is the
set that m VMs deployed in hi.
The characteristics of vj are described as follows: vmcj

is the max requested CPU capacity of vj, vrcj represents
the current requested CPU capacity of vj, and the current
CPU utilization of vj is defined as vuj . From the definitions
of vmcj , vrcj and vcpuj , the relationships can be defined as
follows:

vrcj = vmcj × v
u
j (1)

hrci represents the requested CPU capacity of hi and is
calculated as follows:

hrci =
∑

vj∈VMi

vrcj (2)

The max CPU capacity of hi is denoted as hmci and hui is
the current CPU utilization of hi. Equation (3) expresses the
relationships between hrci , h

mc
i and hui .

hui =


hrci
hmci

if hrci < hmci

1 if hrci ≥ h
mc
i

(3)
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B. POWER MODEL
The power consumption of the hosts is the determined by
the CPU, RAM, disk storage, and network interfaces [23].
Fan et al. [24] explained that the CPU is the primary cause
of the host’s energy consumption, and the power of the host
is linearly related to its CPU utilization. According to the
research [9], the power model by CPU utilization is defined
in (4):

P(h) = K × hmax
+ (1− K )× hmax

× hu (4)

where hmax represents the host’s max power when the host’s
CPU utilization is 100%, and K is the percentage of power
consumption for an idle host and set to 0.7 based on the
research [25].

The CPU utilization may change over time, which
means the host’s CPU utilization is a function of time. There-
fore, the total energy consumption of a host is defined as
follows:

EC =
∫ t1

t0
P(hu(t))dt (5)

C. LIVE MIGRATION COST
VM can transfer between hosts without suspension by using
VM live migration techniques [6], [26]. The average perfor-
mance degradation is equivalent to 10% of the CPU utiliza-
tion of the VM during the migration [5]. Thus, we define the
model of live migration cost based on the research [11] as
follows:

Tmj =
vramj
hbwi

(6)

vduj = 0.1 ·
∫ t0+Tmj

t0
vuj (t)dt (7)

where Tmj represents the migration time of vj, vramj represents
the amount of RAM of vj, hbwi represents the available net-
work bandwidth of hi, vduj represents the total decreased CPU
utilization during the VM migration, and vuj (t) represents the
CPU utilization of the VM at time t .
According to this model, VM migration leads to per-

formance degradation, which causes SLA violations and
decreased QoS. Thus, it is essential to improve the QoS by
reducing the VM migrations.

D. QOS EVALUATION
QoS is presented in the form of an SLA, which is decided
in terms of characteristics such as the CPU capacity of the
host or maximum response time [27]. In the cloud environ-
ment, users submit the request for creating VMs to the data
center and sign the SLA with the data center. According to
the research [11], the SLA is defined as the CPU capacity
that the VM request must be fulfilled by the physical host
and therefore proposed the SLATAH and PDM metrics to
measure SLA violations in an IaaS environment.

SLATAH represents the percentage of time that the
active host experienced CPU utilization of 100% and is

defined in (8).

SLATAH =
1
N

N∑
i=1

Tsi
Tai

(8)

where N is the total number of hosts, Tsi is the time of
the SLA violations when the hi experienced utilization of
100%, and Tai is the active time of hi. PDM represents the
overall performance degradation by VM migrations and is
defined in (9).

PDM =
1
M

M∑
j=1

Cdj
Crj

(9)

where M is the total number of VMs, Cdj is the total loss of
CPU capacity by migrating vj, and Crj is the total requested
CPU capacity of vj. Based on SLATAHand PDM, a combined
metric SLAV measures the QoS of the data center and is
calculated as (10). Decreasing the SLATAH, PDM, and SLAV
can result in an improved QoS.

SLAV = SLATAH × PDM (10)

IV. EQVC METHOD
In this section, we propose the EQVC method that reduces
power consumption and improves QoS with a small num-
ber of VM migrations. According to the research [11],
the problem of dynamicVMconsolidation can be divided into
four parts: (1) determining when a host is considered over-
loaded and then migrating one or more VMs from the host;
(2) determining when a host is considered underloaded, all
VMs from the host need to be migrated and the host is shut
down; (3) selecting the VM that should be migrated from
the overloaded host; and (4) finding new hosts for the VMs
from overloaded and underloaded hosts. Corresponding to the
above four stages of VM consolidation, the EQVC approach
is comprised of the following four algorithms:

(1) Host overload detection algorithm: By predicting the
future workload of the host, the excess VMs are
migrated before the host is overloaded. This algorithm
prevents host overloading and improves QoS.

(2) Host underload detection algorithm: According to the
use of the host, create a list of candidate underloaded
hosts, and select the underloaded host from the list by
comparing the energy efficiency of the host. All VMs
from the selected host are migrated and the host is shut
down to improve resource utilization and save energy
in the data center.

(3) VM selection algorithm: The proposed VM selection
algorithm determines whether to migrate VMs from the
overloaded host by comparing the loss of CPU capacity
of the VM migration and the host overload. When a
VM must be migrated, select the VM with the lowest
CPU capacity loss. This algorithm reduces unnecessary
VMmigration while reducing the loss of CPU capacity
and improving QoS satisfaction.
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(4) VM placement algorithm: According to the historical
status of the host, create a list of hosts that is used to
receive the VMs. Select the hosts for VM placement
by analyzing the historical CPU utilization and the
currently available CPU utilization of the hosts in the
list. This algorithm reduces energy consumption while
reducing the chance of the host overloading again.

Fig. 1 shows the process of the EQVC approach.

FIGURE 1. The process of EQVC approach.

A. HOST OVERLOAD DETECTION ALGORITHM
One of the first steps in the VM consolidation is to rec-
ognize the overloaded host. Our host overload algorithm
aims to reduce the possibility of host overload while main-
taining the normal workload of the physical hosts to pro-
tect QoS. To achieve this goal, the host detection algorithm
detects the overloaded host by predicting the host’s workload,
to migrate its VMs to other hosts before it is overloaded.
Calheiros et al. [28] introduced the prediction by using the
ARIMA model and evaluating its accuracy of resource uti-
lization and QoS. Their work showed that the ARIMAmodel
had an average forecast accuracy of 91% when applied to
forecast workloads. According to the research [29], [30],
ARIMA accurately forecasts future workloads in large-scale
heterogeneous physical hosts. Thus, we use the ARIMA
model to implement the host overload detection algorithm.

In this algorithm, the ARIMA (p, q, d) model is fitted
according to the Box-Jenkins method [31]. The history CPU
utilization of the physical host is measured at regular inter-
vals, which is consistent with theARIMAmodel. The original
time series must be transformed into a stationary time series.

Thus, the time series must be differenced until it becomes
stationary, and the number of differences is the d parameter
of the ARIMA model.

According to the historical workload data, the parameters
of q and p are determined by analyzing the partial autocorre-
lation plot and autocorrelation plot. For a host’s history CPU
utilization set x1, x2, . . . , xn, the autocorrelation function is
estimated by the sample moment, which is called the auto-
correlation plot.

x =
1
n

n∑
i=1

xi (11)

γ0 =
1
n

n∑
i=1

(xi − x)2 (12)

γk =
1

n− k

n−k∑
i=1

(xi − x)(xi+k − x) (13)

Rk =
γk

γ0
(14)

where x is the average of the data set, γ0 is the estimation
of the variance of the data set, γk is the biased estimation of
covariance of xi, xi+k , and Rk is the estimation of autocorre-
lation coefficients of xi, xi+k . In the autocorrelation plot, Rk
is the values on the vertical axis, and the time lags are on
the horizontal axis. The autocorrelation between xi and xi−τ
is the partial autocorrelation at τ , which accounts for lags
above τ − 1. If the partial autocorrelation plot falls below
the significant level at τ = p + 1, the auto regression (AR)
component of the ARIMA model has order p. The value of
q for the moving average (MA) component of the ARIMA
is the number of lags before the autocorrelation values drop
below the significant level.

The parameters p, q, and d are obtained using the above
method. The host history CPU utilization data set is used to fit
themodel to predict the future CPU utilization of the host. For
the physical host hi, the historical CPU utilization data set is
hui (1), h

u
i (2), . . . , h

u
i (n), and the ĥ

u
i is defined as the estimated

CPU utilization at the next time using the ARIMA model.
Thus, if a host satisfies the (15), the host is overloaded.

s× ĥui ≥ 1 (15)

where s represents a safety parameter that allows the
host to reserve CPU capacity to prevent SLA violations.
Algorithm 1 shows the host overload detection. If n is the
number of active physical hosts, the time complexity of the
host overload detection algorithm is O (n).

B. VM SELECTION
When finding a set of overloaded hosts, some VMs in the
hosts are migrated to guarantee QoS for the users. In this
paper, we analyze the loss of CPU capacity in an overloaded
host. If a VM is migrated to other hosts, the performance
of the VMs degrade during the VM migration and cause the
loss of CPU capacity. If the VMs are not migrated, the host
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Algorithm 1 Host Overload Detection
Input: hostList
Output: overloadedHostList
1 overloadedHostList← NULL;
2 foreach host in hostList do
3 if host satisfies equation (15) then
4 overloadedHostList.add(host);
5 end if
6 end for
7 return overloadedHostList;

remains overloaded, which leads to the host being unable to
meet the CPU capacity of the VM requested and generates a
loss of CPU capacity. In other words, whether the VMs in the
overloaded host are migrated or not migrated, the loss of CPU
capacity cannot be avoided. According to the above analysis,
when selecting the VM to migrate, the CPU capacity loss
caused by migrating the VM needs to be compared with the
host overload. If the CPU capacity loss of the migrating of the
VM is greater than the loss caused by host overload, the VM
migration is invalid. Thus, the goal of our VM selection
algorithm is to reduce the invalid VMmigrations and the loss
of CPU capacity, which can guarantee the QoS.

We assume hi is an overloaded host that fails to satisfy
the requested CPU capacity of a VM, which is employed by
hi. hlci represents the lack of CPU capacity of hi and can be
calculated as follows:

hlci = (s× ĥui − 1)× hmci (16)

Based on the above analysis, vj (vj ∈ VMi) has two cases
when hi is overloaded:
Case 1: when migrating vj to another host, dj represents

the loss of CPU capacity of vj during the migration and is
calculated as follows:

dj = vduj × v
mc
j (17)

Case 2: when vj is not migrated, Di,j represents the loss of
CPU capacity during the host overload and can be defined as
follows:

Di,j =
∫ t0+Tmj

t0
hlci (t)dt (18)

By comparing the above two cases, the relative CPU capac-
ity gains can be defined as follows:

φi,j = Di,j − dj (19)

where φi,j represents the loss of CPU capacity that is pro-
duced by not migrating vj from hi. φi,j > 0 indicates that the
loss of CPU capacity can be reduced by migrating vj from
hi, and vj is regarded as a candidate VM in our VM selection
algorithm, φi,j < 0 reflects that migrating vj can increase the
CPU capacity loss and the migration of vj is undesired.
The pseudocode for the VM selection in the overloaded

host is presented in Algorithm 2. The algorithm checks the

Algorithm 2 VM Selection
Input: overloadedHostList
Output: selectedVmList
1 selectedVmList← NULL;
2 foreach host in overloadedHostList do
3 vmList← host.getVmList();
4 foreach vm in vmList do
5 Calculate φ for vm by using equation (19);
6 vm.updataGains(φ); // update φ for vm
7 end for
8 Sort vmList in decreasing order of φ
9 foreach vm in vmList do
10 if vm.getGains() > 0 then
11 selectedVmList.add(vm); // migrate vm
12 host.removeVm(vm);
13 if host satisfies equation (15) then
14 continue; // host still overloaded,

continue remove vm
15 else
16 break;
17 end if
18 else
19 break; // do not migrate vm
20 end if
21 end for
22 end for
23 return seletedVmList;

list of overloaded hosts’ VMs and calculates the relative CPU
capacity gains for all the VMs. The VM list is sorted in
decreasing order of the relative CPU capacity gains of the
VMs. When selecting the migrated VM, it is selected in the
sorted order and confirmed that the relative CPU capacity
gains of the selected VM are greater than zero. Repeat this
process until the host is not overloaded or the selected VM’s
relative CPU capacity gains are less than zero. If n is the
number of overloaded physical hosts and m is the number of
the VMs, the time complexity of the host overload detection
algorithm is O (n∗m).

C. VM PLACEMENT
The VM placement algorithm allocates the new VMs and
the selected VMs by the VM selection algorithm to idle
hosts, which improves the resource utilization of the physical
host and reduces the energy consumption of the data center.
However, the workload of the VMs is unpredictable and
fluctuating, which causes the physical host to re-overload
after the VMs allocation is completed, causing the SLAV and
degrading the QoS. Our VMplacement algorithm provides an
adaptive CPU reserve utilization for physical hosts to prevent
sudden changes in the workload as well as maintain the
normal load status of the hosts. Additionally, the algorithm
creates the possibility of a degraded host overload, which
means the number of overloaded hosts and VM migration
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FIGURE 2. The process of VMs placement and the host model.

drops to reduce SLAV. Thus, the goal of our algorithm is
to improve QoS by preventing host re-overloading while
reducing energy consumption. Fig. 2 shows the process of
our VM placement mechanism and the host model.

As shown in Fig. 2, hu is the CPU utilization of the host,
hau is the available CPU utilization of the host, and hs is the
host’s adaptive reserved CPU utilization that prevents sudden
changes in the cloud workload. The MAD is a measure of
statistical dispersion and is more robust than the standard
deviation or sample variance [32]. Thus, For the CPU utiliza-
tion history data set hui (1), h

u
i (2), . . . , h

u
i (n) of hi, theMAD(hi)

is the median absolute deviation of the median of the data and
is defined as follows:

MAD(hi) = median(|hui (k)− median(h
u
i (1), . . . , h

u
i (n))|)

(20)

where hui (n) represents the nth CPU utilization in the history
data. Based on theMAD(hi), we define the adaptive reserved
CPU utilization as shown in (21):

hsi = µ ·MAD(hi) (21)

where hsi represents the CPU usage that prevents host re-
overload, and µ adjusts the reserved resources and was set
to 2.5 based on research [10]. According to the above for-
mula, haui is calculated as follows:

haui = 1− hsi − h
u
i (22)

1hui,j represents the increased CPU utilization of hi when
vj allocates to hi and is calculated as follows:

1hui,j =
vuj · v

mc
j

hmci
(23)

ϕi,j represents the remaining available CPU utilization of
hi when vj has been migrated to hi:

ϕi,j = haui −1h
u
i,j (24)

Our VM placement algorithm can be divided into three
parts: first, this algorithm sorts the selected VMs list in
decreasing order of CPU capacity. Second, this algorithm
looks for the candidate hosts set that can receive the VMs in
the data center. The candidate host satisfies two conditions:

(1) it has not been overloaded, and (2) its available CPU uti-
lization is greater than zero (hau > 0). Finally, this algorithm
allocates the selected VMs to the best hosts that are in the
candidate list. The best host satisfies two conditions: (1) the
remainder available CPU utilization of the host is higher than
zero, and (2) the host has the lowest remainder available CPU
utilization relative to other hosts. The pseudocode for the
VM placement algorithm is presented in Algorithm 3. If n
is the number of active physical hosts and m is the number
of the selected VMs, the time complexity of the algorithm
is O (n∗m).

Algorithm 3 VM Placement
Input: hostList, overloadedHostList, selectedVmList
Output: allocatedHostList
1 Sort selectedVMList in decreasing order of CPU

capacity
2 otherHostList← hostList.remove(overloaded

HostList); // candidate host has not been overloaded
3 candidateHostList← NULL;
4 foreach host in otherHostList do
5 Calculate hau using equation (22);
6 if hau > 0 then // candidate host’s available CPU

utilization is greater than zero
7 candidateHostList.add(host);
8 end if
9 end for
10 foreach vm in selectedVmList do
11 ϕmin← MAX;
12 allocatedHost← NULL;
13 foreach host in candidateHostList do
14 Calculate ϕ using equation (24);
15 if ϕ > 0&&ϕ < ϕmin then // the best host’s

remainder available CPU utilization is higher than
zero and the lowest

16 ϕmin← ϕ;

17 allocatedHost← host;
18 end if
19 end for
20 if allocatedHost 6= NULL then
21 allocatedHost.getVmList().add(vm);
22 selectedVmList.remove(vm);
23 end if
24 allocatedHostList.add(allocatedHost);
25 end for
26 return allocatedHostList;

D. UNDERLOADED HOST DETECTION ALGORITHM
The key step of VMconsolidation is host underload detection,
which is employed to select the underloaded host. All VMs
of the selected host must be migrated to other hosts, and the
underloaded host shut down to improve resource utilization
and save energy. Our host underload algorithm sets the list
of candidate hosts for underloaded hosts based on the host
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operating state, and then selects the underloaded host from
the list according to the energy efficiency of the host. The
goal of the proposed VM placement algorithm is to allocate
all VMs of the underloaded host to other hosts, which can
reduce power consumption without host overload. Therefore,
a metric that compares the energy efficiency of the active
hosts is defined as:

hea =
P(h)
hu

(25)

where hea is the ratio of the host’s power consumption to the
CPU capacity of the host. The higher the value of hea is the
lower the energy efficiency of the host.

Algorithm 4 shows the underloaded host detection. First,
this algorithm seeks the underloaded candidate hosts that
must be meet two conditions: (1) the host has not migrated
VM, and (2) the host has not been overloaded. Then, this
algorithm checks the candidate hosts and selects a host that
has the max hea as the underloaded host. If n is the number
of active physical hosts, the time complexity of the algorithm
is O(n).

Algorithm 4 Host Underload Detection
Input: hostList, overloadedHostList, allocatedHostList
Output: underloadedHost
1 heamax← MIN ;
2 otherHostList←hostList.remove(overloadedHostList);

// candidate host has not been overloaded
3 otherHostList.remove(allocatedHostList); // candidate

hosts has not migrated VM
4 candidateHostList← NULL;
5 foreach host in candidateHostList do
6 Calculate hea using equation (25);
7 if hea > heamax then // select the underloaded host
8 heamax← hea;
9 underloadedHost← host;
10 end if
11 end for
12 return underloadedHost;

E. THE PROCESS OF VM CONSOLIDATION
As shown in Fig. 1, the EQVC method periodically adjusts
the placement of VMs. The approach can be split into two
phases. The first phase identifies overloaded physical hosts
andmigrates the excess VMs from the hosts. First, themethod
checks the list of active hosts in the data center and identifies
the overloaded host by using the host overload detection
algorithm. Second, the method selects VMs that need to be
migrated from the overloaded hosts using the VM selection
algorithm. Third, the method identifies new and suitable
placement for the VM migrating from the overloaded host
using the VM placement algorithm.

The second phase of the method identifies underloaded
physical hosts and migrates all VMs from the hosts. The
EQVC method repeatedly inspects the hosts list and looks

for the underloaded host using the host underload detection
algorithm. When the underloaded host is found, all VMs on
the host are allocated using the VM placement algorithm. The
above steps until the VMs cannot be assigned, and then the
host cancels the VMmigration and remains active. In the data
center, the EQVC method periodically consolidates the VMs
to maintain high energy efficiency and excellent QoS with
less VM migrations. The process of the EQVC method is
described in Algorithm 5.

Algorithm 5 Enhancing Energy-Efficient and QoS VMCon-
solidation
Input: hostList
1 overloadedHostList← hostOverloadedDetection

(hostList);
2 selectedVmList← VMSelection

(overloadedHostList);
3 allocatedHostList← VMPlacement (hostList,

overloadedHostList, seletedVmList);
4 otherHostList← hostList.remove

(overloadedHostList);
5 otherHostList.remove(allocatedHostList);
6 while otherHostList 6= NULL do
7 underloadedHost← hostUnderloadDetection

(hostList, overloadedHostList, allocatedHostList);
8 vmList← underloadedHost.getVmList();
9 VMPlacement(hostList, overloadedHostList,

vmList);
10 if vmList 6= NULL then
11 return;
12 else
13 otherHostList.remove(underloadedHost);
14 end if
15 end while

V. EXPERIMENT AND EVALUATION
In this section, we designed a series of experiments to verify
the effectiveness of the proposed EQVC method in the IaaS
environment.

A. EXPERIMENTAL SETTING
This paper used the CloudSim toolkit [33] as a simulation
platform. CloudSim toolkit is a simulation framework for
cloud computing environments. Compared to other simu-
lation toolkits, it supports modeling of on-demand virtual-
ized resources and application management. It also simulates
energy-awareness and service applications with workloads
over time. In the experiment, we simulated a heterogeneous
data center that consisted of 400 HP ProLiant ML110 G4
(Intel Xeon 3040, 2 cores ∗ 1.86 GHz) and 400 HP Pro-
Liant ML110 G5 (Intel Xeon 3075, 2 cores ∗ 2.26 GHz)
physical hosts. Referencing the benchmark data provided
by SPECpower [11], the maximum energy consumption of
the two types of hosts was 117 W and 135 W. Addition-
ally, four instances of VMs were used in the experiments:

VOLUME 6, 2018 31231



Y. Liu et al.: EQVC Method in Cloud Environment

High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra
Large Instance (2000 MIPS, 3.75 GB); Small Instance
(1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS,
613 MB).

TABLE 1. PlanetLab trace (CPU utilization).

To prove the feasibility of the proposed EQVC method,
we conducted experiments using two workload traces from
the real system: PlanetLab trace [34] and Bitbrains trace [35].
The PlanetLab trace included the CPU utilization measured
every 5 minutes from more than one thousands of VMs for
10 days. Table 1 shows the PlanetLab trace information. The
Bitbrains trace contained 1,750 VMs’ performance metrics,
which were measured from the Bitbrains distributed data
center every 5 minutes for 3 months. In the experiments,
we selected the CPU utilization by VMs data for 10 days.
Table 2 shows the information of the Bitbrains trace. During
the simulation, VMs that were consistent with the number of
VMs from the workload traces were created, and these VMs
were randomly assigned the workload traces from the VMs
in the corresponding day.

B. PERFORMANCE METRICS
To evaluate the performance of the VM consolidation
method, the six performance metrics from the research [10]
were adopted: energy consumption (EC), SLA time per active
host (SLATAH), performance degradation due to migrations
(PDM), SLA violations (SLAV), energy and SLAV (ESV),
and VM migrations (VMM). The SLATAH, PDM and SLAV
were mentioned in Section III.D.

EC represents the energy consumption of all physical
hosts in the data center. ESV represents a combined metric
including both EC and SLAV and was defined in (26). The
lower ESV indicates that the data center has higher energy
efficiency and QoS.

ESV = EC × SLAV (26)

VMM represents the total number of VMmigrations in the
data center, and reducing VMM can improve QoS.

C. RESULT OF EXPERIMENTS
In the same experimental conditions, we compared the pro-
posed EQVCmethodwith the RUAmethod [15] andDTHMF
method [20]. The parameter s of EQVC was set to 1.2.
Additionally, we considered the method [11] of combining

TABLE 2. Bitbrains trace (CPU utilization).

FIGURE 3. SLATAH by the different algorithms under the PlanetLab and
Bitbrains trace.

four host overload detection algorithms (THR, MAD, IQR
and LR) with three VM selection algorithms (MMT, MC,
and RS) as the benchmark method. Tables 3 and 4 show
the experimental results with different traces, such as EC,
SLAV, ESV, and VMM. The values in the table are the mean
of the corresponding performance indicators and the 95%
confidence interval (CI) for the mean. Fig. 3 and Fig. 4 show
the experimental results of SLATAH and PDM, which is a
further analysis of SLAV. In the above figures and tables,
the numbers following the name of each method are the
parameters of the corresponding method.

The EC metrics can be used to compare the perfor-
mance of different methods regarding power consumption.
In Tables 3 and 4, we observe that EQVC outperforms the
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TABLE 3. Results using PlanetLab trace with four metrics.

TABLE 4. Results using Bitbrains trace with four metrics.

other approaches in energy-efficiency under the PlanetLab
andBitbrains traces. The EQVCmethod saved approximately
34.6% of the energy compared to the benchmark algorithm.
The THR-MMT consumed the maximum energy in the Plan-
etLab trace, and the IQR-MMThas themaximum energy con-
sumption in the Bitbrains trace. Further analysis finds that the
power cost of the VM consolidation method that contained
the MMT algorithm is consistently higher than the others.
This is because the MMT algorithm selects many undesired
VM migrations, resulting in great energy consumption when
allocating the selected VMs. However, we see that EQVC
can avoid inefficient VM migrations because the result of
EQVC has the lowest EC and the least VM migrations.
Consequently, the performance of the EQVC is better than
the other methods.

The SLAV metrics can be applied to evaluate SLA vio-
lations while the lower SLAV represents the higher QoS.
As shown in Tables 3 and 4, EQVC outperforms other meth-
ods regarding SLAV, which indicates that EQVC can effi-
ciently reduce SLA violations and improve QoS for users.
Fig. 3 and Fig. 4 show the further analysis of SLAV, which
consists of both SLATAH and PDM. The SLATAH met-
rics reflect the possibility of overloading the physical host.
Fig. 3 compares the results of SLATAH with other methods.

We see that for both PlanetLab and Bitbrains traces, EQVC
is much lower than the other methods. Compared with the
benchmark algorithm, the probability of host overloading
of the EQVC approach reduces approximately 67.97%. The
SLATAH value of DTHMF is the highest in both traces,
which indicates that the approach is more likely to overload.
This is because when detecting the overloaded host, DTHMF
relies on the temperature of the physical host according to
the change in cloud workloads, reducing the accuracy of
overload detection. However, EQVC can proactively migrate
excess VMs from a host before the host became overloaded,
reducing the overloading probability of the host. Addition-
ally, to prevent host re-overload, EQVC also provides adap-
tive reserved resources for each host. Therefore, EQVC can
efficiently reduce the occurrence of host overload while guar-
anteeing QoS requirements.

The PDM metrics reflect the loss extent of CPU capacity
due to VM migration. The PDM of EQVC is lower than
the benchmark method by 67.60%, as shown in Fig. 4.
RUA and DTHMF perform adequately in the PDM metrics
but worse than EQVC. The PDM value of the methods
that contain the RS algorithm is consistently the highest
because the RS randomly selects the VM for migration, and
the purposeless VM migration causes the increased loss of
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FIGURE 4. PDM by the different algorithms under the PlanetLab and
Bitbrains trace.

computing resources. However, EQVC minimizes the CPU
capacity loss caused by the VM migration. Thus, EQVC can
improve the degraded performance of CPU capacity during
VM migration, while guaranteeing QoS.

In Tables 3 and 4, the behaviors of the EC and the
VMM are closely related. The VM migration not only leads
to degraded VM performance but also causes energy con-
sumption. EQVC has the lowest number of VM migra-
tions under the PlanetLab and Bitbrains traces, as shown
in Tables 3 and 4. Compared with the benchmark algorithm,
the EQVC method reduces the number of VM migrations by
approximately 71.85%. This is becausewhen selectingVM to
migrate, EQVC avoids inefficient VM migration. Thus,
the number of VM migrations can be efficiently decreased
using EQVC.

The ESV metrics can be used to measure an overall evalu-
ation of both the EC and the SLAV, reflecting the combined
level of energy consumption and QoS in the data center.
As shown in Tables 3 and 4, we observe that EQVC outper-
forms the other approaches regarding the ESV metrics under
the PlanetLab and Bitbrains traces. Additionally, the VM
consolidation method that contains the RS algorithm has
the highest ESV values in both traces, which demonstrates
the importance of the VM selection algorithm. The exper-
imental results show that EQVC maintains the best perfor-
mance in both energy-saving and QoS guarantee with fewer
VM migrations.

Overall, the results show that EQVC not only dramatically
decreases the number of undesired VM migrations and saves
energy but also efficiently guarantees QoS requirements.
Our method can better use computing resources than the
other methods, especially enabling the data center to enhance
energy efficiency and QoS. Our technique allows for cloud
service providers to reduce the cost of data centers and also
improves the users’ service experience to promote the further
development of cloud computing.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented a VM consolidation (EQVC)
approach that can be employed in cloud data centers to reduce
energy consumption and minimize the number of VMmigra-
tions when delivering guaranteed QoS. The feasibility of
our method is established in four facts: (1) our approach
effectively reduces the probability of host overloading;
(2) our approach avoids undesired VM migrations, conse-
quently minimizing the number of VM migrations; (3) our
approach improves the utilization of host resources and pre-
vents host re-overload; and (4) our approach has better per-
formance under different workload traces.

The experimental results demonstrate that our method sig-
nificantly outperforms other traditional methods in terms of
energy-saving, guaranteed QoS levels, and electricity costs.
Our approach also proves that by reducing invalid VMmigra-
tions, it is possible to improve data center QoS, which indi-
cates that in the process of VM consolidation, we should
avoid invalid VM migrations. In summary, our approach sat-
isfies the requirements of data center low operating costs for
cloud service providers, and satisfies the service experience
of the users. Additionally, the method achieves a mutually
beneficial situation for users and cloud service providers,
which is essential to increasing the development of cloud
computing.

Although CPU is one of the significant determinants of
the physical host’s energy consumption, other factors such as
memory, disk storage, and network workload have an impact
on energy cost. In future work, we will study the VM consoli-
dation method under a multi-factorized load and will evaluate
the proposed approach in a real cloud infrastructure.
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