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ABSTRACT Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing
the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffer-
ing or ‘bufferbloat’ may produce unacceptable end-to-end delays. On the other hand, small buffers may
limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as
frame aggregation. We propose wireless queue management (WQM), a novel, practical, and lightweight
queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link
characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the
optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-
end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar
network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE.
WQM achieves seven times less latency compared to PIE, and two times compared to CoDel at the cost
of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of
a single flow to saturate the buffers.

INDEX TERMS Bufferbloat, IEEE 802.11, frame aggregation, A-MPDU, TCP.

I. INTRODUCTION
Overbuffering is becoming common in today’s data net-
works. While big buffers may potentially help in limiting
packet drops, they do not come for free. In fact, large buffer
sizes may result in high end-to-end latency. Overbuffer-
ing or ‘bufferbloat’ [1], [2] is responsible for long delays in
the Internet. These delays could be in the order of seconds.
As computer memory is becoming cheaper with time, more
people are suffering from performance degradation caused by
large buffers. The fallacy that ‘more is always better’ is what
made end-user equipment less efficient.

It is challenging to tackle bufferbloat in wireless networks.
One of the main reasons is the variable link capacity in such
a network. With the help of rate control mechanisms, the link
speed may be altered based on various parameters such as
the level of interference and the distance between the sender
and the receiver. Just to give an example, the variation in
link speed in WiFi networks could be large as two orders of
magnitude. Hence, static buffer sizes may result in a sever
degradation in network performance. Another reason is the
shared nature of the wireless medium which is true for all
kinds of wireless networks. As a result, nodes in the same net-
work are going to contend for wireless channel access. This
will cause the actual link capacity for each node to be less than

the physical capacity. Therefore, the amount of buffer in each
client must to be set according to the actual link rate. Finally,
wireless networks suffer from high variance in packet inter-
service rate because of the large number of corrupted and lost
packets that will get eventually retransmitted.

MAC-layer frame aggregation is one of the enhancements
made in IEEE 802.11n/ac standard specifications to improve
the performance of the wireless network. This feature enables
the wireless node to send multiple frames at the same time.
In fact, the exact scheduler logic is not specified in the stan-
dard specifications and hence each vendor might implement
it in a different way. Transmitting full length aggregates may
maximize the throughput, however, it increases the delay
since the sender needs to wait for the assembly of all sub-
frames from higher layers. One way to reduce this delay is
by transmitting whatever frames available in the queue in
a timely manner. As a result, the length of the aggregates
is going to vary over time. This variability in aggregate
length poses a new challenge to accurately estimate the queue
draining time based on the current transmission rate. Other
enhancements in IEEE 802.11n, such as channel bonding and
Multiple-Input and Multiple-Output (MIMO) streams, allow
Wi-Fi radios to operate at link rates as high as 600 Mb/s.
Thus, there is a huge variation in the queue draining time
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between the highest and lowest possible rates. For example,
assume a single sender and receiver, both configured with the
default Linux buffer size of 1000 packets. The 600 Mb/s link
needs only 20 ms to drain the buffer; however, this buffer
drain time is two orders of magnitude higher when using the
6.5 Mb/s link.

In this paper, we propose Wireless Queue Manage-
ment (WQM)which is a solution to bufferbloat in the wireless
domain. WQM is an aggregation aware buffer management
tool for dynamic buffer allocation in WiFi based networks.
WQM smartly distinguishes between ‘useful’ and ‘disrup-
tive’ buffers. Useful buffers are the ones used to absorb
bursty traffic. On the other hand, disruptive buffers are going
to increase the end-to-end latency without enhancing the
throughput. WQM is considered practical for several rea-
sons. First, it uses a passive measurement technique. Hence,
WQM does not impose additional overhead for measure-
ments collection. Second, WQM uses the actual link trans-
mission rate to calculate the buffer drain time. Based on
that, it adjusts the buffer size in order to reduce queueing
delays while allowing enough buffers to saturate the network.
Finally, WQM accounts for frame aggregation when estimat-
ing the queue draining time. We implemented and evaluated
WQM in a Linux testbed and found that it manages to reduce
the latency by an order of magnitude compared to the de facto
buffer sizing scheme in recent Linux kernels. Furthermore,
WQM reduces the queuing delay by up to 7×when compared
to other bufferbloat solutions at the cost of less than 8% drop
in goodput.

We believe that this is the first work that attempts to
tackle bufferbloat in 802.11n/ac networks. When WQM is
compared to other mechanisms in the literature, it is consid-
ered more practical as it does not involve time-stamping the
packets at their arrival to the queue. Another unique feature of
WQM is the fact that it accounts for frame aggregation when
calculating the best queue size.

II. PRELIMINARIES
In this section, we provide some related background material
that we see essential for introducing WQM.

A. FRAME AGGREGATION
Several new enhancements are introduced in the IEEE
802.11n/ac standard specifications to improve wireless net-
work utilization, including frame aggregation which simply
means sending multiple frames back-to-back. Each of these
frames is going to have it’s own MAC header and Frame
Check Sequence (FCS) trailer. This big frame is calledAggre-
gate MAC Protocol Data Unit (A-MPDU). A-MPDU size is
limited to 64KBwhich is bound by the HT-SIG headers. Each
A-MPDU is able to transfer upto 64 subframes (limited by
the Block Ack (BA) frame). In fact, IEEE 802.11ac devices
can send A-MPDUs as big as 1MB. Hence, using static
small buffers is infeasible as it may limit the overall network
capacity. To solve this issue, WQM forces the buffer size
to be at least equal to the maximum number of subframes

per aggregate. One major difference between the aggregation
scheme in IEEE 802.11n and IEEE 802.11ac is the fact that
the latter always sends frames as aggregates even if the sender
has only a single frame to send.

B. ACTIVE QUEUE MANAGEMENT
The main goal of Active Queue Management (AQM) tech-
niques is to make sure that there are no large queues at
intermediary network hosts. They are able to achieve this goal
using proactive and probabilistic packet dropping. In fact,
these algorithms are not widely used in practice because it
is very difficult to set the configuration parameter knobs for
them effectively. In 2012, a no-knobs AQM technique called
CoDel [3] was proposed. Unlike traditional AQM techniques,
CoDel does not monitor buffer size or queue occupancy
directly. Instead, it keeps track of the minimum queue length
for a period that is longer than the nominal Round Trip
Time (RTT). This is important because the algorithm does
not allow packet dropping if the buffer has less than one
Maximum Transmission Unit (MTU) bytes. Additionally,
CoDel keeps track of the packet sojourn time instead of
measuring the buffer size. Hence, it has clear reflection of
user experience. Once the latency exceeds the threshold for
some predefined period of time, the algorithm enters the
dropping phase. It will exit this phase only if the latency goes
below the threshold.

Similarly, researchers from Cisco proposed another
no-knobs AQM variant, called PIE (Proportional Integral
controller Enhanced) [4]. PIE determines the level of network
congestion based on latency moving trends. Upon packet
arrival, the packet may be dropped according to a drop-
ping probability. This dropping probability is calculated on
a periodic basis based on the dequeue rate and the length
of the queue. Both PIE and CoDel targets queuing delay
directly without necessarily restricting the buffer size. How-
ever, unlike CoDel, PIE does not keep track of the per packet
timestamp. Moreover, it decides whether or not to drop a
packet before actually queuing it.

While neither CoDel nor PIE are specifically designed for
wireless networks, simulation results shows that they manage
to respond to changes in link rates while achieving a utiliza-
tion similar to the traditional tail drop approach [3], [4]. This,
however, may not be enough to support fast mobility in wire-
less devices (e.g., vehicular speed mobility). Furthermore,
it is unclear how AQM based techniques can be effectively
used in multi-hop wireless networks where the bottleneck
spans multiple distributed nodes [5]. Finally, both of these
schemes never consider frame aggregation in the buffer sizing
decision.

C. RATE CONTROL ALGORITHM
Wired link rates are constant and often known apriori. In con-
trast, link rate adaptation algorithms dynamically set the
wireless link rate in response to changing network conditions.
Depending on the link rate adaptation algorithm, these link
rates may vary on time scales ranging from milliseconds
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to minutes. This has implications on the network Bandwidth
Delay Product (BDP) and the resulting queue size required
for saturating the link. The de facto rate control mechanism
in recent Linux kernels is called Minstrel [6]. Minstrel uses
active measurements in order to choose the optimal link rate.
Simply, it transmits packets periodically using static link
rates and then chooses the best rate based on the packet
transmission success rate.

III. MOTIVATION
In this section, we motivate the idea of adaptive buffer sizing
using testbed experimental analysis. We first analyze the
performance of the default buffering scheme in Linux. After
that, we discuss why static buffering is not a feasible option
for WiFi networks. Finally, we show the effect of frame
aggregation on the buffer sizing problem.

A. HOW BAD IS THE LATENCY IN TODAY’S NETWORKS?
To highlight the impact of large buffers on network perfor-
mance, we transfer a large file between two wireless hosts
in our testbed while fixing the wireless link capacity. Using
static link rates help in understanding the effect of various link
rates on network dynamics. Our testbed uses Atheros IEEE
802.11n wireless cards on Linux machines with ath9k [7]
drivers. By default, the size of Linux transmit queue, txqueue,
on recent Linux kernels is 1000 packets. We use a radio
channel that does not interfere with our campus produc-
tion network. The detailed experimental setup is listed in
Section V. Fig. 1 shows the sender TCP congestion window,
RTT, and egress buffer occupancy using the 6.5 Mb/s link
rate. As window scaling is enabled by default in our testbed,
TCP congestion window reaches the limit of 1.6 million bytes
before experiencing a packet loss. We observe that this single
file transfer is able to saturate such a large buffer which
results in long queueing delays, with RTT values exceeding
2 seconds. It is worth noting that queue occupancy never
drops to zero although the TCP congestion control algorithm
(CUBIC by default) halves the congestion window in reaction
to buffer over flow multiple times during the experiment.

FIGURE 1. TCP congestion window, RTT, and egress queue utilization with
a one-hop TCP flow in our testbed with 6.5 Mb/s link rate. Buffer size
correspond to values in the stock Linux kernel.

This is a clear example of bad buffers that does not increase
the network utilization and only contributes to network
latency.

B. HOW DOES FRAME AGGREGATION AFFECT THE
BUFFER SIZING DECISION?
A-MPDU aggregation logic is not specified in the standard
and is implementation dependant. In fact, there is a trade-off
between using the channel resources efficiently and lowering
the latency. By using large aggregation frames whenever
the quality of the channel is good, we can maximize the
channel utilization. On the other hand, one way to minimize
the queueing delays is process packets whenever they are
ready. A very basic packet scheduler will wait for a full
length A-MPDU frame to be assembled before transmitting
it which can potentially lead to a very high throughput,
but will deteriorate the delay performance. When digging
deep in the device driver code, we find that the ath9k [7]
scheduler aggregates as many MPDUs as available at that
time in the buffer subject to the regulatory and receiver
constraints instead of waiting to assemble maximal allow-
able A-MPDU aggregates which may maximize throughput.
To understand the relation between buffer sizing and the level
of frame aggregation, we repeat the previous TCP file transfer
experiment at multiple link rates and txqueue buffer sizes.
We report the mean aggregate length for various buffer sizes
and link rates in Fig. 2. It is clear from this figure that bigger
buffers allow the formation of longer aggregates especially
with fast links. This is another evidence that fixing the buffer
size to a small value is not always the best thing to do in order
to reduce latency. This figure also shows that the link rate
directly determines the level of A-MPDU aggregation. Error
bars in the figure, which represent maximum and minimum
aggregate length, show that the aggregate length varies even
with fixed link rates. The only exception is with the 6.5 Mb/s
link as transmitting more than one subframe per A-MPDU
using the 6.5 Mb/s link is not feasible due to the violation

FIGURE 2. Average A-MPDU length of a TCP large file transfer for various
link rates and buffer sizes.
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of the 4 ms regulatory frame transmission requirement in the
5 GHz band used in our experiments.

IV. APPROACH
In this section, we describe WQM operation and show how
we select various WQM parameters.

A. WQM OPERATION
WQM algorithm is described in Algorithm. 1. Clearly,
WQM operation pass through two stages. The first stage is
called the initial stage and the second stage is called the
adjustment stage.WQM is going to calculate the initial buffer
size In the initial stage based on a variation of the buffer
sizing rule of tuhmb (BDP [8]). In BDP, the buffer should
be at least equal to the product of the bandwidth of the
bottleneck link with the round trip delay. However, this rule
was initially designed for wired networks, and cannot be used
directly in Wi-Fi based networks as it does not account for
A-MPDU frame aggregation. For example, it is obvious that
the transmission time, and hence RTT, for a single frame
is less than that of a single A-MPDU. In fact, obtaining
the end-to-end delay is not always straight forward. This is
why WQM uses only the single-hop RTT to initialize the
buffer. Then, it starts adapting the buffer size according to the
actual RTT. This mechanism minimizes the queuing delay
and maximizes utilization without sacrificing latency for
long-running traffic. Hence, the initial buffer could be cal-
culated as:

Binitial = R ∗ ARTT (1)

where Binitial is the buffer size that is initially assigned,
R is the Tx rate, and ARTT is the round-trip time for a single
A-MPDU aggregate as illustrated in Fig. 3. ARTT can be
calculated using the equations in Sect. IV-B.

FIGURE 3. IEEE 802.11n MAC overhead per A-MPDU transmission.

After assigning the initial buffer size, WQM will start the
adjustment phase, where the size of the buffer is adjusted
to be synchronized with the load of the network. Periodi-
cally, WQM calculates the queuing delay using the following
formula:

Tdrain =
(BL/R)
F

(2)

where Tdrain is the duration of time needed to empty the
buffer, BL is the amount of backlog in the queue, and F is

Algorithm 1 WQM Algorithm
1: Fix limit to the acceptable latency
2: Find the initial buffer size Binitial using the Transmission

rate (R) and an A-MPDU RTT (ARTT ):
3: Binitial = ARTT ∗ R
4: for measurement interval do
5: Find the buffer draining time Tdrain using the number

of bits in the buffer (BL) and the duration the channel
is found to be free (F)

6: Tdrain =
BL/R
F

7: Tune the buffer size B if the network is bloated
8: if Tdrain > limit and B > Bmin then
9: if alarmhigh is ON then
10: B = max(dB/2e ,Bmin)
11: else
12: set alarmhigh to ON and alarmlow to OFF
13: end if
14: else if Tdrain < limit and B < Bmax then
15: if alarmlow is ON then
16: B = B+ 1
17: else
18: set alarmlow to ON and alarmhigh to OFF
19: end if
20: end if
21: end for

the period where the channel is found to be free, i.e., channel
is not busy. WQM divides Tdrain by F to account for other
users who might be using the wireless channel. To illustrate,
if three stations are simultaneously contending for the chan-
nel, each of them will roughly get 1/3 of the time to transmit.
Hence, the time to drain the queue is approximately 3× higher
compared to the case where only a single node is transmitting.

If Tdrain exceeds limit for measurement intervals, then this
means that the network is suffering from bufferbloat. As a
result, WQM decreases the buffer size and hence limits the
latency. On the other hand, if Tdrain is lower than limit for
measurement intervals, then WQM will increase the buffer
size. To account for temporary bursty traffic, WQM observes
the network measurements for two consecutive cycles before
taking an action. This corrective action cannot adjust the
buffer size beyond the acceptable limits, (i.e., Bmax > B >
Bmin as described in Sec. IV-B below).

Finally, we would like to note that a larger Binitial may be
needed in multi-hop networks in order to achieve the best
utilization. In reality, WQM starts with a sub-optimal buffer
size as it prefers low latency. As shown in our experimental
analysis (Sec. V), WQM handles both long-lived and short-
lived flows in an efficient manner.

B. WQM ANALYSIS
Now, it is the time to find the upper bound (Bmax) and the
lower bound (Bmin) of the buffer size. We are also going to
estimate the amount of tolerated latency (limit). To find an
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upper bound on the buffer size, Bmax , let us consider a single
stream WiFi network (IEEE 802.11n). Also, let us fix the
upper limit of the transmission rate to λ packets1/s. When the
TCP stream happen to be in the congestion avoidance phase,
the congestion window will grow uptoWmax . At this moment
in time, a packet is going to lost and the transmitter divides the
TCP congestion window by two. The transmitter will move
to the transmit phase again only after Wmax/2

λ
. The time to

drain the buffer is calculated as B/λ s. In order to maintain
full link utilization, the transmitter should always transmit at
least a single frame just before the buffer gets totally empty
(i.e., Wmax/2

λ
≤ B/λ), or

B ≥
Wmax

2
(3)

Ideally, the transmission rate of the sender (i.e., cwnd/ARTT )
should be at least λ in order to make sure that the link is fully
utilized. Hence, Wmax/2

ARTT ≥ λ, or,

Wmax

2
≥ ARTT · λ (4)

By combining (3) and (4), we get

B ≥ λ · ARTT (5)

As a result, Bmax is calculated using the BDP with the high-
est possible transmission rate and the estimated RTT. Basi-
cally, ARTT represents the transmission delay as propagation
delay is considered negligible in wireless networks. Fig. 3
illustrates how to estimate the MAC overhead of transmit-
ting a single A-MPDU over WiFI (IEEE 802.11n) network.
As shown in the figure, ARTT is nothing but the sum of the
transmission duration of the TCP segment Td−DATA and the
transmission duration of the TCP ACK Td−ACK . This could
be estimated using the following equations:

Td−DATA = TBO + TDIFS + 2 ∗ TPHY + TSIFS + TBACK
+K ∗ (TMAC + TDATA) (6)

Td−ACK = TBO + TDIFS + 2 ∗ TPHY + TSIFS + TBACK
+K/2 ∗ (TMAC + TTCP−ACK ) (7)

The system parameters are listed and described in Table 1.
TBO is the backoff interval in case the channel is found to
be busy. Based on both MAC contention window and slot
duration Tslot , the average backoff time is calculated as TBO =
(CWmin−1)∗Tslot/2. The shortest inter-frame space is TSIFS
and the distributed inter-frame space is TDIFS . TDATA and
TMAC are aggregate frame andMACheader transmission time
respectively. As defined by the standard specifications, just
one A-MPDU may have K TCP segments, each of which
has its own MAC header. In fact, these subframes can be
as big as 64kB. Also, the maximum number of subframes
per A-MPDU is 64. As a result,we add a transmission dura-
tion of K ∗ (TDATA + TMAC ) per A-MPDU. The TCP ACK
transmission time is TTCP−ACK whereas TBACK is the time to
transmit a MAC-level block ACK frame. Moreover, we can

1Packets are used for illustration purposes.

TABLE 1. System parameters of WiFi Network (IEEE 802.11n) [9].

assume that TCP delayed ACK is used, and hence only K/2
frames are acknowledged. TPHY is the transmission duration
of both PHY preamble and header.We need the biggest buffer
when the sender is transmitting with the highest possible Tx
rate, 600 Mb/s in our case, and all A-MPDU are equipped
with 64 subframes. The delay for transmitting an A-MPDU
in this condition and its block ACK (per the exchange shown
in Fig. 3) over a single hop is about 1.9 ms. According to (5),
the upper bound on the buffer size Bmax should be around
95 packets.Bminmust be set to themaximumA-MPDU length
allowed by the network. This is to avoid sending shorter
aggregates which in turn limits the network capacity.

Next, we will calculate a lower bound on the queueing
delay (limit). As shown earlier, the maximum allowable
aggregate length varies with the link transmission rate. For
example, a wireless channel that suffers from high interfer-
ence might going to use the lowest possible link transmission
rate (6.5 Mb/s for IEEE 802.11n radios). As per the ath9k [7]
aggregation implementation logic, A-MPDU aggregation is
disabled when transmitting at 6.5 Mb/s. As a result, limit
must be at least equal to the transmission time of one frame
using the lowest possible transmission rate. From (6) and (7),
limit must be at least equal to 2.5 ms. Although different
sessions may require different value of limit , we prefer to
fix the value of limit in order to enhance the practicality of
our algorithm. In fact, we test the value of limit = 2.5 ms
in our experiments over various scenarios and concluded that
2.5 ms results in huge reduction in latency while maintaining
the network throughput across a wide range of bandwidths,
RTTs, and traffic loads.

V. EXPERIMENTAL ANALYSIS
A. IMPLEMENTATION DETAILS
In Linux, as well as other modern operating systems, buffers
exist at multiple layers along the packet transmit path. The
last buffer in Linux buffering architecture is the device inter-
nal buffer. This buffer is composed of a ring of descriptors.
Each one of these descriptors points to the location of
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a single packet in main memory. Between the device internal
buffer and the IP stack, there exist another type of buffer
called the transmit queue (txqueue). Unlike the device buffer
that treats all packets equally, queueing disciplines (also
known as qdiscs) are used to schedule packets in the transmit
queue, providing a mean to treat packets differently. More-
over, the device buffer is sized by the number of descriptors
which are nothing but pointers. Hence, it is very difficult to
accurately estimate the time required to empty this buffer.
As a result, we decide to keep the default value of the device
buffer and tune txqueue length instead. By default, txqueue is
set to 1000 packets in current Linux distributions to support
networks with high BDP. This buffer should be made smaller
in slower networks to avoid high latency. WQM controls
the Transmit Queue length (txqueuelen) using the ifconfig
utility and gathers channel related information using the
iw utility.
WQM is implemented as a daemon running in Linux user

space. The source code is available at [10]. WQM passively
probes the channel to find out the healthiness of the wireless
channel. In fact, WQM is synchronized with the default rate
control algorithm in Linux that is called Minstrel [6], because
the link transmission rate is guaranteed to be fixed over this
interval. Periodically, WQM obtains important statistics such
as the link rate, the number of packets in the buffer, the aggre-
gate length, and the percentage of time the channel was busy
in the last look-around. In reality, this look-around interval is
found to be sufficient to collect meaningful samples without
wasting too many CPU cycles. Further, our experimental
analysis in Section V shows that this interval is sufficient to
respond quickly to changes in the environment.

As explained earlier, if WQM estimates the queueing delay
to be longer than the desired target, then it is going to
reduce the buffer size to lower latency. In reality, the buffer
size should be at least equal to the number of subframes in
an A-MPDU. Otherwise, the buffer will be limiting the net-
work utilization without improving latency. Alternatively,
if the time to drain the queue is less than the predefined target,
WQMcan safely increase the buffer size. Our implementation
of WQM increases the buffer size by one packet in response
to measurements outlined in Algorithm 1. When required by
the algorithm,WQMdecreases the buffer size by half to make
sure the network latency remains within the desired range.
Thus, WQM strictly prefers low latency over high goodput.
Fig. 4 illustrates this behavior by showing the variation of
buffer size over time. This Additive Increase Multiplicative
Decrease (AIMD) behavior of the algorithm is chosen as it
experimentally outperforms all other possible alternatives,
namely AIAD, MIAD, and MIMD in terms of end-to-end
delay as shown in Fig. 5. The experiment setup is detailed
in the following section.

WQM performance is compared to the default buffering
scheme in Linux, where the buffer size is fixed to 1000 pack-
ets, and two state of the art bufferbloat solution in the lit-
erature, namely CoDel [3] and PIE [4]. Both CoDel and
PIE are considered to be parameterless with auto-tuning

FIGURE 4. WQM buffer size adaptation in response to variation in queue
occupancy. This figure represents the AIMD behavior of WQM.

FIGURE 5. Comparing the round trip delay of various versions of
WQM algorithm.

functionality. Hence, we do not need to specify any additional
parameters for them.

B. EXPERIMENTAL SETUP
WQM is evaluated over a wireless testbed on our campus.
Our testbed consists of 10 Shuttle [11] computers equipped
with Intel Core 2 Duo processors and 1 GB of RAM. Each
computer has an IEEE 802.11n wireless network interface
card (TP-Link WDN4800/Atheros AR9380), which operates
in dual-band and supports upto 3-streams simultaneously,
supporting link rates upto 450 Mb/s. The testbed node loca-
tions are shown in Fig. 6. Unless otherwise stated, the nodes
are placed around 10 m apart from each other. We repeat the
experiments multiple times over various source and destina-
tion pairs across the testbed to offset any location-specific
behavior. We chooses to use the quite band (5 GHz U-NII
radio band) to avoid collisions with our university WiFi net-
work. We patch the recent stable Linux kernel (3.17.7) with
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FIGURE 6. The floor plan showing testbed node locations (identified by a radio icon).

web10g [12] to monitor various TCP statistics. The device
driver we use is ath9k [7] with Minstrel [6] as the rate control
algorithm. Also, we use TCP Cubic, the default TCP version
on our stock Linux. To simulate a large file transfer, we run
netperf [13] for 100 seconds.

C. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of WQM exper-
imentally. Our experiments could be classified into two main
groups based on the number of concurrent flows used in the
experiments, namely single flow scenarios and multi-flow
scenarios.

1) SINGLE FLOW SCENARIOS
In this set of experiments, we measure the goodput and
latency of a single long lived flow. We compare WQM
performance to two AQM based solutions as well as the
default static buffer size. We start by evaluating WQM over
scenarios with multiple hops. In this experiments, we simply
increase the number of hops between the sender and the
receiver gradually from one to three. Hence, packets are
queued multiple times before reaching their destinations. The
cumulative distribution function (CDF) of the latency over
various topologies and the corresponding average goodput
are shown in Fig. 7 and Fig. 8, respectively. We would like
to note that unless otherwise stated, all the results in this
section are averaged over at least three runs and the error bars
represent the minimum and maximum values. For various
scenarios, WQM manages to lower the round trip time by at
least 5× compared to both PIE and the static buffer sizing
scheme and 2× compared to CoDel. To give an example,
WQM manages to reduce the round trip time in the three
hops scenario from 261.3 ms using PIE to only 49.47 ms at
the cost of at most 5% in goodput reduction. We attribute the
ability of WQM to outperform other schemes in controlling
the queuing delay to the achieved level of frame aggregation.
Furthermore, it is clear that the required buffer size in wireless
networks is much lower than the buffer size limit in PIEwhich
is 1000 packets.

FIGURE 7. Single flow latency for various hop count. (a) One hop.
(b) Two hops. (c) Three hops.

FIGURE 8. Single flow goodput for various hop count.

In order to support backward compatibility, IEEE 802.11n
devices disable frame aggregation if the receiver is not capa-
ble of dealing with aggregates. To test this scenario, we repeat
the previous set of experiments after disabling A-MPDU
aggregation. For various hop counts, the RTT CDF and
average goodput are shown in Fig. 9 and 10 respectively.
Compared to the default case with 1000 packets buffer,WQM
achieves upto 7× reduction in latency while having similar
goodput. As expected, WQM performs as well as CoDel
and PIE in terms of delay and goodput when aggregation
is disabled. This set of experiments show that even if the
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FIGURE 9. Single flow latency for various hop count after disabling
A-MPDU frame aggregation. (a) One hop. (b) Two hops. (c) Three hops.

FIGURE 10. Single flow goodput for various hop count after disabling
A-MPDU frame aggregation.

Wi-Fi devices are not deployed in green field mode, i.e., the
network is not solely composed of IEEE 802.11n devices,
WQM can still maintain an acceptable network latency. It is
also worth noting that these experiments show that A-MPDU
frame aggregation helps reducing the latency from about 2 sec
to only 500 ms in the worst case. This is attributed to the
ability of the aggregation scheme to drain the buffer quickly.

To evaluate WQM under various channel conditions,
the same set of experiment are repeated three times while
varying the distance between the testbed nodes. We start with
the default distance in our testbedwhich is 10m, then increase
it to 20 m, and finally to 30 m. Delay and goodput results are
shown in Fig 11 and 12 respectively. As expected, nodes that
are far from each other suffer from longer delay compared to
closer nodes. In all the three cases,WQMoutperformsCoDel,
PIE and the static buffer sizing scheme in terms of latency.
This reduction comes with at most 7% drop in goodput.
It is important to highlight that the gap in goodput between
WQM and the other schemes shrinks as the distance between
the nodes gets longer. This happens because the rate control
algorithm, which is enabled by default in our testbed, reduces
the transmission rate when the transmitter and the receiver are
far from each other in order to increase the link reliability.
This in turn lowers the BDP i.e., the required buffer in the
network. As a result, the effect of WQM small buffer on
network utilization is going to be minimal in this case.

FIGURE 11. Single flow latency while varying testbed size. (a) 10m.
(b) 20m. (c) 30m.

FIGURE 12. Average goodput achieved while varying the distance
between nodes in the testbed.

Finally, we evaluate the performance of WQM using short
flows. In all previous experiments, long flows of 100 s are
used to simulate large file transfers that are able to saturate
the channel and fill the buffers. However, short flows are also
common in real life. To test this scenario we repeat the same
set of experiments while varying the flow duration from 5, 10,
to 15 s and observe the delay and goodput. To get accurate
results, every experiment is repeated around 10 times and
the average is reported. The round trip time CDF is shown
in Fig. 13 while the goodput CDF is shown in Fig. 14. It can
be observed that in all cases the delay is bounded to 150 ms
which is a direct implication of not building the buffers.
However, WQM is still achieving the best reduction in
RTT compared to all other schemes. This reduction comes
at the cost of at most 8% drop in goodput.

2) MULTI FLOW SCENARIOS
In this section, we evaluate the performance of WQM
while running multiple concurrent flows instead of only one
between the transmitter and the receiver. In the first set of
experiments, the number of concurrent flows is increased
from one to five flows. For every scenario, we measure the
RTT and goodput for WQM, CoDel, PIE as well as the
static buffering scheme. The RTT CDF for 1, 3, and 5 flows
are shown in Fig. 15 and the average per flow goodput for
the three cases are shown in Fig. 16. Our results show that
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FIGURE 13. Latency while varying the flow duration. (a) 5s.
(b) 10s. (c) 15s.

FIGURE 14. Average goodput achieved while varying the flow duration.

FIGURE 15. Latency of various concurrent flows over a single hop
topology. (a) One flow. (b) Three flows. (c) Five flows.

WQM lowers the latency by at least 5× for all scenarios when
compared to both PIE and the static buffering scheme. This
reduction in latency comes at the cost of at most 13% less
goodput. when compared to CoDel, WQM almost halves the
latency while preserving goodput. As highlighted in the liter-
ature [14], drop-tail buffering might cause severe throughput
unfairness between flows. When the number of flows is 3,
the JFI (Jains Fairness Index) value for the static buffering
scheme is 0.7, compared to 0.99 for WQM. The reason for
this anomaly is the large buffers used in the static buffer-
ing scheme which lead to severe unfairness between flows
as a single flow may fill up the buffer and starve others.
WQM avoids this problem by adaptively sizing the buffer.

FIGURE 16. Average goodput with multiple flows over a single hop
topology.

As mentioned earlier, frame aggregation might be disabled
in certain cases. To test the performance ofWQMunder these
scenarios, we repeat the previous set of experiments while
disabling A-MPDU aggregation. The latency comparison is
highlighted in Fig. 17 and the average per flow goodput
is demonstrated in Fig. 18. When compared to the default
static buffer size, WQM reduces the delay by around 7×
while getting similar goodput. WQM is performing as well as
both CoDel and PIE in this case. This is happening because

FIGURE 17. Latency of multiple concurrent flows over a single hop
topology without A-MPDU aggregation. (a) One flow. (b) Three
flows. (c) Five flows.

FIGURE 18. Average goodput with multiple flows over a single hop
topology without A-MPDU aggregation.
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WQM accounts for frame aggregation when selecting the
optimal buffer size. As illustrated in Sec. IV-B, the number
of sub-frames per aggregate, which is one packet in this case,
will be used as a lower bound to buffer size in WQM. In fact,
this one packet limit is what CoDel and PIE use in their
buffers. After all, this set of experiments show thatWQM still
performs as well as the state of the art even at border cases.

Last but not least, we evaluate WQM over both multi-
hop and multi-flow scenarios. In these set of experiments,
we organize the testbed nodes to be in a parking lot topology,
as illustrated in Fig. 19. In this topology, three flows traverse
the testbed such that the 1st flow travels upto one hop away
from the source, the 2nd flow travels upto two hops and the
3rd flow is the only one that reaches the third hop. We repeat
these experiments several times with and without activating
the rate control algorithm. When disabled, the link rates
in the testbed are manually fixed to one of the following
rate: 6.5, 13, 65 or 144.4 Mb/s. Latency per flow and the
aggregate goodput are displayed in Fig. 20. Similar to the
previous experiments, we average the results over at least
three runs. Error bars in the figure represent our maximum
and minimum results. When comparing WQM to the static
buffering methodology, we ind out that the former lowers the
latency by 8× for the single hop flow, 6× for the two hops
flow and more than 4× for the three hops flow. This latency
reduction does not come with a significant goodput reduc-
tion. This proofs that static large buffers are not mandatory
in wireless networks. similarly, WQM defeats CoDel in all
scenarios. For example, WQM halves latency when Minstrel
is enabled while improving goodput. Since aggregation is
disabled at 6.5 Mb/s link rate, PIE performance is close to
WQM performance. As the rate increases, the gap between
PIE and WQM gets bigger as longer aggregates are being
transmitted. In the worst case, PIE suffers from 7× more
latency compared to WQM.

FIGURE 19. Illustration of the parking lot topology used in our
experiments.

VI. RELATED WORK
Allocating the optimal buffer size in networks is an important
problem. For core Internet routers, the convention is to have
the buffer sized according to the BDP [8], where the buffer
need to be at least the product of the packet round trip
delay and the capacity of the bottleneck link across the route.
The main goal of this method is to keep the bottleneck link
fully utilized even when the TCP sender is operating in the

congestion avoidance phase. In the case of multiple flows
that are desynchronized, the needed buffer to achieve a full
link utilization is much less than the BDP [15] [16]. In fact,
this method cannot be applied directly to wireless networks
because in this type of networks the packet transmission delay
is linked with the available bandwidth [17]. To illustrate,
a wireless node must contend with other devices in the neigh-
borhood before getting a transmission opportunity which is
not the case in wires networks. Moreover, every sent frame
need to be acknowledged before proceeding to send a new
frame whereas a wired device can send multiple frames back
to back. It is well known that the transmission delay in wired
networks is negligible when compared to propagation delay.
On the other hand, what matters themost in wireless networks
is the time to push your frame into the channel. This coupling
between delay and bandwidth in wireless links makes the
buffer sizing problem more challenging.

Only few papers tackled the problem of buffer sizing in
the wireless domain. A* is an algorithm to fine tune the
Access Point (AP) buffer dynamically [18]. In order to find
the optimal buffer size, A* keeps an eye on packet service
rate. It alters the buffer size based on buffer occupancy. One
of the main limitations of A* is the fact it could not be
easily extended to support multi-hop scenarios (i.e., it can
deal only with AP buffer). Furthermore, A* adds a timestamp
for each and every packets coming from the network. This
is clearly an unnecessary overhead. Lastly, A* performance
evaluation was done using IEEE 802.11g radios only; and
hence this scheme might not be able to cope up with new
enhancements in the WiFi standard such as frame aggre-
gation. In fact, an experimental study evaluated A* over
various scenarios and proved that it performs sub-optimally
in practice [19]. Recently, Høiland-Jørgensen et al. [20] also
tackled bufferbloat in APs with the goal to reduce latency
and improve airtime fairness. Their proposal was built on
top of FQ-CoDel which is one of the queuing disciplines in
Linux.We believe that the mesh environment imposes further
challenges that are not addressed in this work.

DNB or Distributed Neighborhood Buffer [5] tried to solve
the problem of optimal buffer sizing in mesh networks. In this
scheme, the network wide buffer size is calculated and then
distributed among a set of competing nodes based on a
certain cost function with the goal of saturating the spec-
tral resources available. The authors concluded that sizing
buffers collectively in WMNs nodes lead to small buffers,
in the range of 1-3 packets. In fact, this approach suffer
from multiple limitations. First, it does not adapt to changes
in link capacities; instead, it assumes that links have static
rates and based on this assumption it finds optimal buffer
size for every mesh node in the network. Second, it is obvi-
ous that these extremely small buffers are going to limit
the level of frame aggregation and hence degrade network
utilization. Finally, the proposed scheme was optimized to be
used with single TCP flow. As a result, good performance
with multi flow scenarios is not guaranteed. Also for mobile
ad-hoc networks, Dousse [21] proposed the reduction of
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FIGURE 20. Goodput and latency per flow over the parking lot topology. (a) One hop flow. (b) Two hops flow. (c) Three hops flow. (d) Total goodput.

buffer size on relay nodes to only one packet to mitigate the
problem of low throughput inmulti-hop networks. Obviously,
this is infeasible for Wi-Fi networks with A-MPDU size of
tens of subframes.

Recently, several papers empirically evaluated the
bufferbloat phenomena in both wired and wireless net-
works [22]–[24]. In our previous work [25], we proposed an
initial attempt to solve bufferbloat in the wireless domain.
Our preliminary results showed a significant reduction in end-
to-end delay compared to static buffers. However, this work
lacks an extensive evaluation. For instance, the comparison
to the state of the art bufferbloat solution was not done.
Moreover, the performance of the scheme over networks
that do not support frame aggregation was not evaluated.
Furthermore, experimenting short flows was also lacking.
Finally, the selection of the detailed parameters that affect
the dynamics of the algorithm was not justified. Furthermore,
the problem of bufferbloat has been tackled in heterogeneous
networks [26] and cellular networks [27]–[29]. As an exam-

ple in the cellular domain, Jiang et al. proposed a scheme
called Dynamic Receive Window Adjustment (DRWA) [30]
that modifies the TCP stack instead of dealing with the buffer
size directly. DRWA limits the amount of buffering inside
the network by tuning the size of TCP receive window. Also
for cellular networks, Chan et al. proposed a scheme called
SoD or (Sum-of-Delay) [31] that estimates the optimal buffer
size in 3G/4G networks. The main idea is to modify TCP
congestion control to function based on estimated queue
length instead of packet loss events. Both of these schemes
have practical limitations because of the large deployed base
of TCP.

Warrier et al. [32] proposed a differential backlog con-
gestion control for wireless networks. The idea is to throttle
the flow control of the sender based on the queue back
pressure. Hence, if the queue grows beyond certain thresh-
old, the sender will be reducing its transmit rate and vice
versa. This is opposite to what WQM does. One limitation
of such approach is the need of the queue occupancy infor-
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mation from several hops in the multi-hop networks. Trans-
ferring this information over multiple hops is a considerable
overhead that will affect the practicality of the proposed
approach. Alternatively, WQM works with local knowledge
even for multihop networks. Recently, Byeon et al. [33] pro-
posed a scheme to adaptively change the aggregate size based
on nodes mobility patters. We envision that such scheme
would be complementary to WQM.

VII. CONCLUSION
Recent enhancements in IEEE 802.11n/ac standard specifi-
cations, such as A-MPDU frame aggregation, make it more
difficult to find the optimal buffer size in WiFi based net-
works. Large buffers may lead to long end-to-end delays in
the order of seconds. We are proposing a novel, practical,
and dynamic buffer management tool called WQM. It selects
the optimal buffer size based on several parameters such
as network congestion, channel interference intensity, and
the level of frame aggregation. WQM is evaluated using a
10 nodes wireless testbed. We prove through experiments
over various single-hop and multi-hop scenarios that WQM
is able to cut down the queuing delay by a factor of 8× when
compared to static buffer sizing. Further, WQM outperforms
other state of the art bufferbloat solutions such as CoDel and
PIE by a factor of 7× in terms of delay reduction. In the
worst case, this reduction comes at the cost of 8% drop in
goodput. Finally, we show that WQM improves flow fairness
by preventing a single flow from saturating the buffers.

As futurework, we are looking into several new challenges.
One of them is to evaluate WQM over various types of flows
across different topologies. Furthermore, we would like to
assess WQM using selective drop mechanisms. Also, it is
interesting to evaluate how does TCP pacing interacts with
frame aggregation in wireless networks. Moreover, we would
like to understand the consequences of introducing an adap-
tive look-around interval to WQM. Finally, we would also
like to test WQM using wireless devices with IEEE 802.11ac
compatible radios.
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