
Received March 1, 2018, accepted May 10, 2018, date of publication May 15, 2018, date of current version June 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2837039

Research of Security as a Service for VMs
in IaaS Platform
XUEYUAN YIN 1, XINGSHU CHEN2, LIN CHEN1, GUOLIN SHAO1,
HUI LI1, AND SHUSONG TAO1
1College of Computer Science, Sichuan University, Chengdu 610065, China
2Cybersecurity Research Institute, Sichuan University, Chengdu 610065, China

Corresponding author: Xingshu Chen (chenxsh@scu.edu.cn)

This work was supported in part by the National Key Technology R&D Program of China under Grant 2012BAH18B05 and in part by the
National Natural Science Foundation of China under Grant 61272447.

ABSTRACT With the rapid promotion and application of cloud computing technology in various fields,
cloud computing security has become the focus of attention. To satisfy the virtual machine (VM) security
requirements of communication access control, network anomaly detection, memory monitoring, and file
antivirus in Infrastructure as a Service (IaaS) platform, a comprehensive protection framework with the
capacity of defense-in-depth for tenant VMs was proposed in this paper, which employed three different
layers to satisfy above security requirements of tenant business from the outside to the inside of the VM.
At the first layer, a tenant domain model was abstracted and realized based on software defined network-
ing (SDN), which was used to re-obtain the capacity for communication access control for VM traffic and
ensure security isolation of different tenant business networks. Besides, to detect the network abnormality
of tenant VMs, a traffic structure stability model was constructed according to the deviation degree between
current and historical normal network traffic structure profile. At the second layer, the capacities of network
access control and anomaly detection, the same as the capacities used in the first layer, which were provided
based on VM granularity. At the third layer, to monitor the VM memory information, a VM security
monitoring method with agentless based on online analysis of VM memory was proposed by employing
physical memory analysis mechanism. Moreover, a file antivirus method named HyperAV for VM based on
virtualization was given, which was constructed of a frontend and a rear end. HyperAV optimized the process
of virus scanning by monitoring the sector change information of a running VM with low performance
costs. The experimental results demonstrated the effectiveness and low performance costs of the proposed
protection framework and the corresponding security mechanisms, respectively.

INDEX TERMS Cloud computing, network security, access control, virtual machine monitors, antivirus.

I. INTRODUCTION
According to the CSA and NIST security guidance for cloud
computing and virtualization technologies, Virtual Machines
(VMs) in Infrastructure as a Service (IaaS) environment
based on shared responsibilitymodel involves a lot of security
vulnerabilities [1]–[4]. Typically, the VMs may communi-
cate with each other over an internal software backplane
that lead to the traffic between them cannot be access con-
trolled and monitored by standard network-based security
controls. Moreover, the hidden processes are implanted in
VMs maliciously may steal user confidential information.
Furthermore, the VM operating system (OS) also faces the
risk of viruses, which are hosted in the traditional OS mali-
ciously. Proper information securities are suitable for cloud

should be deployed in different locations to satisfy above
security requirements of tenant business that loaded in VMs.

To address the above issues, different corresponding solu-
tions are proposed by industry, open source group, and
academia. Firstly, to re-obtain the management and con-
trol capacities of VM traffic in a virtualized environment,
the VEPA and VN-TAG technologies are led by HP and
Cisco respectively, and a distributed Layer2∼Layer4 state-
ful firewall service by use of a distributed kernel-enabled
firewalling is provided by VMware NSX. And the secu-
rity group and firewall as a service by employing Netfilter/
Iptables are implemented in OpenStack [5], while the exist-
ing network framework fails to provide or access the
capabilities of scalable advanced network security services

29158
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-0617-2076

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

(e.g., network anomaly detection, deep packet inspection).
Besides, to detect network abnormal behaviors, many
research works have been done from the point of view of
traffic analysis at present. The existing methods are mainly
based on misuse detection, which depends on specific char-
acteristics of the network attack, traffic detection rules, and
a known attack feature library. The collected traffic data will
be compared with the rule in the feature library and abnormal
alarm will be outputted if it matches any rule [6]. As the
method relies on corresponding rules those must be written in
advance for attacks, it has to maintain a large feature library.
Moreover, in the aspect of VMmemory monitoring, there are
two methods, the one named external monitoring mechanism
is that the VM status information (e.g., VM Memory work-
load) is gathered through specific APIs, which are provided
by virtual machine monitor (VMM) (e.g., Xen, KVM), while
the information can be gathered is limited to the given APIs
severely and the method is not easy to expand and cus-
tomize, such asAWSCloudWatch andOpenStackCeilometer
products. The other method employed monitor probes placed
inVMOS,which can retrievemore status information about a
business process, while the probes should be protected due to
their location and hence they were vulnerable to be attacked.
Meanwhile, the privacy concerns could not be neglected.
Besides, in a virtualized environment Xiang et al. [7]
pointed out that the key data structure such as VM ker-
nel could be analyzed by means of semantic reconstruction
in the virtualization layer. And Li et al. [8] detailed the
VM introspection (VMI) technologies based on the method
of semantic reconstruction and kernel data structure parsing
to retrieve VMmemory information (e.g., process list, loaded
kernel modules) externally, while the anti-attack ability and
robustness of this method are weak due to the relation-
ship chain between kernel data structures in a VM may be
destroyed by malicious codes. Furthermore, to ensure the
security of VM, an antivirus software is always installed
in every VM. Consequently, high antivirus costs and dupli-
cations of virus database updating cannot be avoided. To
mitigate the problems, McAfee integrated antivirus mecha-
nism into the underlying virtualization infrastructure and the
virus scanning work are transferred to a dedicated server [9].
Oberheide et al. [10] proposes an antivirus mechanism
constructed with a frontend running in a VM to acquire exe-
cutable files and a backend outside VM to perform virus anal-
ysis operations. CloudAV extended [10] by adopting multiple
antivirus engines on backend to detection virus in parallel,
and the frontend inside VMs was responsible for sending
files with unknown Unique IDentifier (UID) values inside a
white list to backends [11]. By providing unified anti-virus
engines of above solutions, the redundant virus database in
every VM is eliminated.

To satisfy the above concerned security requirements
including the communication access control, network
anomaly detection, memory monitoring and file antivirus
for VM, a comprehensive protection mechanism with the
capacity of defense-in-depth for tenant VMs was proposed.

The detailed discussion of the contents is organized as shown
in Fig. 1.

FIGURE 1. The paper structure.

Section I details focused security concerns in IaaS plat-
form, which contains the communication access control,
network anomaly detection, memory monitoring and file
antivirus for VM. Then, different corresponding solutions
are proposed by industry, open source group, and academia
are discussed respectively, and corresponding benefits and
imperfections are analyzed.

Section II proposes a comprehensive security service
framework, which employs three different layers to orches-
trate various security strategies to satisfy requirements as
stated in section I.

Section III details the implementations of different securi-
ties those can support the framework discussed in section II,
which include network security service, VM memory moni-
toring service and VM antivirus service respectively. And the
part of network security service is consisted of mechanisms
of VM communication access control and network anomaly
detection.

Section IV gives the experimental campaign and discus-
sion about the effectiveness and performance costs of the
proposed framework and the various supporting securities.

Section V is the summary and gives a prospect to the
research of this paper.

II. THE SECURITY SERVICES FRAMEWORK
To satisfy typically security requirements including network-
related services to manage VM traffic and detect abnor-
mal network behaviors, memory monitoring service and file
antivirus service for VM in section I and orchestrate various
corresponding securities, a security service framework was
proposed according to the principles of security domain divi-
sion and defense-in-depth strategy presented in Information
Assurance Technical Framework (IATF), as shown in Fig. 2.

The framework employs three different layers to satisfy
above security requirements. From the outside to the inside
of the tenant VM, the layers are:

VOLUME 6, 2018 29159

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

FIGURE 2. The defense-in-depth security service framework from the
view of traffic flow of tenant VMs.

(1) S1 layer: to ensure tenant domain perimeter security.
It provides capacities of managing tenant VMs net-
work perimeters from the perspective of VM commu-
nication access control, and detecting network abnormal
behaviors.

(2) S2 layer: to ensure VM perimeter security. It offers the
capacities same as S1 layer based on VM granularity.

(3) S3 layer: to ensure VM OS internal security. It pro-
vides services of memory monitoring and file antivirus
for VMs.

The related components deployed in IaaS platforms as
shown in Fig. 3. The hardware layer provides physical CPU,
memory, storage resources for virtualized IaaS environment.
The hypervisor and security layer is put in charge of vir-
tualizing above physical resources and providing enhanced
security services respectively. And the security services are
consisted of communication access control for tenant domain
perimeter and VM perimeter, network anomaly detection,
memory status monitoring, and files antivirus.

FIGURE 3. Related components of security service framework deployed in
IaaS platforms.

III. THE SECURITY SERVICE IMPLEMENTATIONS
As the supports of the described framework in section II, this
section details the implementations of different securities.
Firstly, sub-section A discusses network security services
those include communication access control and network
anomaly detection respectively. Then, sub-section B states
VM memory monitoring service. Finally, a VM antivirus
service is described in sub-section C.

A. VM NETWORK SECURITY SERVICES
1) COMMUNICATION ACCESS CONTROL
To perform communication access control for VM and iso-
lation of different tenants’ business environment, a tenant
domain model suitable for the IaaS platform was formally
defined and designed. Then, an implementation framework
of the model was given, which could segment the ten-
ant network environment flexibly and manage fine-grained
VM traffic, and eliminated configuration requirements for
physical networks or physical firewalls effectively when net-
work segmentation was performed.
Definition: Tenant Domain (TD). It contained 5 items.

TD = (TID,TNet,VMSs,ACRs,Cons).
(1) TID, represented a logical Layer 2 network tag. It sat-

isfied the below constraint:
(a) TIDi 6= TIDj,= if i 6= j.
(2) TNet, represented a tenant virtual network environment

that was constituted of different Layer 2 broadcast domains
called TSNet. TNet = {TSNet1, . . . ,TSNetm}.

(3) VMSs, represented a VM set of a specific tenant.
VMSs = {VMs1, . . . ,VMsm} ,VMsi = {vm1, . . . , vmv},
and VMsi represented all VMs within a subnet TSNeti.
If a VM vmk that traffic was tagged TID and it was
belonged into VMsi within a subnet TSNeti, then it was
represented as vmk ∈ (TID ∧ TSNeti ∧ VMsi). The other
entity B that did not belong to VMSs was represented as:
B /∈ VMSs.

(4) ACRs, represented a set of communication access
control rules (ACRs) for a VM or VMs. ACRs =

{ACR1, . . . ,ACRu} , ACRi = {acr1, . . . , acrz}, and ACRi
represented perimeter ACRs set of a subnet TSNeti, and
acrrepresented a specific ACR rule. According to ACRs,
if ∃acr (vmA,B) . action = pass, then the communication
behavior between vmA and B was permitted and denoted as:

vmA
Y
←→ B, else the communication behavior between them

was denoted as: vmA
N
←→ B.

(5) Cons: communication constraints for VMSs, which sat-
isfied the following specific constraints:

(b) vmp
Y
←→ B, if

∃acrw
(
vmp,B

)
.action = pass, ∃acrz

(
vmp,B

)
. action = pass,

vmp ∈ (TID ∧ TSNeti ∧ VMsi) ,

B ∈
(
TID ∧ TSNetj ∧ VMsj

)
,

acrw ∈ ACRi, acrz ∈ ACRj,w 6= z.

(c) vmp
Y
←→ oB, if

∃acrp
(
vmp,B

)
. action = pass,

vmp ∈ (TID ∧ TSNeti ∧ VMsi),

B /∈ VMSs, acrp ∈ ACRi.

(d) vmp
N
←→ B, if

vmp ∈ (TID ∧ TSNeti ∧ VMsi), B satisfied the conditions
that excluded above (b) and (c).

29160 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

According to the above constraints, the flowing security
features could be obtained.

(1) By employing constraint (a), the isolation of tenant
virtual network in IaaS environment could be ensured.

(2) By employing constraint (b), the traffic between dif-
ferent VMs within a same subnet or among different subnets
belongs into a tenant domain could be managed.

(3) By employing constraint (c), the traffic betweenVMs in
a tenant domain and other external entities could be managed.

(4) By employing constraint (d), the illegal communication
between VMs in a tenant domain and other external entities
could be blocked.

According to the formal description of Tenant Domainand
our previous works [5], the implementation framework
was constructed by employing network virtualization (NV),
software defined networking (SDN) and network function
virtualization (NFV) technologies, as shown in Fig. 4.

FIGURE 4. Tenant domain implementation model.

(1) Virtual communication channel, which was constructed
by employing the VxLAN technology;

(2) Subnet configuration, which was relied on the virtual
DHCP, router and switch appliances implemented by NFV
technology such as the virtual appliance of OpenvSwitch.

(3) Tenant domain perimeter, which was consisted of a
set of virtual routers and firewalls deployed on a virtual
communication channel.

(4) Communication access control, depending on theACRs
which were configured in firewalls for constructing a tenant
domain. Moreover, access control capacity (e.g. Layer 2∼
Layer 4 communication access control) of VM granularity
was supported by employing SDN technology (e.g., Open
vSwitch, Ryu controller and Openflow protocol), the related
ACRs would be loaded in vSwitch components.

2) NETWORK ANOMALY DETECTION
To ensure the security of VM hosting a specific business
(e.g., web service, mail service), a network abnormal detec-
tion mechanism is needed. First and foremost, the VM traffic
needed to be captured and monitored by security appliances,

in a virtualized IaaS platform, a specific VM traffic could
be controlled and redirect into a specific security appliance
to detect or filter by employing SDN and NFV technolo-
gies [5] (e.g., redirecting a packet from a specific VM to the
IDS appliance through modifying the native destination
MAC address in the packet to the IDSMAC address), the pro-
cess was described as shown in Fig. 5.

FIGURE 5. VM traffic redirection framework.

Furthermore, to detect VM network anomaly and eliminate
the issues mentioned in section I, and to overcome the short-
ages of maintaining a large feature library and detect new
network attacks difficultly, a concept of network traffic struc-
ture stability was proposed and described, which was based
on the inherent stability of normal traffic attributes and the
stability of a specific service. And a normal network behavior
model for the server was profiled. Then, network abnormality
could be detected by the deviation degree between current and
historical normal network traffic structure profile.

a: FEATURES OF NETWORK TRAFFIC STRUCTURE STABILITY
According to the descriptions of entropy [12] (that describes
the effective information of distribution changes of traffic
characteristics) and correlation [13] (that detects traffic bursts
such as DDoS), and after long-term observation and analy-
sis of various attributes of network traffic, 8 features were
selected to describe a traffic structure feature in a particular
time window, as detailed below.

(1) SYN packet proportion (syn): a ratio of number of
packets with SYN flag of the total number of packets.

(2) IP entropy (ipentr): entropy was calculated by a pro-
portion of traffic, which corresponded to each IP address.
In order to facilitate a calculation and comparison, an IP map-
ping was performed and it represented a logical mapping IP.

(3) IP correlation (ipcorr): a correlation between
IP sequence with its traffic in a current time window and a
previous time window.

(4) TTL distribution entropy (ttl): TTL entropy was calcu-
lated by a proportion of traffic corresponding each TTL.

(5) Port distribution entropy (portsrv): entropy of traffic
corresponding to each port.

(6) Protocol distribution entropy (porto): entropy was cal-
culated by a proportion of traffic, which corresponded to each
protocol: TCP, UDP and ICMP.

(7) Packet length distribution entropy (packet): the entropy
of traffic corresponding each packet length.

VOLUME 6, 2018 29161

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

(8) Port access index (portacc): It depended on the number
of server port, which was accessed by each client IP and
corresponding probability of occurrence.

As an example, by analyzing network traffic of a mail
server in a cloud data center, a statistical result of the above
8 features in 1000 consecutive time windows were shown
in Fig.6.

FIGURE 6. The 8 features of a network traffic structure.

Every feature has a relatively stable distribution on its
value as below. The proportion of SYN packet is stable
at 10-2 order of magnitude. The IP entropy is kept at around 4.
The IP correlation is above 0.99. The TTL distribution is
stable, the highest probability at 64 and 52. The service
port numbers are distributed in 25 (SMTP), 80 (HTTP) and

110 (POP3), the feather matches the function of mail server.
Protocols distribution including TCP, UDP and ICMP, are
stable relatively. The packet length distribution shows that
network traffic is mainly composed of long packets and short
packets. The number of server ports accessed by vast majority
of client IP is almost less than 3.

b: PROFILE A NORMAL NETWORK TRAFFIC MODEL
According to the normal network behavior profile changes
periodically [14]–[16], a server network load and traffic are
similar in adjacent time windows, and based on previous
works [17], we profiled a normal network traffic model
of current time that based on historical traffic of a former
N time windows. In order to reduce the impact of the outliers
in historical data on profiling normal model, the outliers
in historical data based on the Grabs criterion [18] was
eliminated.

We defined F was a set of network behavior 8 features:
F={syn, ipentr, ipcorr, ttl, portsrv, porto, packet, portacc},
N was a number of time windows before the current time,
fb(x ∈ F) was a base feature value of network behavior within
N time windows, ω was a stability coefficient of each feature
in a network traffic structure, then defined P was a normal
profile of network traffic structure, where a value of fb(x)
was calculated by its definition of each feature.

P = {ωx fb(x)|fb(x) =

N∑
i=1

xi

N + 1
, x ∈ F} (1)

Stability coefficient ωx reflected a stability of the feature x
in normal situation. It indicated different influence of each
feature on determining normal and abnormal, which was
described by coefficient of variation cv. The cv was an abso-
lute index that reflected a degree of data fluctuation, which
did not depend on the size and dimension of multiple sets of
data. It was suitable for determining a weight coefficient in
multi-index comprehensive evaluation [18]. It was calculated
as:

cv =
σ

µ
(2)

where σ was a standard deviation, and µ was a mean.
The smaller value of cv, the smaller fluctuation of the data,
the larger corresponding stability coefficient, thus there was
an inverse relationship between cv andωx .We used a logarith-
mic represented anti-correlation, and then ωx was calculated
as below:

ωx = − ln

 cv (x)∑
i∈F

cv (i)

 (3)

The diff(x) was used to determine whether a network was
abnormal or not. When diff(x) exceeded a certain threshold,
it indicated that the current network traffic structure deviated
from the normal profile to a greater degree, and thus judged it

29162 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

in an abnormality. The diff(x) was calculated as follows, and
fc(x) was a feature value of the current time window.

diff (x) =
∑
x∈F

ωx |fb(x)2 − fc(x)2| (4)

Based on the above discussion, compared with the existing
misuse methods that based on rules, the method profiled
for normal network behaviors without needing to maintain a
large feature library and it could update the network behavior
dynamically. Besides, according to the difference between
normal network behaviors, this method could detect unknown
attacks. Moreover, by employing the service access method
based on SDN, and it had no effect to the existing business
VM due to an agentless mode was adopted.

B. VM MEMORY MONITORING SERVICE
Physical memory records the real runtime information of OS
and processes, thus, the running information of the processes
can be revealed by analyzing the physical memory status, and
particularly some malicious behaviors those only happening
in memory can be captured. In a virtualization IaaS environ-
ment, a VM memory does not directly correspond to a physi-
cal memory, which is transparently managed and maintained
by a virtual machine monitor (VMM) or a hypervisor. The
VMM owns full access rights to VM and can access the phys-
ical memory of all VMs transparently. Thus, by deploying
a mechanism of online VM memory analysis in the VMM,
we can retrieve VM memory information without needing to
deploy probes in the VM. The method could eliminate threats
to the probes brought by malicious codes in VM.

According to existing research work of digital memory
forensics [19]–[24], a method of cloud monitoring service
based on real time online analysis of VM memory was pro-
posed. To analyze a physical memory, a semantic analysis
module for the VM OS was realized in the VMM layer, and a
security monitoring service was composed of VMs that were
created dynamically. Typically, the VM memory monitoring
service framework based onKVMVMMwas shown in Fig. 7.

FIGURE 7. VM memory monitoring service framework.

The framework contains three components mainly: a user
monitoring policymanagement service, a securitymonitoring
service, and a VM memory online analyzing module.

(1) The user monitoring policy management service in
a monitoring VM, which was responsible for managing
(e.g., add, modify, delete, store policy) VM security moni-
toring policies (e.g., monitoring time intervals, specific mon-
itoring indicators). Due to a tenant’s VMs might be located
in different servers and a server might contain different ten-
ant’s VMs, when a monitoring policy was configured for
a VM, it was necessary to locate its position according to the
database information firstly. Then, monitoring policies were
sent to the monitoring VM in a same physical server.

(2) The monitoring service was consisted of two parts.
The one is hosted in a monitoring VM, which was mainly
consisted of three modules: policy distribution, result storing
and auxiliary kernel module. The policy distribution module
was used to receive the user’s policies. The auxiliary kernel
module was responsible for allocating shared memory blocks
in the kernel of a monitoring VM for monitoring the tenant
VMs in a same physical server. The shared memory structure
was consisted of three parts: a basic information space for
identifying a monitored tenant VM (e.g., UUID information),
a policy space for a monitored tenant VM, and a space for
storing analysis results. These memory blocks were effi-
ciently shared among the application layer of the monitoring
service, the auxiliary kernel module and the KVM. Due to
KVM only allowing the codes running in VM kernel layer
to trap into VMM by VMX instructions (e.g., VMCALL),
thus the instructions would be executed after the necessary
shared memory blocks had been allocated by the auxiliary
kernel module, and then passed the addresses of those blocks
to KVM. Finally, KVM would retrieve the information of
VM identification and monitoring policies and store the anal-
ysis results.

The other is tenant VM memory analysis module, which
was deployed in the KVM and in charge of analyzing a
VM memory. When a VM was trapped into KVM because
of exiting events (e.g., IO or interrupts), it was the right time
to analyze the VM memory. Due to important kernel data
structures of a VM (e.g., process control block, driver control
block) was resided in memory, a real view of the VM cur-
rent memory status could be reconstructed by parsing those
kernel data structures. The steps of reconstruction semantic
information of a VM from the KVM layer detailed as below.

First, we found the correlations of data structure. Accord-
ing to the correlations among the kernel data structures,
the kernel data structures could be located. Took kernel data
structure and their relationships in Windows 7 guest OS
as an example to illustrate. By accessing the FS register,
a KPCR structure value that stores a processor information
can be retrieved. By analyzing the KdVersionBlock field in
the KPCR structure and the LDR_DATA_TABLE_ENTRY
structure, a kernel base address and an address of a driver
double linked list and detailed driver module information
can be retrieved. By analyzing the CurrentThread field in

VOLUME 6, 2018 29163

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

the KPCR structure, information about the currently thread
control block and its parental process control block can be
resolved.

Secondly, we obtained the fingerprint features of data
structure. Due to a relative chain of a kernel data structure
might be destroyed by malicious codes, it brings negative
effect to the reliability of memory analysis. To avoid the
risk, by employing the fingerprint features of kernel data
structure to locate them in memory directly in this paper, the
algorithm 1 and algorithm 2 were used as below.

Algorithm 1 General Search Framework
input: base,size. (The base represents base address, the
size represents search range.)
output: Kernel object information
Step 1. buffer←get_kernel_buf(buf_size,GFP_KERNEL);
/∗ buffer allocation∗/
Step 2. sum_cmp←0;
/∗initialize an address offset for searching∗/
Step 3. while(sum_cmp is less than size) do
Step 4. if offset(size,sum_cmp) bigger than buf_size)
Step 5. cmp_size←buf_size
Step 6. else cmp_size←offset(size,sum_cmp)
Step 7.read_guest_memory(base+sum_cmp,buffer,
cmp_size); /∗ read a specified VMmemory into the buffer∗/
Step 8.sum_cmp←sum_cmp + cmp_size
Step 9.for i←0 to cmp_size do
Step 10.if(IsRealSomeKernelObject(&buffer[i]))
/∗ According to fingerprint features, judge whether a kernel
data of the current VM is the kernel data structure to be
searched or not ∗/
Step 11. ShowSomeKernelObjectIn-fo(&buffer[i],vcpu)
/∗ Output related information of the located kernel data
structure ∗/
Step 12. end if
Step 13. end for
Step 14. end while

The IsRealSomeKernelObject was an algorithm for iden-
tifying a specific kernel data structure. For a process control
block (EPROCESS), referring to the existing work [20]–[22],
we selected below fingerprint features to locate EPROCESS
as shown in Table 1.

TABLE 1. The selected EPROCESS fingerprint features.

Based on the above features, the implementation of the
IsRealSomeKernelObject algorithm detailed as below. After
finding the process control block in a tenant VM, the infor-
mation about the process (e.g., modules list loaded, file list
opened and port list listened) could be analyzed according to
the data structure of the process control block.

Algorithm 2 The Process Control Block Identification
Input: pAddr. (The buffer address that points a VM kernel
space memory)
Output: Boolean. (Whether a data pointed by the current
address is a process control block or not)
Step 1. p←(PWIN7_EPROCESS_32)pAddr;
/∗ Convert virtual address to a type of process control block
pointer ∗/
Step 2.if(p->Type! = 0x03||p->Size! = 0x26|| p->
DirTableBase%0x20! = 0||

(p->ThreadListHead.Flink)<0x80000000||
(p->ThreadListHead.Blink)<0x80000000 ||
(p->ExitTime.LowPart! = 0 &&
p->ExitTime.HighPart! = 0))

Step 3. return false;
/∗According to fingerprint features, the current data does
not represent a process control block ∗/
Step 4. end if
Step 5. return true.

Based on the above discussion, by introducing the memory
analysis mechanism and hardware virtualization technology,
the method was able to obtain the runtime information of
the guest virtual machine transparently. Besides, due to the
monitoring agent was not needed in the VM and without
any modifying to VM operating system, the security and
portability of the method were enhanced.

C. VM ANTIVIRUS SERVICE
Traditional antivirus mechanisms require antivirus software
to be installed in VMs, which may bring performance over-
head during virus scanning and virus database updating.
To solve the problem, we presented a framework called
HyperAV, which was constructed with a lightweight frontend
agent running inside VMs and a backend service to provide
antivirus detection capability as shown in Fig.8. HyperAV
was constructed with a guest agent called HyperAV Tools,
QEMU front inside host server and HyperAV backend com-
ponents deployed on separate servers. HyperAV provides
following functions:

(1) Provide interactive interfaces for administrators/tenants
to select files those will be scanned for antivirus;

(2) Fetch the physical sector locations of files and capture
system events of file operations.

After files have been chosen for antivirus by administra-
tors/tenants, HyperAV Tools fetch sector locations of above
files and send sector numbers to HyperAV Backend. When
HyperAVBackend receives the request fromHyperAV Tools,

29164 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

FIGURE 8. The framework of HyperAV.

HyperAV Backend adjudges whether the contents of these
sectors have been changed from the last antivirus time firstly.
If not, the last scanning result is directly returned to HyperAV
Tools. Otherwise, HyperAV Backend issues a request to
QEMU front, the QEMU front implemented a socket server
and returns the contents of the sectors after receiving a request
from HyperAV Backend. After the contents of these sectors
are reconstructed as a file on HyperAV Backend, antivirus
engines are called to scan the content of the files, then the
scanning result is returned to HyperAV Tools. To monitor the
sector change information of guest, QEMU emulator on host
is modified so that sector numbers written by guest are sent
to HyperAV Backend in real time, thus HyperAV Backend
has knowledge of the completely modified sectors of guest
VMs. Besides, when a file is detected to be harmful, HyperAV
provides isolationmechanisms inside QEMU to prevent these
sectors being read by guest and a notification message is sent
to HyperAV Tools to inform the VM administrator.

As described above, the features of HyperAV were con-
cluded as follows:

(1) Amore lightweight guest agent: an agent process inside
guest VM provided interactive interface to VM adminis-
trators, fetched sector information and captured file events.
HyperAV Tools did not need to read the contents of files for
antivirus and compute a HASH value to adjudge whether files
have been changed during the passing of time.

(2) Combined antivirus with virtualization platform: an
underlying virtualization platform such as VMM was mod-
ified to monitor the sector change information of guest VMs.
When a file inside guest needed to be scanned, HyperAV
could directly adjudge whether the file had been modified
since the last scan, without having to calculate the HASH
value of the file.

(3) Provided access control at sector level: HyperAV intro-
duced access control flags inside QEMU to judge whether the
sectors were forbidden being accessed by guest VMs to keep
malicious files isolated from a guest OS.

(4) Reconstructed file content out of VM: HyperAV Back-
end could directly issue read operations of sectors with
QEMU front, and these contents were reconstructed as a file
by HyperAV outside the VM, which could reduce overhead
of the guest VM.

(5) Multiple antivirus engines were supported: HyperAV
Backend could adopt multiple antivirus engines to provide
scanning service for a single file in parallel to improve
accuracy.

Based on the above discussion, the method differ-
ent from other cloud-related antivirus researches such as
CloudAV [10], HyperAV neither required a specific VM to
read contents of files to be scanned, nor did it need a VM to
compute an UID value of a file and send the file to a backend
for virus analysis. Instead, HyperAV directly fetched con-
tent of files from an underlying virtualization infrastructure
and kept an account of vector change information of disks
attached to a VM. By employing the mechanisms, HyperAV
had a faster speed by directly skipping scanning unchanged
sectors of files, which could save the time of reading contents
and computing UID values of files effectively.

According to the method stated above and due to the real-
ization of HyperAV was cloud platform-related, we imple-
mented the method on KVM with qcow2 image format as an
example to illuminate, and took windows 7 as guest VMwith
NTFS file system adopted. The implementation framework
was shown in Fig. 9, and each part of HyperAVwas discussed
as follows.

FIGURE 9. The implementation framework of HyperAV.

HyperAV Tools inside windows guest is constructed by
four components:

(1) User Interface: provide command line interfaces to
administrators/tenants to input related arguments, which
include:

(a) Select files to be scanned for antivirus.
(b) Select files to be isolated by HyperAV.
(c) Select file paths to be watched, file modifications inside

the path will be scanned in real time.

VOLUME 6, 2018 29165

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

(2) Sector Resolution: after retrieving the input argument
of the file to be antivirus or isolated, Sector Resolution
component returns the physical sector locations of the file.
For Windows NTFS file system, file data can be located
either in Master File Table (MFT) or by calling DeviceIo-
Control with FSCTL_GET_RETRIEVAL_POINTERS and
IOCTL_VOLUME_LOGICAL_TO_PHYSICAL as argu-
ments individually.

(3) Event Handler: Monitor important file paths by uti-
lizing windows event notification mechanism, modification
inside these files will be scanned in real time.

(4) Communication Module: Provide network service to
communicate with HyperAV Backend, passing the sector
locations to be scanned or isolated.

QEMU Front is implemented on host, mainly provides
interfaces to communicate withHyperAVBackend. Themod-
ification inside QEMU includes:

(1) Main thread: QEMU main thread handles guest events
(e.g., network and IO emulation), and the following modifi-
cations were added:

(a) Fetches guest sector change information: Each time
when guest issues a writing operation to disks, the operation
can be concluded by a struct called sector_ops: {start_sector,
sector_num, ops_size}, which is passed through QEMU to
NetAV thread with a shared ring buffer. If host caches
IO data inside memory, QEMU notifies NetAV to consume
data inside a ring buffer at each flush of guest, otherwise,
NetAV thread will be notified at each writing operation.

(b) Implement sector isolation: When QEMU accesses
guest sector data, entries inside l1_table and l2_table are tra-
versed. L2_entry which points out the location and attributes
of the data cluster is modified to add two flag bits that
represent whether the data clusters accessed by guest are
forbidden being read or written. If the flag denotes forbidden,
the acl_table will be accessed to get the permission.

(2) Acl_table: Point to clusters of access control data, as
default, size of a qcow2 cluster is 64KB and guest sector size
is 512B, two flag bits inside acl_data are needed to represent
the forbidden access of reading and writing rights. Thus low
18 bits of guest sector number are used to traverse acl_data
to get the access right, and the remainder of high bits (18-64)
is used to traverse acl_table to get the location of acl_data.
In addition, acl_table is accessed only when the forbidden bits
inside l2_entry are set, so that normal access to sectors of
guest will not be impacted.

(3) NetAV thread: Consumes data from the ring buffer
produced by themain thread and sends these data to HyperAV
Backend. The data inside ring buffer represent the sector
numbers written by guest.

(4) NetSer: Accepts requests from HyperAV Backend
and returns the sector data if needed by traversing QEMU
l1_table and l2_table. If HyperAV needs to isolate sectors of
guest, NetSer sets the corresponding flags inside l2_entry and
acl_data.

HyperAV Backend mainly provides antivirus services for
guest VMs and QEMU front and HyperAV Tools.

(1) NetAV Server: Accepts sector change information from
NetAV thread of QEMU front and modifies states of these
sectors as WRITTEN.

(2) NetSer Agent: Accepts antivirus request fromHyperAV
Tools and judges if the status of these sectors are marked
as WRITTEN, which means the sector contents have been
changed since last scanning. A request to NetSer inside
QEMU front is sent to read the content of these sec-
tors. Then contents of these sectors are reconstructed as
a file for antivirus engines to scan. According to the
scanning result, states of these sectors are modified as
CLEAN or INFECTED.

IV. EXPERIMENTAL CAMPAIGN
According to Fig. 2 and Fig. 3, we employed five normal
servers, several Gigabit Ethernet switches and Gigabit NICs
to build IaaS platform. The key software parameters were:
OpenStack Kilo as the IaaS management toolkit, KVM as the
VMM and QEMU version was 2.3.0, OpenvSwitch as the vir-
tual SDN switch and Ryu as the SDN controller, and CentOS
7.2 x64 release version as the host OS and its kernel version
is 3.10.0-514.2.2.el7, the versions of guest VM OS are Win-
dows 7 SP1 and Ubuntu 10.04. And key hardware parameters
of physical server were: CPU was Intel(R)Xeon(R)CPU E5-
2630 v3 @ 2.40GHz, memory capacity was DDR4 128GB.
Another particular experimental parameters had been given
in the corresponding section.

The deployment architecture of IaaS platform as shown
in Fig. 10. By using independent network equipments to build
different business function networks, including the manage-
ment network, the storage network and the business data
network, which are isolated from each other. For the security
service network part, the security service is provided through
the shared equipment such as a switch accessed into the
service data network. The server in the DMZ is used to pro-
vide external users with the IaaS platform basic information
display page and the tenant virtual resource management
service interface.

A. NETWORK SECURITY SERIVCES
1) VM COMMUNICATION ACCESS CONTROL
According to the proposed theory model of tenant domain,
the isolation network environment could be constructed for
different tenants. The defense-in-depth business environment
could be built effectively by performing the ACRs on fire-
walls (The method A in Fig. 11) or OpenvSwitch (The
method B in Fig. 11) as shown in Fig.11.

For the method A in Fig.11, the functions of isolation
and communication access control between different domains
could be realized by employing different virtual routers con-
figured different subnets and firewalls loaded various ipt-
ables/ebtables rules, which were similar to the settings of
tradition physical routers and firewalls.

For the method B in Fig.11, it could be realized
by employing OpenvSwitch, Ryu SDN controller and

29166 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

FIGURE 10. The deployment architecture of IaaS platform.

FIGURE 11. Defense-in-depth business environment for Tenants.

Openflow 1.3 protocol specification based on the principle
of the Fig.4. The ACRs and relative experimental parameters
as shown in Table 2.

TABLE 2. The key parameters of VMs.

The following abstract ACRs for subD1 sub-domain and
subD2 sub-domain were defined as below.

(1) The rules for the subD1
‘priority = 6, srcmac = {VM1,VM2}.MAC, dstmac = {VM1,
VM2}.MAC, action = pass’

(2) The rules for the subD2
‘priority = 5, srcmac = {VM1,VM2}.MAC, dstmac =
VM3.MAC, dstport = 22, action = pass’ ‘priority = 5,
srcmac = VM3.MAC, dstmac = {VM1,VM2}.MAC,
srcport = 22, action = pass’
(3) The isolation rules for subD1 and subD2 ‘priority = 4,

srcmac = ∗, dstmac = ∗, action = drop’.
Then, the following commands were executed on

VM1 respectively.
(1) ‘ping 192.168.1.22’
(2) ‘ping 192.168.1.26’
(3) ‘telnet 192.168.1.26 22’
Both of the results of the ‘PING’ test for network

interworking and isolation, and the ‘Telnet’ test between
subD1 and subD2 were in line with expectations.

Furthermore, the performance cost of method B in
Fig. 11 based on SDN discussed as below. We instantiated
30 VMs on a physical server and performed tests as shown
in Table 3. The VMs named VA and VB within a same subnet
on the server, and P1 was another physical server.

VOLUME 6, 2018 29167

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

TABLE 3. Performance test cases of access control mechanism based
on SDN.

The load means and standard deviations of above four
different test cases as shown in Table 4.

TABLE 4. Load means and standard deviations of four different test
cases.

According to Table 3 and Table 4, the tenant network
environment could be segmented flexibly only consuming
little management cost and computing resource by employing
the method B in Fig.11 based on SDN.

Besides, the both methods could eliminate configuration
requirements for physical networks or physical firewalls
effectively when network segmentation was performed, and
have a prosperity of defense-in-depth according to different
business isolation and security requirements, and the commu-
nication access control capabilities for VMs were provided at
the same time.

2) NETWORK ANOMALY DETECTION
To verify the effectiveness of our method, we deployed our
network behavior description system on amail server in a data
center to monitor its traffic flow. The change of traffic struc-
tures was observed by emulating attacks to the server. The
system had the flowing features.

(1) The characteristics of traffic structures were statistics
based on time series.

(2) A normal network behavior profile was constructed
based on the historical data of the first 120 time windows.
We eliminated the outliers in historical data based on the
Grabs criterion, and a reference value was calculated based
on average of the normal values, a stability coefficient was
calculated based on the stability of the eigenvalues in the
historical data, which was used to determine the weight of
each feature value.

(3) The degree of deviation was calculated based on an
actual traffic structure in a current time window and historical
normal network behavior profile.

(4) The exception was alerted if a degree of deviation
exceeded a certain threshold.

The value of a deviation threshold was different among
different network environment, we calculated our threshold
value by taking an average of the normal and exceptional
values, which were calculated by the normal values and the
outliers in the deviation historical data based on the Grabs
criterion individually.

We implemented common network attacks to the mail
server to test our system, and the result was shown in Table 5.
For each type of attacks, three different attack scales were
implemented. A total of nine experiments were conducted
with each contained thirty attacks.

TABLE 5. The detection results of network attacks.

The result showed that our system had an effective detec-
tion effect on port scanning, SYN DoS and UDP flood. The
detection rate grows with the increasing attack scale and can
finally reach 100% when attack scale reaches some critical
value.

B. VM MEMORY MONITORING
We took Windows 7 as the VM OS to test the mechanism of
VM memory monitoring.

1) OBTAIN THE PROCESS LIST
After we used a Tss Ht tool to hide a process named
‘calc.exe’ in the windows VM OS, the process could not be
found through Microsoft command line interface by running
‘tasklist’ command inside the VM. Besides, the basic princi-
ples of a process hiding tool are: firstly, loading a driver which
can perform DKOM operation in a VM kernel. The current
activities of the process list from the current process control
block can be retrieved. Then, after removal of ‘calc.exe’
process corresponding to the process control block from the
active list of processes, so as to hide it when the process
information is enumerated in the application layer.

While the process could be found under KVM by the
proposed monitoring mechanism as shown in Fig. 12.

Due to the method did not rely on traversing process
chain to get process information, but locating process con-
trol blocks directly from VM physical memory by using

29168 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

FIGURE 12. The retrieved process lists through KVM.

the unique characteristics of process blocks, so that hidden
processes can be detected. Moreover, the method makes the
by-pass means that take use of hooks to filter and forge
OS data for deception of upper applications no longer valid,
thus ensuring the acquisition of real information.

2) PERFORMANCE ANALYSIS
VMmemory online monitoring service was a cyclical behav-
ior, thus, by repeating a benchmark test procedure during
the monitoring cycle, the average consumed time could be
considered as the performance cost during a monitoring
cycle. Table 6 gives the performance cost statistics of per-
forming memory analysis, by using fingerprint features of
EPROCESS within a monitoring cycle.

TABLE 6. The performance cost statistics.

The experimental results showed that the average perfor-
mance cost caused by VM memory analysis was only 0.29s
within a monitoring cycle. The performance cost would not
affect the quality of tenant’s services.

Furthermore, the method did not need to deploy any mon-
itoring components within the VM, which had a higher secu-
rity capacity than the methods employing monitor probes
placed in VM OS. Besides, the security monitoring service
runs in monitoring VMs, whose service capacities can be
easily expanded by virtualization technologies.

C. VM FILE ANTIVIRUS
We implemented our prototype system on KVM with
qcow2 image format, took windows 7 as guest VM with
NTFS file system adopted, and took ClamAV as the antivirus
engine. Fig. 13 shows the scanning results of a guest virus
sample file, which was reconstructed by HyperAV Backend.

FIGURE 13. Scanning for virus by HyperAV backend.

Fig. 14 shows the effect of sector isolation for a file named
‘ClamAVSample.txt’.

FIGURE 14. Sector isolation test for VM files.

When a file was performed sector isolation, due to the
sectors of that file wasmarked as non-readable inside QEMU,
zero values instead of the real data were returned to guest for
a non-readable file.

Besides, Table 7 shows the performance overhead brought
by HyperAV to monitor the sector change information of
guest insideQEMU,which only affects thewriting operations
of guest. For each line inside the table, the performance loss
value is calculated by (normal − HyperAV)/normal, and
the result showed that the performance loss was about less
than 1%.

TABLE 7. Comparison of performance test for IO write.

Table 8 shows the time cost of HyperAV, MD5 computing
and the time spent by ClamAV on scanning files. HyperAV
Backend reconstructed the sector contents as a complete file
to make ClamAV and MD5 computing work. For HyperAV,
reading file contents was passed and the time was mainly

VOLUME 6, 2018 29169

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

FIGURE 15. A more comprehensive security protection framework for a virtualized IaaS environment.

TABLE 8. Time cost comparison of general methods taken by antivirus
software (time: 10us).

spent on querying the status of these sectors. It is obvious
that MD5 computing can save much time compared with
a real scanning process compared with ClamAV, and time
spent by HyperAV is 10 times average less than computing
a MD5 value.

V. CONCLUSION
In this paper, typical security requirements and corresponding
solutions were given in IaaS environment were studied.

Firstly, using the principle of defense-in-depth strategy and
security as a service, a layered safety protection framework
for VMs was proposed to eliminate partial security risks,
which contained communication access control, network
anomaly detection, memory monitoring and files antivirus
for VM. The framework employed three different layers
and various security strategies to construct, which contained
Tenant domain perimeter security, VM perimeter security
and VM OS internal security. The capacities of managing
VM communication and detecting network abnormal behav-
iors were provided in the layers of tenant domain perimeter
and VM perimeter. In addition, the capacities of memory
monitoring and file antivirus for VMs was provided in the
layer of VMOS internal security. The framework was helpful
to satisfy partial security requirements of tenant business
dynamically.

Secondly, network security services were discussed, which
contained services of communication access control and net-
work anomaly detection. For the former, the essential factors
of the tenant network domain were abstracted and a tenant
domain model was constructed. The results showed that by
employing the security domain model to construct network

29170 VOLUME 6, 2018

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

architecture, the tenant network domain or sub-domain envi-
ronment could be built with consuming little management
cost and computing resource, which eliminated configura-
tion requirements for physical networks or physical firewalls
effectively when network segmentation was performed and
have the prosperity of defense-in-depth according to the busi-
ness isolation and security requirements, and the security iso-
lation of different business networks could be ensured. For the
latter, the anomaly detection method was proposed according
to the degree of network traffic behavior deviating from the
normal profile, the results showed that by employing the
method, higher accuracy and lower false alarm were achieved
than the method based on misuse detection, and the abnormal
behaviors of SYN DoS and port scanning in the VM network
could be detected quickly and effectively by means of traffic
structure stability characteristics. Moreover, considering with
new features of IaaS environment VM traffic, a dynamic
access method of anomaly detection service based on SDN
was realized. By employing the service access method, the
network attack behavior could be detected to ensure the tenant
VM security effectively, and without any negative effect on
the existing business VM due to an agentless mode.

Thirdly, the problem of VMmemory information monitor-
ing in the cloud environment was studied, a VM monitoring
method was proposed by online analyzing VM memory in
the virtualization layer. The state information of the running
virtual machine including active processes details and load-
ing drivers details could be gained transparently. The results
showed that the flexible and extensible capacity of VM state
monitoring service could be provided at lower performance
cost. Due to the monitoring agent was not needed in the
VM and without any modifying to VM operating system,
the security and portability of the method were enhanced.
Furthermore, the monitoring VM could provide elastic mon-
itoring capabilities by use of virtualization technologies.
In addition, based on the monitoring data retrieved by the
monitoring service, users could perform data analysis through
other 3-party services, to judge whether the key business
process code and data in a particular business VM are nor-
mal or not.

Finally, to solve the performance overload and resource
consumption brought by antivirus software during virus
scanning and virus database updating, a framework named
HyperAV based on virtualization was proposed. HyperAV
was able to provide antivirus capability for VM files with low
performance overhead, and a mechanism of access control
and isolation at the granularity of sector level was also pre-
sented. HyperAV optimized the process of virus scanning by
monitoring the sector change information of a runningVMon
virtualization platform, which had a significant acceleration
effect on the virus scanning process of VMs. The results
showed that HyperAVwas able to provide antivirus capability
with low performance overload for VMs based on virtual-
ization technologies, and did not need to deploy and update
antivirus engines in every VM. Compared with traditional
antivirus engines and other researches for cloud antivirus,

HyperAV provided a more lightweight client agent, which
reduced the process of reading file contents by computing
UID values and thus the antivirus process was accelerated
significantly. Meanwhile, the access control mechanism pro-
vided by HyperAV at the granularity of sector level was able
to isolate virus files and protect user files effectively.

Based on the above research and practice of the frame-
work and various security strategies, the framework was
helpful to satisfy partial security requirements of tenant busi-
ness in virtualized IaaS environment dynamically. Never-
theless, to ensure the security of IaaS platform based on
shared responsibility model is a complex issue, besides the
framework and various supporting securities discussed in
this paper, other security measures should be further con-
sideration and improvement such as identity authentication
and authorization, communication encryption, partition and
isolation of virtual storage resources, etc. A more compre-
hensive security protection framework for a virtualized IaaS
environment as shown in Fig. 15 will be researched in future
work.

REFERENCES
[1] G. Brunette and R. Mogull, ‘‘Security guidance for critical areas of focus

in cloud computing v4.0,’’ Cloud Secur. Alliance, Toronto, ON, Canada,
Tech. Rep. Guidance v4.0, 2017, pp. 1–152.

[2] SecaaS Implementation Guidance, Cloud Secur. Alliance, Toronto, ON,
Canada, 2012, pp. 1–333.

[3] R. Chandramouli, Security Recommendations for Hypervisor Deployment
on Servers, NIST Special Publication, document 800-125A, Oct. 2015.

[4] R. Chandramouli, Secure Virtual Network Configuration for Virtual
Machine (VM) Protection, NIST Special Publication, document 800-125B,
Oct. 2015.

[5] L. Chen, X. S. Chen, J. F. Jiang, X. Y. Yin, and G. L. Shao, ‘‘Research
and practice of dynamic network security architecture for IaaS platforms,’’
Tsinghua Sci. Technol., vol. 19, no. 5, pp. 496–507, Oct. 2014.

[6] B.-L. Cheng, H.-B. Zhou, and L.-H. Zhong, ‘‘Intrusion detection system
based on anomaly and misuse,’’ Comput. Eng. Des., vol. 14, p. 019,
Jul. 2007.

[7] G.-F. Xiang, H. Jin, and D.-Q. Zou, ‘‘Virtualization-based security moni-
toring,’’ J. Softw., vol. 23, no. 8, pp. 2173–2187, 2012.

[8] B. H. Li, K. F. Xu, P. Zhang, L. Guo, Y. Hu, and B. X. Fang, ‘‘Research
and application progress of virtual machine introspection technology,’’ J.
Softw., vol. 27, no. 6, pp. 1384–1401, Jun. 2016.

[9] McAfee, Santa Clara, CA, USA. (Apr. 2014.) McAfee Management
for Optimized Virtual Environments AntiVirus. [Online]. Available:
https://www.mcafee.com/cn/resources/data-sheets/ds-move-anti-virus.pdf

[10] J. Oberheide, E. Cooke, and F. Jahanian, ‘‘Rethinking antivirus: Executable
analysis in the network cloud,’’ in Proc. 2nd USENIXWorkshop Hot Topics
Secur., 2007, Art. no. 5.

[11] J. Oberheide, E. Cooke, and F. Jahanian, ‘‘CloudAV: N-version antivirus
in the network cloud,’’ in Proc. USENIX Secur. Symp., 2008, pp. 91–106.

[12] X. Du, Y.-J. Yang, and D.-X. Chang, ‘‘Network traffic supervision system
based on feature distribution analysis,’’ Comput. Eng., vol. 6, p. 042,
Jun. 2009.

[13] Z. M. Wang, ‘‘DDoS attack detection based on the stastical analysis,’’
M.S. thesis, Dept. Comput., Yanshan Univ., Qinhuangdao, China, 2012.

[14] F.-L. Zhang et al., ‘‘Prediction of network traffic based on traffic charac-
teristic,’’ Comput. Sci., vol. 41, no. 4, pp. 86–89, 2014.

[15] Q. Y. Zhu, ‘‘Research on prediction model of network traffic,’’ M.S. thesis,
Dept. Comput., Xinjiang Univ., Urumchi, China, 2014.

[16] X. M. Shao, ‘‘Research on campus network traffic measurement and
performance optimization,’’ M.S. thesis, Dept. Comput., HFUT, Hefei,
China, 2014.

[17] G. L. Shao et al., ‘‘Profiling structure-stability-based server traffic: Behav-
ior models and system,’’ J. Univ. Electron. Sci. Technol. China, vol. 1,
p. 016, Jan. 2017.

VOLUME 6, 2018 29171

X. Yin et al.: Research of Security as a Service for VMs in IaaS Platform

[18] P. Q. Sun, ‘‘Correct selection of statistical criterion to eliminate outliers,’’
Meas. Techn., vol. 2013, no. 11, pp. 71–73, Nov. 2013.

[19] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, ‘‘Robust signa-
tures for kernel data structures,’’ in Proc. ACM Conf. Comput. Commun.
Secur., 2009, pp. 566–577.

[20] I. Korkin and I. Nesterov, ‘‘Applying memory forensics to rootkit
detection,’’ in Proc. ADFSL Conf. Digit. Forensics, Secur. Law, 2014,
pp. 115–141.

[21] A. Schuster, ‘‘Searching for processes and threads in microsoft windows
memory dumps,’’ Digit. Invest., vol. 3, pp. 10–16, Sep. 2006.

[22] J. T. Sylve, V. Marziale, and G. G. Richard, ‘‘Pool tag quick scanning
for windows memory analysis,’’ Digit. Invest., vol. 16, pp. S25–S32,
Mar. 2016.

[23] J. Okolica and G. L. Peterson, ‘‘Extracting the windows clipboard from
physical memory,’’ Digit. Invest., vol. 16, pp. S118–S124, Aug. 2011.

[24] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, ‘‘SigGraph: Brute
force scanning of kernel data structure instances using graph-based
signatures,’’ presented at the NDSS, 2011. [Online]. Available:
https://www.researchgate.net/publication/221655382_SigGraph_Brute_
Force_Scanning_of_Kernel_Data_Structure_Instances_Using_Graph-
based_Signatures

XUEYUAN YIN was born in Yunnan, China,
in 1988. He received the B.S. degree in computer
science and technology from Sichuan University,
Chengdu, China, in 2008, where he is currently
pursuing the Ph.D. degree. Hismain research inter-
ests include cloud computing, network protocol
analysis, and network security.

XINGSHU CHEN was born in 1968. She is
currently a Ph.D. Professor and a Ph.D. Super-
visor. Her research interests include cloud com-
puting, cloud security, distributed file system, big
data processing, network protocol analysis, and
new media supervision. She is a member of the
China Information Security Standardization Tech-
nical Committee.

LIN CHEN was born in Yibin, China, in 1983.
He received the Ph.D. degree in computer sci-
ence and technology from Sichuan University,
Chengdu, Sichuan, China. His research interests
include cloud computing, infrastructure as a ser-
vice architecture, network security, and software
defined networking.

GUOLIN SHAO was born in Jiangxi, China,
in 1991. He is currently pursuing the Ph.D. degree
with Sichuan University, Chengdu, China. His
main research interests include network protocol
analysis and network security.

HUI LI was born in Chongqing, China, in 1989. He
received the M.S. degree in computer science and
technology from Sichuan University, Chengdu,
China. His research interests include cloud com-
puting, virtualization technology, and security.

SHUSONG TAO was born in Xingyang, Henan,
China, in 1989. He received the M.S. degree in
computer science and technology from Sichuan
University, Chengdu, China. His research interests
include cloud computing, virtualization technol-
ogy, and security.

29172 VOLUME 6, 2018

	INTRODUCTION
	THE SECURITY SERVICES FRAMEWORK
	THE SECURITY SERVICE IMPLEMENTATIONS
	VM NETWORK SECURITY SERVICES
	COMMUNICATION ACCESS CONTROL
	 NETWORK ANOMALY DETECTION

	VM MEMORY MONITORING SERVICE
	VM ANTIVIRUS SERVICE

	EXPERIMENTAL CAMPAIGN
	NETWORK SECURITY SERIVCES
	VM COMMUNICATION ACCESS CONTROL
	NETWORK ANOMALY DETECTION

	VM MEMORY MONITORING
	OBTAIN THE PROCESS LIST
	PERFORMANCE ANALYSIS

	VM FILE ANTIVIRUS

	CONCLUSION
	REFERENCES
	Biographies
	XUEYUAN YIN
	XINGSHU CHEN
	LIN CHEN
	GUOLIN SHAO
	HUI LI
	SHUSONG TAO

