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ABSTRACT Indoor mapping is an essential element of indoor navigation systems. In this paper, we present
a graph optimization-based method for indoor map construction, which can be used in buildings without
prior knowledge. By using crowdsourcing data on mobile phone sensors, we can derive activity landmarks
where people perform different activities (turning, taking the elevator, taking the escalator, and walking
up/down the stairs). Our method uses graph optimization techniques to align crowdsourcing trajectories
by their intersecting landmarks. After trajectory alignment, this method applies a pose graph optimization
method to construct an indoor map. Finally, our method performs a transform from relative coordinates to an
absolute coordinate with reference points and reduces the redundant segments using dynamic time warping.
To evaluate the performance, we implement the proposed method in an office building and a shopping mall.
Experiment results show that 80th percentile error of the mapping accuracy is about 1.7–3.5 m. Moreover,
the proposed method can deal with the curved routes in a building and can also decrease the amount of
required data.

INDEX TERMS Indoor mapping, graph optimization, crowdsourcing, smartphone.

I. INTRODUCTION
Indoor map plays an important role in indoor naviga-
tion systems [1]. For example, an indoor map is needed
to show a user where he/she is, and to show where a
point of interest (POI) is. In some indoor localization sys-
tems, an indoor map is required to constrain the drift of
localization errors [2], [3]. Generally, to obtain the indoor
map of a building, the blueprint is needed that is then
converted into digital formats. However, blueprints are
generally inaccessible because they may belong to differ-
ent owners, who are often reluctant to share them with
the public. Moreover, a building’s internal structure usu-
ally changes over time, making the original map outdated.
Although it is possible to manually construct an indoor

map, it is very labor-intensive and time-consuming. There-
fore, indoor map construction and updating are normally
difficult.

To reduce the difficulty, many solutions for indoor map
construction have been proposed. Most approaches are based
on the principle of Simultaneous Localization and Map-
ping (SLAM). SLAM is a well-known technique in the
robotic domain which is usually used to solve the prob-
lem of locating a robot in an unknown environment while
simultaneously building the map [4]. Furthermore, crowd-
sourcing is often used for indoor map construction [5]–[9].
The crowdsourcing method has been successfully applied
to OpenStreetMap (OSM) for outdoor map construction,
which uses Global Positioning System (GPS) for localization.
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However, GPS is not operational indoors. Therefore,
indoor map construction must rely on other localization
methods.

In this paper, we propose a graph optimization-based
indoor map construction method via crowdsourcing. The
proposed method combines the ideas of SLAM and crowd-
sourcing, and uses SLAM techniques to fuse crowdsourced
trajectories collected by different users. The proposedmethod
is based on two observations. The first observation is that
the indoor map can be characterized using a link-node
model [8], [10] in which pathways are the links and the
intersections are the nodes. The link-node model is usually
adequate for indoor navigation because it provides a natural
framework for locating users and points of interest (POIs).
Moreover, the link-node model can also be used for indoor
map change detection. The second observation is that the
nodes of the link-node model are normally turns, elevators,
and stairs. When people pass the nodes, they usually take
different activities other than walking. These activities can be
detected by the smartphones [3], [11]. In addition, the same
node has similar context information, such as the WiFi
fingerprint.

In SLAM framework, loop closure is an important part
in back-end optimization. When mobile targets receive a
signal that a current location has been visited, the system
calibrates the measures in the previous locations, trying to
minimize the error generated by sensors. A typical method to
recognize loop position is using a bag of visual words [12].
However, such a visual method is not applicable when the
device is not equipped with a camera. In this paper, we use
the graph optimization technique to merge the crowdsourcing
trajectories. This is the main innovation of this study.

By activity detection, we can identify some specific activ-
ities, and mark their locations along trajectories as loop posi-
tions. As following, we implement a two-step optimization
based method to accomplish mapping task. The data is pre-
processed by activity detection techniques to extract loop
position points. Then, to align the trajectories with blind
initial position, a graph model is built to optimize the trans-
formations that changes the different relative coordinate sys-
tem into a uniform global system. Each node in this graph
represents a transforming matrix, which is used to transform
the trajectory coordinate from its own coordinate system
into a global coordinate system. Moreover, the edges of this
graph are the errors of the transformed results. The next
step is to optimize each of the position measurements to
construct a dense point map. By implementing the pose graph
optimization (PGO), the measures scattered in between the
activity-related positions converge near their corresponding
locations. PGO here is the problem of estimating a set of
poses from pairwise relative measures [13]. Another fur-
ther step of optimization can be done by using Dynamic
Time Warping algorithm [14], when the constructed map has
overlapping segments. This steps introduces some noise but
can compress the data efficiently, which is better for further
research.

The main contribution of this paper is to propose a graph
optimizationmethod to construct an indoormap, using pedes-
trian activities and context information instead of actual
blueprints or other construction information. The proposed
indoor mapping method can take advantage of the crowd-
sourcing data collected by the smartphones. The crowd-
sourcing mode significantly reduces the cost of indoor map
construction and updating.

The rest of this paper is organized as follows. Section II
reviews related studies. Section III introduces the indoor map
construction methodology. Section IV gives the experiments
result, and Section V is the conclusion.

II. RELATED WORK
Many researches have designed indoor mapping approaches
by using multi sensor data collected by smartphones. Based
on activities detection techniques, inertial sensed activi-
ties are used as the landmark for indoor map construc-
tion [15]–[17]. These activity landmark-based approaches
leverage special activities in indoor environments (such as
stairs, elevators, and corners) to reduce the accumulative error
of dead reckoning. iFrame uses grid map technique to fuse
inertial and radio frequency (RF) signals for indoor map
construction [18]. The status of the grid is determined by dead
reckoning, Bluetooth and WiFi detections.

Simultaneous Localization and Mapping systems allow
long-term mapping in unknown environments without
installing infrastructures or using a prior map [19], which is
usually used for indoor mapping. Many state-of-art SLAM
frameworks implement visual and laser-based odometry.
However, such methods require expensive equipment, or vio-
late privacy in some scenarios. Thus, using inexpensive and
non-visual sensors is a possible substitute. In [20], foot-
mounted Inertial Measurement Unit (IMU) and smartphone
are used to construct an ActionSLAM system coherently.
The idea is to use user activity such as sitting or standing
still, which indicate probable moving patterns, to mark a
location. After action landmarks are obtained, a SLAMmap-
ping method is applicable. Despite the advantage of accuracy,
foot-mounted IMU require specialized devices and testing
process. To apply in more generalized user cases, we consider
using only mobile phones and embedded sensors such as
gyroscope and magnetometer, to accomplish such a mapping
technique.

In visual or laser-based SLAM systems, mapping is done
through spatial correlations deduction between surroundings
and agents’ moving patterns. However, inexpensive sensors
normally are incapable of sensing surroundings. To esti-
mate trajectory from sensor data, Pedestrian Dead Reckoning
(PDR) algorithm can be applied to derive trajectories.

Because of the error introduced by phone sensors, the tra-
jectory data derived from sensor needs to be optimized to
gain better results. In [21], optimization is conducted using
both moving patterns of agents (specifically robots in this
study) and observable reference points. This method is usu-
ally referred to as bundle adjustment (BA), which now has
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become a state-of-art method in SLAM. As sensor data in
the proposed is obtained by the inertial sensors, observation
of surroundings would not be possible and BA would not be
applicable. Because of this reason, PGO model is required.
Pose graph here means a temporal sequence of agents’ poses
(including position and heading direction in 2D scenes) [13].
By using PDR, we can obtain some pose graphs. In this case,
pose graph refers to pedestrian step sequence derived by PDR.

Because pedestrian trajectories are inherently stochas-
tic [22], the optimization of the pose graph should be
non-linear. A typical non-linear optimization method is the
Extended Kalman Filter (EKF). Because EKF uses Tylor
Expansion for non-linear approximation, it would have opti-
mistic estimates failure [23]. Therefore, we can use graph
optimization for such a problem [24]. Graph optimization
uses a graph model to describe the optimization problem.
In such a graph, nodes represent the parameters, and edges
represent estimating errors. For our case, graph optimization
is specified as a PGO, which has no landmarks for reference.

Trajectories derived from pedestrian data is a group of
isolated, single-person behaviors. One single trajectory can-
not cover the whole scene, which makes crowdsourcing
method applicable. However, implementing crowdsourcing
has a problem, that is, trajectories are initialized blindly.
Gu et al. [25], [26] used Wi-Fi and iBeacons (Bluetooth)
for trajectory alignment. A particle filter is used to filter
trajectories derived from foot-mounted Inertial Measure-
ment Unit (IMU). In addition, a Gaussian Process regres-
sion model is used to adapt Wi-Fi and iBeacons’ Received
Signal Strength (RSS) acquired along the trajectories.
Zhou et al. [27] used a sequence ofWi-Fi signal alongmoving
patterns instead. However, thesemethods do notmake full use
of sensor data. Moreover, they are not applicable if no such
RF devices are installed or if signals are too weak.

Similarly, in Cooperative-SLAM [28], [29], such an ini-
tialization problem exists as well. Kim et al. designed
a new algorithm for cooperative mapping by integrating
multiple relative pose graph of robots [28]. When robots
encounter, or observe the same target, constraints derived
by the observation are added to the pose graph accordingly.
By optimizing the integrated graph, a global map can be
constructed. Another insight from this work is the anchor,
meaning the offset of the complete trajectory with respect to
a global coordinate frame.

In these previous indoor mapping methods, ALIMC [8]
is the most similar to this paper. In ALIMC, the map was
derived by a link-node mode using Multi-Dimensional Scal-
ing (MDS) techniques. MDS uses the straight-line distance
between two nodes for map construction. Therefore, ALIMC
can not solve the curves in the map.

III. METHODOLOGY
A. SYSTEM OVERVIEW
The overview of the proposed indoor map construction
method is shown in Fig. 1. The proposed indoor map

FIGURE 1. System overview.

construction method is based on the crowdsourcing data col-
lected by the built-in sensors of a smartphone. The crowd-
sourcing data includes motion data and WiFi fingerprint.
The motion data includes heading, angular velocity, and
acceleration. The WiFi fingerprint includes the MACs of
the surrounding Access Points (APs) and the corresponding
Received Signal Strength (RSS) values.

A methodology description is given as follows: Our
method is based on sensor data acquired from mobile devices
using crowdsourcing methods. These data are processed by
PDR algorithm and Activity Detection algorithms. After pro-
cessing, we obtain groups of trajectories, and some land-
marks scattered in these trajectories. The landmarks are
pedestrian position at specific infrastructures or locations,
such as elevators, stairs, turns. For simplicity, we denote
these landmarks as Loop Position Poses, abbreviated
as LPP.

The following are two steps of optimization: trajectory
alignment and PGO. Trajectory alignment step is to unify
the coordinate systems of different trajectories, because each
trajectory has a relative coordinate system. As one single LPP
might be detected in different trajectories, we may use such
an intersected relation of different trajectories to align all
measures derived from sensor data. After alignment, the tem-
porary map is very noisy. Next, we use all pose measurements
to apply PGO techniques. Eventually, we can automatically
construct a map in a global coordinate system that reflects
the ground truth. Intuitively speaking, in this method, we use
some back-end techniques of SLAM (simultaneous localiza-
tion and mapping) systems [19] to construct a dense point
map based on mobile sensor data.

Note that in the second optimization step, two constraints
are used, the inner constraints, which is the relative position
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relation of neighbor poses, and the outer constraints, which is
the intersected LPP of different trajectories.

B. CROWDSOURCING DATA PREPROCESSING
Crowdsourcing data preprocessing includes Loop Position
Pose detection and trajectory estimation. LPP is the land-
marks where pedestrians take special activities. For exam-
ple, in Fig. 2, there is a trajectory, the circle dots indicate
the LPP that can be detected. We use position information
related to these activities to generate LPP for optimization.
In an indoor environment, typical activities include turning,
taking the elevator, taking the escalator, walking the stairs,
and so on. Turning is a normal activity during the walking
process. When a pedestrian turns, the angle velocity changes,
and the gyroscope data can be used for turning detection.
Generally, an elevator use trace includes an overweight and
a weightlessness moment, which can be used for detecting
the activity of taking the elevator. Moreover, the feature of
air pressure can be also used for elevator detection, which
can be measured by the barometer. Similarly, air pressure
changes when a pedestrian takes the escalator. However,
there is no overweight or weightlessness moment when a
pedestrian takes the escalator. All these activities can be
detected based on the data collected by the built-in sensors
of a smartphone. Here we use the activity detection method
proposed in [3] to detect the activities. Trajectory estimation
is realized by PDR algorithm [30]. PDR derives a pedestrian’s
trajectory based on step detection and heading estimation
results.

FIGURE 2. LPP definition.

By activity detection, we obtain the LPPs in the trajectories
and the context information, namely the WiFi fingerprint.
Then, we obtain pairs of LPP by LPP clustering. A pair
of LPP refers to the index of an LPP in local trajectory
with index among clustered locations of the same LPP. The
clustering algorithm proposed in ALIMC [8] is used for LPP
clustering. The clustering algorithm is a two-step process:
first, the LPPs are roughly clustered based on the WiFi fin-
gerprint, and then the spatial information is used to improve
the clustering accuracy. For details of the LPP clustering
algorithm, please refer to reference [8]. After activity detec-
tion and LPPs clustering, we obtain the pairs of LPP in the
trajectories.

C. TRAJECTORY ALIGNMENT
In pedestrian trajectories, because of vacancy of actual
azimuth of the starting pose, coordinates of all measures
are in a non-consistent coordinate system. This leads to an
initialization problem as described in Fig. 3. Suppose we have
two trajectories, marked green and red, respectively. We can
see that the green one passed LPP A, B, and red one passed
LPP A, B, C , D in Fig. 3(a). Because crowdsourced data
might not have a well-calibrated compass data, the azimuth
of two trajectories is non-consistent. Besides, the starting
poses are both initialized at origin, which is not applicable
in an absolute coordinate system. Because of these two rea-
sons, the derived trajectories by smartphones would be like
in Fig. 3(b).

FIGURE 3. Trajectory alignment. (a) Actual trajectories; (b) Derived
trajectories by smartphones.

To calibrate these inconsistent measures of identical LPP in
different trajectories, a trajectory alignment step is required.
The transformmatrix for alignment is calculated based on the
intersected LPP of different trajectories. This matrix contains
both translation and rotation variables. Because of the random
noise, there is no unique solutions for such a matrix. There-
fore, we solved this problem in an optimization manner.

As stated above, trajectory alignment step is used to cal-
culate the optimized transform matrix that can align different
trajectories. Consider we have an LPP as Posk , which is a
2D coordinate. Relative coordinate of M in the trajectory i is
defined as:

Posik = (x ik , y
i
k )
T (1)

We can further denote Posik by LPP LPPil and non-LPP
NLPPin, and suppose we have two trajectories I , J , I has mi
poses, where li poses are LPP, J has mj poses, where lj poses
are LPP.

I = LPPi1, LPPi2, . . . ,LPP
i
li , NLPP

i
1, NLPP

i
2,

. . . ,NLPPini |li + ni = mi (2)

J = LPPj1, LPPj2, . . . ,LPP
j
lj , NLPP

j
1, NLPP

j
2,

. . . ,NLPPjnj |lj + nj = mj (3)

And we define I u J as:

I u J = LPPib1 , LPPib2 , . . . ,LPP
i
bp , LPP

j
d1
, LPPjd2 ,

. . . ,LPPjdp |1<b1, . . . , bp< li, 1<d1, . . . , dp< lj
(4)
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LPPibp and LPPjdp are coordinates close to an identical
unique location in trajectory I and J . We define them as
a pair of intersected LPP, similar to other pairs. bp and dp
are indexes of these two measures in each corresponding
trajectory data. Totally, I and J has p pairs of intersected
LPP. Here, the result I u J indicates relative coordinates of
all intersected LPPs in trajectory I and J . We use this special
symbol to indicate that these intersected poses are different
in the two trajectories’ relative coordinate system.

Suppose here we want to align a new trajectory I to an
already aligned trajectory J . Then we use two variables:

Xi = LPPib1 ,LPP
i
b2 , . . . ,LPP

i
bp

Xj = LPPjd1 ,LPP
j
d2
, . . . ,LPPjdp (5)

And a transform variable Tij = [Tx ,Ty, θ] is used to trans-
form trajectory I into the coordinate in J . To calculate the
transformed coordinates, it is better to use a matrix notation,
here we define an arbitrary function M (Tij) as:

M (Tij) =

cos θ − sin θ Tx
sin θ cos θ Ty
0 0 1

 (6)

To avoid problems of ambiguous initialization, we align
trajectories incrementally. In each iteration, a new trajectory
data is loaded into the program. The aligned trajectories
in previous iterations make up a map, which can also be
represented as a much longer trajectory. A transform Tj is
calculated to align the new trajectory to the fused map.

Note here if we want to multiply M (Tij) by Xi, we need to
extend Xi with a Vector of ones as:

Xi = ext(Xi) =
[
LPPib1 . . . LPPibp

1 . . . 1

]
(7)

As a supplement, we denote Xi = sub(Xi), which indicates
that Xi has one less row of ones than Xi. These definitions are
used to transform the variables to an addable expression.

The error and total error function in one iteration would be:

ej(Tj) = Xj − sub(M (Tj)) · Xi
F(T ) = eTj (Tj)�jej(Tj) (8)

Suppose we have K trajectories in total, then K − 1 iter-
ations is needed. �j is the information matrix. The target of
optimization is to find T that minimize this error function:

T ∗j = argminF(Tj) (9)

Our target is to use a standard non-linear optimization
method such as Gauss-Newton or Levenberg-Marquardt
(LM) [31]. Suppose we have an initial guess of Tj and an
incremental value4Tj. We may use the Taylor expansion and
express the solution as:

T ∗j = Tj +4Tj

ej(Tj +4Tj) = ej(Tj)+ Jij4T (10)

And the error function is expanded as:

F(T +4T ) = eTj (T +4T )�jej(T +4T )

= eTj (Tj)�jej(Tj)+ 2eTj (Tj)�jJij4T

+4T Tj J
T
ij Jij4T

= cj + 2bj4Tj +4T Tj Hj4Tj (11)

However, an arbitrary function M (Tij) is used here.
Referring to [32], we can directly use this arbitrary represen-
tation. In practice, we use the LM method to minimize the
error function. Then the linear equation is expressed as:

(Hj + λT )4Tj = −bj (12)

Here, λ is the damping factor that controls the step size of
minimizing the error.

To solve this linear problem, we should choose a proper
linear solver algorithm. G2o allow different linear solvers,
including Cholmod, CSparse, Eigen, PCG [33], and so on.

In this step, the transform matrix is the optimization ver-
tices, that is, the variable to be optimized. The edges, which
are constraints conditions, are defined as the differences of
intersected LPP’ relative coordinates in different trajectories.
The index is a list of sequence numbers assigned to LPP of
a unique location. The entries are references of each LPP in
different trajectories.

Because of the random characteristic of crowdsourcing
data, we do the optimization using incremental method.
When a new trajectory is added to a current map, a standalone
optimization graph is generated as one iteration.

D. POSE GRAPH OPTIMIZATION
After all the measures are aligned to global coordinates,
the next step is to perform the PGO for all trajectories,
to obtain a better estimate of all the poses. In this step, there
are two constraints to optimize the coordinates of poses.
Here we denote the two constraints as the inner-constraints
and outer-constraints. Inner-constraints are the differences of
coordinates of neighboring poses within one single trajectory.
Because the difference is a vector, the distance and heading
direction can be both optimized. Outer-constraints are sets
of landmarks observed in different trajectories. By using
graph optimization tools, we can add edges representing both
kinds of constraints together into the model. After the data is
processed, the output should be a set of fused pose graphs,
which reflect the road network in the testing location. This
map is not in a consistent coordinate system as the ground
truth. Therefore, we need to further align the map after PGO,
which is covered in the following section.

The inner-constraints here is normally referred to as the
odometry constraints. Odometry is a widely-used method for
determining the momentary position of robots [34]. It is an
essential module in visual-SLAM systems. To better illustrate
the problem, we use ‘‘odom’’ for notation in the following
equations.
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Using definition in Equ. 2 3, we may define the inner-
constraints of trajectory I as:

E iodom = [(Posi2 − Pos
i
1)
T
− (Posia+1 − Pos

i
a)
T ]T (13)

eodom(E i) = E iodom − E
i
odom (14)

Fodom(E) =
∑
i∈A

eodom(E i)T�ieodom(E i) (15)

Here, E iodom is the difference matrix, E iodom is the initial
guess, eodom(E i) is the error function of inner-constraints of
trajectory I , Fodom(E i) is the total error estimation function,
A is the total number of trajectories.
For the outer-constraints, we set them to be the differences

of the LPP coordinates close to a unique location in different
trajectories. This constraint can also be referred to as the
Loop constraint, which we use here for notation. Note here
the poses are already coarsely aligned after the previous step.
Using Equ. 5 and Equ. 4, we define the outer-constraints of
the LPP in trajectory I as:

eijloop = Xj − Xi (16)

eijloop is the distance matrix of intersected LPP between tra-

jectory I and J . The constraints are all empirically set as eijloop
to zero matrix. Note that these constraints are not uniform.

The idea of this step is to set each LPP coordinate to a
same value, making them ‘‘loop closure poses’’. The aim of
optimization is to optimize the coordinates to approximate
so as to minimize the error function of the inner-constraints
based on the outer constraints:

E∗odom = argminFodom(E)
s.t.{eijloop = 0|∀i, j ∈ A} (17)

Then, a similar LM algorithm is used here to solve the
optimization problem. In this step, the vertices of optimiza-
tion graph are all the poses. The edges are determined by two
kinds of constraints, inner and outer.

E. TRANSFER TO GLOBAL INDOOR MAP
After PGO, a map with random azimuth is constructed.
We still lack true azimuth of the starting position, which
in this case is the initial position of the first trajectory.
In our method, we need several pairs of reference points with
correct azimuth measures to align the map. The reference
points can be obtained using GPS data obtained near win-
dows [35], or by some other indoor localization method.

Suppose we have two LPP, noted as A, B. Coordinates of
A and B in the constructed map is noted as xia,xib, and the
measured ground truth of A and B are xja,xjb. To compute
a direct transform using two points, we use the following
equation: x2ia + y

2
ia xia yia

x2ib + y
2
ib xib yib

xiaxib + yiayib xia yib

 ·
cos θTx

Ty

=
xiaxja + yiayjaxibxjb + yibyjb
xiaxjb + yibyja


(18)

In the PGO step, the differences between landmark mea-
sures in different relative coordinates are empirically set to
zero. In other words, in the constructed map, each LPP cor-
responds to exactly one measure. In contrast, for the non-
LPP, there are several measures that are close to this location.
In this experiment, we use the LPP and their reference point
measures to do the ground truth alignment. For each pair
of reference, we calculate an aligned result. Furthermore,
we calculate the average of these aligned results as the con-
structed map. Subsequently, we can compute the error of map
construction and see in what degree the map can reflect the
real scene of this area.

F. REDUNDANCY REMOVAL FOR OPTIMIZING
This is an optional step, which is to optimize the result to
reduce redundancy of the constructed map. The results after
graph optimization often have a redundancy problem because
some part of the area might be a frequently visited location,
such as, entrance, central tunnel, and so on. Some trajectories
may have overlapped segments. In the optimization steps,
these duplicated segments cannot be discarded. Thus, we can
merge coordinates of a same segment in different trajectories
and reduce the number of points of the whole map, to obtain
a cleaner result. Pedestrians’ trajectories can be regarded as
a time sequence, thus we may use Dynamic Time Warp-
ing (DTW) [14], which is a frequently used algorithm in
audio processing, to identify which points are near and can
be merged.

Dynamic Time Warping calculates the similarity of two
sequences and can determine a mapping of one sequence to
the other, indicating which points are closer to each other in
a time domain. Thus, we can determine which points can be
merged. Considering we use a 2D scene here, the distance
should be derived based on Euclidean distance. After the
measuring value is determined, wemay use DTW to calculate
the mapping between two overlapped segments, which do not
belong to a same trajectory. As each trajectory has several
LPPs and different trajectories only have part of segments
overlapped, we can split a trajectory into segments by using
LPP as cut points and only merge segments regardless of
which trajectory it is in. For each two segments, we can
directly use DTW to calculate the similarity and mapping of
points.

To identify the segments that should be merged, we use
the LPP’s index at both ends of a segment. If two segments
have a similar pair of ends, we may decide that they are a
merging candidate pair. Considering that there might be some
detour between two ends of a segment, we need to filter out
those candidate pairs that have low similarity. To decrease
complexity, we perform the merging and filtering iteratively,
which means after two candidates are accepted, we merge the
two segments and use the merged new result as a candidate
for next merging operation. Note that when the constructed
map do not have too many overlapped parts, this step can be
omitted to avoid introducing errors.
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FIGURE 4. Outcome of the mapping process. (a) Raw trajectories (b) Trajectory alignment; (c) Pose graph optimization; (d) Transfer to global map;
(e) Raw trajectories; (g) Trajectory alignment; (g) Pose graph optimization; (h) Transfer to global map

IV. EXPERIMENTS
A. EXPERIMENT SETUP
To evaluate the performance of the proposed method.We per-
formed experiments in two environments: an academic build-
ing at Shenzhen University, with a 52.5m×52.5m floor plan
as shown in Fig. 5(a), and a shopping mall on 5th floor of
Coastal City ShoppingMall in Shenzhen, with a 100m×70m
floor plan as shown in Fig. 5(b). During the experiments,
four participants (one female and three males) carried a
smartphone and walked normally in the accessible areas of
the buildings. We used three types of Android smartphones,
including the Nexus S, Nexus 5, and Galaxy 3. We developed
the client application for data collection, and the data is sent
to the cloud for processing.

FIGURE 5. Experiment environments. (a) office building; (b) coastal city.

To quantify the performance of the proposed indoor map
constructionmethod, the followingmetrics were used [6], [8]:

• Graph Discrepancy Metric (GDM): GDM reflects the
differences between the nodes of the inferred map and

that of the ground truth. Euclidean distance is used as
the difference metric.

• Shape Discrepancy Metric (SDM): SDM reflects the
differences between the shapes of the constructed map
and the real one. To calculate the SDM, the link seg-
ments were uniformly sampled. The distances between
corresponding sampling points are used as the metric.

B. VISUAL RESULTS
Before presenting quantitative evaluation results, we provide
visual results of this method. Fig. 4 shows the outcome of
the mapping process. We introduce the mapping process
using the academic building as the example. Firstly, the raw
trajectories collected by the crowdsourcing uses are shown
in Fig. 4(a). Secondly, the random trajectories are aligned
based on LPP marking results. After trajectory alignment,
a noisy result of the map is formed as shown in Fig. 4(b).
Thirdly, pose graph optimization is implemented to the noisy
result, and the optimization result is shown in Fig. 4(c).
We can see that the drifting error is reduced and noisy mea-
surements are optimized. After the thirdly step, we can get
a relative map. The fourth step is to transfer the relative
to global indoor map, as shown in Fig. 4(d). The mapping
process of the coastal city is similarly, which can be seen from
Fig. 4 (e)-(h).

C. COMPARISON WITH ALIMC
We compare the performance of the proposed indoor map-
ping method to that of ALIMC [8]. The proposed method
utilizes SLAM technique to merge crowdsourcing trajec-
tory data, while ALIMC uses Multi-Dimensional Scal-
ing(MDS) technique for map construction. MDS uses the
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FIGURE 6. CDF of GDM with different methods. (a) 15 minutes; (b) 75 minutes; (c) 150 minutes.

FIGURE 7. CDF of SDM with different methods. (a) 15 minutes; (b) 75 minutes; (c) 150 minutes.

straight-line distance between two nodes to construct the
map, which can not operate on the maps with curves.
We use the experiments in the academic building for
the comparison. ALIMC used different angle estimation
methods, namely compass, heuristic method based gyro-
scope, and right-angle (ALIMC_compass, ALIMC_gyro, and
ALIMC_right − angle).
The GDM and SDM of different methods with different

crowdsourcing data are shown in Fig. 6 and Fig. 7. The
crowdsourcing data is in terms of time. From Fig. 6, we can
see that for 15minutes data, the 80-percentile error of the pro-
posed method is about 2 meters, which is better than that of
the other methods. With the increasing of the crowdsourcing
data, the error of all the methods decreases. The performance
of the proposed method in different data amount are better
than that of the ALIMC_compass and ALIMC_gyro. When
the data amount increases to 75 minutes, the performance
of ALIMC_right − angle is better than that of the proposed
method. The 80-percentile error of ALIMC_right − angle is
about 1.2 meters, and that of the proposed method is about
1.7 meters. However, ALIMC_right − angle is based on the
assumption that the corners are all right angles. Without this
assumption, the performance of ALMC (ALIMC_compass,
ALIMC_gyro) is worse than that of the proposed method.

From Fig. 6 and Fig. 7, we can see that with the increasing
of the data amount, the GDM and SDM change not too
much. We can also see that the data amount needed of the
proposed method is much less than that of the ALIMC.
For 15 minutes data, the 80-percentile error of the pro-
posed method is about 2 meters, while ALIMC_gyro need
150 minutes data. This is because the proposed method
is based on graph optimization, which uses a Levenberg-
Marqartdt method to minimize error. This method is gradient
decent optimization method and has enough constraints for
optimization. Therefore, a small number of trajectories data
can converge to an accurate result.

D. INDOOR MAP PERFORMANCE
To further evaluate the proposed method, we also implement
it in a shopping mall. The reconstructed indoor map and
their respective ground truths are shown in Fig. 4. We eval-
uate the quality of the indoor map using GDM and SDM
introduced before. Fig. 8 show the Cumulative Distribution
Function (CDF) of the GDM and SDM of the constructed
map. Fig. 8(a) is the GDM and SDM results of the academic
building. 80% of GDM error is within approximately 1.9 m.
80% of SDM error is within approximately 1.7 m. Fig.8(b) is
the GDM and SDM results of the coastal city. 80% of GDM
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FIGURE 8. CDFs of mapping errors. (a) office building; (b) coastal city.

error is within approximately 3.5 m. 80% of SDM error is
within approximately 2.5 m.

V. CONCLUSION
In this paper, we present a novel method to construct indoor
map via crowdsourcing data. Firstly, we detect distinguish-
able activities such as taking elevators, escalators or turning
based on activity detection algorithm, and infer trajectories
by PDR. After that, we mark these activities’ correspond-
ing positions along the trajectories. Secondly, we use these
detected positions as intersection points of different trajecto-
ries, and use them to do loop closure to construct an indoor
map. Thirdly, we optimize the constructed result by removing
overlapping. And finally, we align the map to absolute coor-
dinate as the result. Two experiments done in an academic
building and a shopping mall floor demonstrate the effective-
ness of this method. The results suggest that our method can
achieve an accuracy of 80-percentile mapping error around
1.7-3.5 meters. Additionally, this method can reflect some
complex routes such as a curved corridor. And the required
data for mapping is relatively small.
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