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ABSTRACT In recent years, service-oriented-based Internet of Things (IoT) has received massive attention
from research and industry. Integrating and composing smart objects functionalities or their services is
required to create and promote more complex IoT applications with advanced features. When many smart
objects are deployed, selecting the most appropriate set of smart objects to compose a service by considering
both energy and quality of service (QoS) is an essential and challenging task. In this paper, we reduced the
problem of finding an optimal balance between QoS level and the consumed energy of the IoT service
composition to a bi-objective shortest path optimization (BSPO) problem and used an exact algorithm
named pulse to solve the problem. The BSPO has two objectives, minimizing the QoS including execution
time, network latency, and service price, and minimize the energy consumption of the composite service.
Experimental evaluations show that the proposed approach has short execution time in various complex
service profiles. Meanwhile, it can obtain good performance in energy consumption and thus network
lifetime while maintaining a reasonable QoS level.

INDEX TERMS IoT services, energy efficiency, service composition.

I. INTRODUCTION
Internet of Things (IoT) is a new technology paradigm that
allow smart objects to be connected together to collaborate,
cooperate, and communicate with each other to provide and
support smart applications [1], [2]. Currently, there are more
than 8 billion connected smart objects, and the number will
continue to increase dramatically year after year [3]. Smart
objects are heterogeneous in their functionalities, communi-
cation capabilities, and resources. In general, smart objects
are resource constrained with very limited computation and
storage capacities when it is a battery-powered device, e.g.,
wireless sensors and mobile phones.

With the advent and rapid development of service-defined
everything, smart objects are represented as services corre-
sponding to their co-hosted functions [4]–[6]. In other words,
each IoT smart object provides its function through standard
services that can be directly accessed. To this end, Service-
Oriented Computing (SOC) [6] is seen as the key enabler for
IoT.

Integrating and composing smart objects functions or their
services is required to create and promote more complex IoT
applications with advanced features [4]. Composing those

services is done by aggregating atomic services to provide
new functions that none of the services could provide indi-
vidually [7]. This integration must consider the Quality of
Service (QoS) and energy efficiency of the composed objects.
Take a large-scale complex IoT environment as an example,
when a smart object has low energy, it should be replacedwith
another smart object, if any, that has more energy and can
provide the same functions and a good QoS level. However,
this is a challenging task since IoT QoS values are dynamic
and can substantially vary during the lifetime of the applica-
tionwhen network states change.Moreover, smart objects can
join, leave, fail, or new services with better quality can appear
at any time. Therefore, finding a good balance between the
energy consumption of all objects and its QoS to prolong the
network lifetime is not a simple task.

In the past, several studies have discussed service dis-
covery and composition and many techniques have been
developed forWeb services and Representational State Trans-
fer (REST) [8]. However, those techniques only consid-
ered the functional and non-functional properties of services.
As mentioned above, due to the nature of IoT and the
smart objects, IoT services composition must consider not
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only QoS, but also power consumption and residual energy
level [9].

There are a few studies on IoT service composition that
address energy consumption [10]. However, none of them
considered energy consumption as a separated objective;
they considered both QoS and energy consumption as a
single objective. Unlike previous studies, we deal with energy
consumption of IoT services separately from other QoS
attributes. In this way, both QoS level and energy consump-
tion are treated equally with the same priority.

This study aims to model and develop a Bi-objective Short-
est Path Optimization (BSPO) for IoT service composition
and to find an optimal balance between QoS level and the
consumed energy of the IoT service composition. The BSPO
energy-aware IoT service composition has two objectives:
minimize the QoS including execution time, network latency,
and service price and minimize the energy consumption of
the composite service. BSPO derives the optimal solution
by finding a Pareto-optimal solution for QoS and energy-
aware IoT service composition based on users or operators
preferences.

The main contribution of this paper can be summarized as
follows:

1) Investigate IoT service composition by considering the
energy consumption along with QoS of selected ser-
vices.

2) Formulate a novel optimization problem to maximize
the QoS level and to minimize the energy consumption
of composite service.

3) Propose a BSPO model and use the pulse algorithm to
solve the formulated problem.

4) Simulate and evaluate the proposed service composi-
tion scheme, and compare its performance with other
greedy algorithms.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the service
composition model. Section IV describes problem formula-
tion. Section V depicts the optimization problem. Section VI
explains the pulse algorithm. Section VII shows results and
performance evaluation. Finally, Section VIII concludes the
paper.

II. RELATED WORK
A. SERVICE-ORIENTED IOT
IoT adopts Service-Oriented Architecture (SOA) paradigm
because it can provide cooperation between heterogeneous
smart objects and is very flexibile for system integration.
Accordingly, smart objects can be connected and composed
via service composition approaches. Recently, many research
works have abstracted IoT devices as a service to provide
an efficient and unified way of accessing and operating IoT
services [1], [11], [12].

The Web of Things (WoT) [13] has been proposed to
seamlessly integrate heterogeneous objects. Through exist-
ing Web technologies such as Web services and RESTful
interfaces, WoT enables objects to communicate and interact.

Sun et al. [14] proposed amicroservice IoT framework to pro-
vide a generic IoT architecture based on a module or multi-
component application instead of themonolithic applications.
The framework abstracts smart objects and IoT application
modules as services.

Cheng et al. [15] proposed a platform for event-driven
service-oriented IoT coordination, where SOA is adopted to
solve interoperability issues among large numbers of het-
erogeneous services and physical entities in IoT. Another
service-oriented IoT architecture is presented in [16], where
the authors proposed a user-centric IoT-based service-
oriented architecture to integrates services that utilize IoT
resources in an urban computing environment. In [16], user
goals are represented as an explicit task definition that is
coordination of activities. Activities consist of configurations
of abstract services that can be instantiated by orchestrating
available service instances, including services that can be
actuated through the IoT devices or composed of more than
one smart object.

Other studies also focused on Wireless Sensor Net-
works (WSNs) to provide composite services by integrat-
ing its functions. Zhou et al. [4] proposed a three tiers
service-oriented framework. The function of each sensor is
abstracted as a service within a service class. Service classes
are chained to fulfill the functional requirements and energy-
efficiency. Another work adopted service-oriented WSN pre-
sented in [17].

B. SERVICE COMPOSITION AND QOS-AWARE SERVICES
COMPOSITION
Service composition techniques are designed for relatively
complex services when the required functions cannot be
satisfied by any single service. It combines more than one
service to fulfill the request. Traditional service composition
techniques compose services in a specific order to meet the
required goals [9]. In the literature, many techniques have
been proposed for service composition based on its function
such as semantic-based matchmaking, Logic, Graph-Theory,
Petri net, and AI-Planning based [18].

QoS-aware services composition is known to be an
NP-hard problem. However, this problem has already been
addressed by several methods. Ngoko et al. [19] proposed
a Mixed-Integer Linear Programming (MILP) method to
solveQoS service composition. Furthermore, they considered
energy consumption as a QoS attribute. Yu et al. [20] formu-
lated the problem as aMulti-dimensional Multi-choice Knap-
sack Problem (MMKP). Llinás and Nagi [21] proposed a
graph-basedmodel to solve the problem as aMulti-Constraint
Shortest Path problem (MCSP). Wu and Zhu [22] used a
Directed Acyclic Graph (DAG) to model services composi-
tion as a path search problem. Several studies proposed Pareto
optimality techniques for solving the QoS-based services
selection problem [23], [24]. For example, Chen et al. [23]
proposed a services composition algorithm using a par-
tial selection approach. Based on dominance relation, this
approach allows us to reduce the search space by pruning
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unpromising candidate services in QoS. However, they
adopted service selection by local optimization, which only
selects the best candidate service locally for each abstract
service without considering the relation between tasks in the
workflow. Unlike the work cited above, we considered the
QoS for the entire workflow as an end to end service com-
position and used an exact method to solve the bi-objective
optimal problem including QoS and energy consumption.

C. SERVICE COMPOSITION IN IOT CONTEXT
Many studies in QoS-aware service composition and selec-
tion problem are available in the literature. Bellido et al. [7]
analyzed stateless compositions of RESTful services and its
control-flow patterns. The researchers also presented a com-
parative evaluation of different QoS attributes. Dar et al. [25]
addressed the problem of integrating IoT smart objects
by adopting the concepts of centralized service composi-
tion (orchestration) and decentralized service composition
(choreography).

Simple Additive Weighting (SAW) technique has been
used to rank candidate IoT service inQoS. Kouicem et al. [26]
and Yachir et al. [27] calculated a single utility value by
aggregating the QoS values, where the service composition
problem is transformed to a single objective optimization
problem that finds the services with the best utility value.
Jin et al. [24] proposed a three phases’ service composition
algorithm. The first phase pre-sorts services according to
user’s preferences. The second phase applies dominance-
based filtering to eliminate sub-optimal solutions and the
final phase sorts the rest of services to select the best service.
Four QoS attributes are associated with each IoT. The can-
didate services are evaluated concerning user’s requirements
by aggregating each QoS rating (utility) function. However,
studies above do not consider energy consumption.

In the literature, only a few studies considered both energy
and QoS. For example, Khanouche et al. [10] proposed an
IoT energy-centered and QoS-aware services selection and
composition. The proposed selection approach preselects the
services offering the QoS level required for user’s satisfaction
using a lexicographic optimization strategy and QoS con-
straints relaxation technique. The concept of relative domi-
nance of services is also proposed. However, the preselecting
phase aggressively prunes services that don’t meet the local
QoS requirements or affect the quality of end to endQoS level
when considering execution time and network latency.

Unlike the aforementioned studies, our work deals with
the energy efficiency of services separately from other
QoS attributes and takes into account both QoS level and
energy consumption of IoT services. The proposed selection
approach transformed the problem into a bi-objective opti-
mization problem that aims to minimize the amount of energy
consumed and maximize the QoS of a service. We solved
the optimization problem using bi-objective shortest path
algorithm with four online pruning techniques to reduce the
complexity of the algorithm. In addition, to ensure a good
balance among the candidate services in energy consumption,

the services consuming less energy are selected. Our model
aims to provide high availability of services by minimizing
the energy consumption, i.e., by maximizing the devices
battery lifetime.

To the best of our knowledge, there exists no previous study
that considers an end to end service composition scheme with
both QoS and the energy efficiency as the primary metrics for
IoT resources.

III. IOT SERVICE COMPOSITION MODEL
IoT applications consist of a set of decomposed services.
In our model, we define two types of services: an Abstract
Service (AS) represents function of a service provided by
one or more IoT devices or software modules, while a Candi-
date Service (CS) represents a real Web service that may be
invoked. All cs are distributed across available resources.

The candidate services are characterized by two types
of properties: functional and non-functional properties.
Functional properties indicate the actions and the functions
provided by a cs, while non-functional properties are defined
by the QoS attributes and the energy profile of the service
running at a battery-powered object. Here, we considered
three QoS attributes, namely, execution time, cost, and energy
consumption profile.

From a user’s perspective, when a user’s request arrives at a
service composition broker, the service composition process
is invoked. The process combines a series of atomic service
components appropriately to form a composite service (path)
that provides an optimal balance between QoS and consumed
energy.

Fig.1 shows a model for composing IoT services.
Suppose an IoT service consists of n tasks, {Ti, 1 ≤ i ≤ n},
which are needed by a given IoT service requested by an
end user. For each task Ti a corresponding abstract service,
AS i, is used to represent its functional requirement. For each
AS i, 1 ≤ i ≤ n, , there exists li candidate services, {CSi,j, 1 ≤
j ≤ li,} that can meet the functional requirements of AS i and
thus can be selected for realizing this service component.
Note that a service component may be either an IoT ser-
vice or a software component. To meet the requirements of
a specific service request, the service composition path is
constructed as a path from a service entrance portal (CS0) to
a service exit portal (CSe) by traversing only one candidate
service of each service component. For example, CS0 →
CS1,3 → CS2,5 → · · · → CSm,j → CSe is a composite
service path that may provide useful service to a user. There-
fore, the main focus for IoT services composition is to select
an optimal service sequence from a pool of available smart
objects and software components while satisfying various
QoS requirements, in addition to the amount of consumed
energy.

IV. PROBLEM FORMULATION
Let T = {T1,T2,Tj, . . . . . ,Tn} denote the set of tasks that
cover the composite IoT service, where n is the total number
of decomposed tasks and Tj is the jth (j = 1, 2, 3, n) sub task
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FIGURE 1. Service composition model.

of T. Let AS i = {csi1, csi2, csij, csimi} be the candidate ser-
vices available for task Tj, wheremi represents the number of
candidate services and csij is the jth candidate service. Thus,
the directed graph model represents all possible compositions
for an IoT service as shown in Fig.1.

A distributed IoT service formed by interconnecting n
different service components can be modeled as a directed
graph G = (N ,A), where N = {v1, . . . , vi, . . . , vn}
denotes a set of service components with n nodes and
A = {eij |vi, vj ∈ N } is the set of edges (links). Each
node vi is associated with a weight ci representing its func-
tional capability of abstract service AS i, 1 ≤ i ≤ n.
Each edge eij ∈ A are associated with two nonnegative
weights QoSU ij and EPij, where QoSU ij and EPij denote
the utility value of QoS attributes and the consumed energy
when traversing eij. Henceforth, without loss of generality,
QoSU ij refers to QoS attributes such as execution time, net-
work latency and cost. The objective of service composition
is to select one candidate service from each set AS j and
generate an optimal IoT Composition Service Path (CSP)
x = {x1, x2, . . . . . , x i, . . . . . . , xn} from the set of available
compositions under multi-objective requirements, where x i

denotes the selected candidate service for sub task Ti.

A. ENERGY PROFILE MODEL (EP)
Since energy consumption is a significant factor for devices
hosting the candidate service, it is considered necessary that
each candidate service provides the composer its energy con-
sumption variable so that the composer can select the most
energy efficient one.

We defined the energy profile (EP) of csij by two variables,
the Residual Energy level RE(csij) of the device hosting csij
and the Consumed Energy CE(csij) which represents the

consumed energy when running csij. RE(csij) is estimated as
follows.

RE(csij) = CDE(csij)− Eth(csij) (1)

whereCDE(csij) represent current energy level of the battery-
powered device hosting csij and Eth(csij) the energy threshold
value under which the device cannot support csij anymore.

Since our model is based on service-oriented computing,
the consumed energy of running csij, CE(csij), is calculated
as in Eq. (2). Here, we assumed that the energy consumption
of csij is constant since the service runs on the same platform,
uses the same resources, and receives and sends the same
amount of data.

CE(csij) = ECR
(
csij
)
∗ T (csij) (2)

where ECR
(
csij
)
represents the energy consumption rate,

and T (csij) represent the execution time of csij. The energy
profile of csij is calculated as shown in Eq. (3) by taking the
ratio between the energy consumed by invoking csij and its
residual energy.

EP(csij) = CE(csij)/RE(csij) (3)

Thus, the smaller is EP(csij) the better is the csij as an candi-
date for Ti.

Finally, the EP of a service composition x can be calculated
as shown in Eq. (4), the energy consumed by composition
path x i is:

EP (x) =
n∑
i=1

EP
(
x i
∣∣∣x i ∈ Sh) (4)

where Sh represents the set of battery-powered devices. In our
model, we consider the differences in the underline infras-
tructure of the running services. In general, IoT software
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services are not executed on battery powered devices, in
contrast to sensing and actuating services. To differentiate
between these two types of required services we refer to the
set of battery-powered devices as Sh.

B. QOS CRITERIA
In our study, we consider a set of quantitative non-functional
properties of IoT services which can be used to describe the
quality criteria of a Web service. For the sake of simplicity,
in this paper, we consider only negative attributes as our non-
functional properties. These values of negative attributes need
to be minimized. We included two attributes: service execu-
tion time (T), which is collected from records of previous
execution monitoring, and service cost (C), which is directly
collected from service providers.

1) SERVICE EXECUTION TIME (T)
Service execution time represents the average time expected
for executing a candidate service. The service provider
updates it continuously because the load of the device hosting
the service changes dynamically. Clients expect their jobs to
be completed in a minimal time when they submit requests
to the service composer. Let L(csij) be the latency of trans-
mitting data from csij and ET

(
csij
)
be the execution time

of service request for csij. Thus, the service execution time
T(csij) can be computed as in Eq. (5).

T (csij) = L(csij)+ ET (csij). (5)

Therefore, the service execution time for composition path x
can be given as follows.

T (x) =
n∑
i=1

T (x i) (6)

2) SERVICE COST (C)
When a user submits his/her request to a service composer,
the composer manages and finds the fastest composition path
for the request. Meanwhile, the user is also expected to pay
the fairest price for running his/her tasks. Therefore, the ser-
vice cost is considered a valuable QoS property. In this model,
we set C(csij) as the cost of executing csij. The cost is usually
fixed but may be changed according to the service provider’s
business policy. The execution cost is registered by the
service provider.

Therefore, as given in Eq. (7), the service cost for compo-
sition path x is:

C (x) =
n∑
i=1

C
(
x i
)

(7)

3) UTILITY FUNCTION
Utility function is a helpful mechanism for evaluating the
aggregated quality of a given composite service. In this
research, we calculate the utility value of a service com-
position by aggregating normalized QoS attributes values.
All QoS values are mapped to a single real value between

0 and 1 by comparing the QoS value with the minimum
and maximum available QoS value. This enables uniform
evaluation of the QoS value.

We adopted a Multiple Attribute Decision-Making
(MADM) approach, namely, the Simple Additive Weighting
(SAW) technique [28] for the mapping process. For a com-
posite service path x the aggregated QoS values are compared
with the minimum and maximum possible aggregated values.
The minimum (or maximum) possible aggregated values
can be easily estimated by aggregating the minimum (or
maximum) value of each service class. The utility function
of QoS is computed as in Eq. (8).

QoSU (x) = wt ∗ T́ (x)+ wc ∗ Ć (x) (8)

where wt and wc represent the weighting factors of execution
time and cost, respectively. The sum of weights are equal
to one, i.e., wt + wc = 1. T́ (x) is the normalized service
execution time for x that is calculated using Eq. (6). Ć (x) is
the normalized service cost for x that is calculated using
Eq. (7).

With the above QoS utility and power profile formulas,
we can formulate the optimization problem of the service
composition as a BSPO problem. We described the BSPO
problem in the next section.

V. BI-OBJECTIVE OPTIMIZATION PROBLEM
Multi-objective service composition selects one candidate
service from each set AS j and generates an optimal IoT CSP
from the set of available compositions under multi-objective
and constraints. In this study, we formulated the energy aware
IoT service composition as BSPO for finding an optimal IoT
CSP from the start node css ∈ N to the end node cse ∈ N that
minimizes two different (often conflicting) objective func-
tions. The bi-objective shortest path problem can be formally
defined as in Eq. (9).

minCSP(x) = (QoSU (x),EP(x))

s.t., x ∈ X (9)

where x represents a candidate service path from the ser-
vice entrance portal from css to the service exit portal cse.
QoSU (x) represents the aggregated value of the QoS values
along all edges of a path x. EP (x) represents the aggregated
value of the EP over all edges in x. X is the set of all paths
from css to cse. The objective of Eq. (9) is to minimize the
QoS utility value and the energy profile of CS P(x). Since
the existence of a path that simultaneously minimizes both
objectives in Eq. (9) cannot be guaranteed, we seek for a
set of paths with an acceptable tradeoff between the two
objectives.

IoT service composition is a NP-complete problem with∏n
j=1Mj possible CSP for task T, where n represents the

number of tasks and Mi represents the number of candidate
services for task Ti. To solve the above problem, in this paper,
we use the pulse algorithm detailed in the next section.
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VI. THE PULSE ALGORITHM: OVERVIEW
We used the pulse algorithm [29] to solve the bi-objective
optimization problem. The pulse algorithm optimizes a bi-
objective function CSP(x) that is composed of a quality of ser-
vice functionQoSU and energy profile function EP. A path x
optimizes CSP or is Pareto-optimal if there is no other path x ′

that has lower QoSU and lower EP than x. The goal of the
pulse algorithm is then to find a series of such Pareto-optimal
paths that together form an efficient set XE by recursively
examining the entire search space of the graph.

The efficiency of the algorithm is achieved by aggressively
pruning partial paths. When a pulse reaches to a newly added
node, it will check if adding the node to the existing partial
path satisfies one of the adopted pruning conditions or not.
The partial path will be eliminated if it meets one of the
following conditions:

1) It includes cycles.
2) It exceeds either one or both upper bounds obtained at

the initialization phase, represented by a nadir point,
before reaching the end node.

3) It is dominated by any other path in the current efficient
set before reaching the end node.

4) It is dominated by any objective value stored in the
label of the newly added node. A node is labeled by
accumulated objective values when it is traversed by a
feasible path. Thus, if the partial path is dominated by
the existing label of the newly added node, it will not
be part of a Pareto optimal path.

Suppose that we have a given network with start
node vs and end node ve. The pulse algorithm sends a pulse
from vs to ve. This pulse travels through the entire network
while storing the partial path p (an ordered sequence of visited
nodes) and its cumulative objective functions, QoSU (p) and
EP(p). Every pulse that reaches the end node ve is a feasible
solution that might be efficient. Once a pulse reaches the end
node, it recursively backtracks to continue its propagation
through the rest of the nodes in the search for more efficient
paths from vs to ve. If the pulse is let free, this recursive
algorithm identifies all possible paths, and guarantees that an
efficient set is always found.

However, the pulse algorithm does not continue exploring
any partial path that will not produce an efficient solution by
using a look-ahead mechanism that prunes aggressively vast
regions of the solution space. For the initialization procedure,
the algorithm starts running a mono-objective shortest path
algorithm to get the upper bound for each objective. The pulse
algorithm is shown in Algorithm 1.

The pulse algorithm follows a depth-first search truncated
by several pruning strategies to control the pulse propagation
and prunes pulses without cutting off any efficient solu-
tion. The algorithm defines four pruning strategies namely,
pruning by cycles, nadir point, efficient set, and label. The
pulse recursive function is shown inAlgorithm 2 . It takes four
input parameters, current node vi, the cumulative QoS utility
value QoSU (p), the cumulative energy profile EP(p), and the
partial path p. The pruning strategies applied to the pulse are

Algorithm 1 Pulse Algorithm
Input: G directed graph; vs: start node; ve end node
Output: XE : true efficient set
1: p← {}
2: QoSU (p)← 0
3: EP(p)← 0
4: initialization (G)

5: pulse(vs,QoSU (p) ,EP (p) , p)
6: return XE

Algorithm 2 Pulse Function:
pulse (vs,QoSU (p) ,EP (p) , p)
Input: vi, current node; QoSU (p),
cumalative QoS utility; EP (p),
cumulative power; p, current path.
Output: void
1: if isAsyclic(vi, p) then
2: if checkNadirPoint(vi,QoSU (p) ,EP (p)) then
3: ifcheckEfficientSet(vi,QoSU (p) ,EP (p)) then
4: ifcheckLabels(vi,QoSU (p) ,EP (p)) then
5: store (QoSU (p) ,EP (p))
6: p← p̀ ∪ {vi}
7: for vj ∈ 0+(vi) do
8: qos

(
p̀
)
← QoSU (p)+ QoSU (csij)

9: EP
(
p̀
)
← EP (p)+ EP(csij)

10: pulse(vj,QoSU
(
p̀
)
,EP

(
p̀
)
, p̀)

11: end for
12: end if
13: end if
14: end if
15: end if
16: return void

shown in Lines 1–4; if the pulse is not pruned, line 5 stores
the current QoSU (p) and EP(p) and line 6 adds the node vi to
the partial path. In lines 7–11, the pulse propagates over all
nodes vj ∈ 0+(vi), where 0+(vi) is the set of outgoing
neighbors of vi, and adds currentQoS utility to the cumulative
one and current EP to the cumulative EP.

Whenever the pulse function is invoked at end node ve,
a partial path P becomes a complete solution x and we
update the online efficient set X̂E . Note that the information
about XE has a global scope and is not an attribute of the
traveling pulse within the recursion. Algorithm 3 presents
the pulse function when it is invoked on end node ve. Since
a new solution has been found, the algorithm verifies if the
new solution is efficient and updates the online efficient set
accordingly.

A. PRUNING TECHNIQUES
1) PRUNING BY CYCLES
Because all weights on the arcs are nonnegative, any efficient
solution cannot contain cycles. To avoid cycles in a path,
every time we invoke the pulse function at vi, the algorithm
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Algorithm 3 Pulse Function for the End Node:
pulse (ve,QoSU (p) ,EP (p) , p)

Input: ve, current node; QoSU (p),
cumalative QoS utility; EP (p),
cumulative power; p, current path.
Output: void
1: if CheckEfficientSet(ve,QoSU (p) ,EP (p)) then
2: p← p ∪ {ve}
3: X ← mapPathToSolution(p)
4: UpdateEfficentSet(X)
5: end if
6: return void

checks whether a node has been visited or not. If vi has
already lain on the partial path, it is pruned from P.

2) PRUNING BY NADIR POINT
Based on the idea of the nadir point which seen as the anti-
ideal point in the objective space, the algorithm aims to prune
as early as possible any pulse exceeding either smallest values
(best path) of both objectives solutions. To do so, we calculate
the minimum QoSU(x) (regardless of EP) and the minimum
energy profile EP(x) (regardless of QoS) from entrance node
to the end node.

Assume that we have an optimal solutions x∗QoSU and x∗EP
where x∗QoSU and x∗EP represent Energy profile and QoS util-
ity objectives of the mono-objective shortest path problem,
respectively. The images for the optimal solutions in the
objective space are Z

(
x∗QoSU

)
= (EP,QoSU ) and Z

(
x∗EP

)
=

(EP,QoSU ). The nadir point, denoted by ZN = (EP,QoSU ),
which represents a vector composed of the worst objec-
tive values in the objective space. In other words, it rep-
resents an upper bound for each objective in the objective
space.

After applying the mono objective shortest path problem
for each objective, a set of an alternative optimal solution
for each objective can be found. EP and QoSU represent
the smallest values among all alternative solutions for both
objectives x∗QoSU and x∗EP, respectively. As shown in Fig.2,

Z
(
x∗QoSU

)
, Z

(
x∗EP

)
, and ZN are shows the minimizer vic-

tors in the objective space and Z* represents the ideal
point.

Based on this, for any solution x with QoSU (x) > QoSU
or EP (x) > EP, its image z(x) is dominated and x is not
efficient. Any point falls in the dark region in Fig.2, is eather
dominated by Z

(
x∗QoSU

)
or Z

(
x∗EP

)
, and thus any pulse

exceeding either EP and QoSU will be pruned.

3) PRUNING BY EFFICIENT SET
Consider the online efficient set X̂E at a given intermediate
stage of the algorithm. Using the lower bound found in
the initiation phase of the algorithm namely, QoSU (vi) for
QoS utility and EP (vi) for energy profile, we can determine

FIGURE 2. Nadir point and lower and upper bounds.

whether a partial path will become an efficient solution or not.
Given a partial path p to node vi, if there is a solution x ∈ X̂E
such that QoSU (p) + QoSU (vi) ≥ QoSU (x) and EP (p) +
EP(vi) ≥ EP(x), we can safely prune partial path p, because
even if it spends both the minimum cost and the minimum
time to reach the end node, it will still be dominated by
path x.

4) PRUNING BY LABEL
For each node vi a fixed number of labels saves a tuple
of QoSU and EP values. The labels at node vi are
denoted by L (vi) =

{
(QoSU il,EPil)

∣∣ l = 1, . . . ,Q}
where QoSU il and EPil are the cumulative QoS utility and
energy profile for a partial path to vi and Q denotes the
number of labels at vi. For an incoming pulse, the algorithm
checks if the incoming partial path p is dominated or not; that
is, if any label dominates CSP(p), the pulse is discarded by
label pruning.

VII. PERFORMANCE STUDY
In this section, we present the setup of our simulation. Then,
we analyz the performance of the exact bi-objective algorithm
for IoT service composition that optimizes QoS utility, and
consumed energy.

To show how IoT services composition can be instantiated
and invoked while keeping an optimal balance between QoS
level and the consumed energy of the composed service,
we conducted an extensive simulation under various scenar-
ios to evaluate the performance of the proposed IoT service
composition. In these scenario we assumed that we have a
smart environment consist of thousands of heterogeneous
objects such as mobile devices, and wireless sensors. We also
assumed that these devices are heterogeneous in communi-
cation protocols. For example, wireless sensors can be based
on ZigBee, 6lowpan or Bluetooth [2]. To provide interoper-
ability between these heterogeneous objects, their functions
and their software components are abstracted as services to
become accessible through SOP, Constrained Application
Protocol (CoAP) or REST protocols [2]. Finally, we assumed
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that all candidate services are registered in IoT orchestration
system and categorized based on its services classes.

A. SIMULATION ENVIRONMENT AND METHODOLOGY
We implemented our simulation using java under 64-bit Win-
dows seven operating system, running on Intel Core i5-2500,
3.3 GHz, and 8 GBRAM. Each scenario generated a different
number of abstract services AS and candidate services CS.
Each candidate service has two QoS attributes: execution
time including network latency, and service cost.

Due to the absence of datasets in QoS and energy profile
values of IoT services, we chose to evaluate the proposed
algorithm by using synthetically generated data. For instance,
each service is produced with a random QoS value according
to the values reported in the literature [10]. Based on the
model presented in [29], we specified the energy profile
of IoT services. The values of each quality parameter are
generated according to a normal distribution. The impor-
tance or weight of each QoS attribute in the utility function
is set to be fixed 1/2. The service execution time and network
latency are generated assuming a uniform distribution over
the interval [20, 1200] and [20, 800]. The cost of services
is generated according to a uniform distribution over the
interval [10, 20].

In order to overcome the problem ofQoS values fluctuation
during service runtime in dynamic IoT environments, QoS
values are randomly changed after every service iteration by
multiplying every QoS value with a random number in the
interval [0.9, 1.1].

In order to study the energy consumption in battery oper-
ated objects, we referred to the energy model presented
in [29]. We assumed that every device has an initial amount
of charge and maximum battery charge, Cinitial and Cmax,
where the values ofCinitial is chosen randomly in the interval
[0.7 Cmax, 1.0 Cmax] and the maximum battery charge
Cmax of an object is set as 1500 mA · h. Furthermore, any
object has energy lower than CThreshold becomes unable
to provide its services and will not be considered in the
composition process. In this study, we set CThreshold to
be 30% of Cmax. After every run of the selected candidate
service, a specific amount of power is consumed and this
amount is subtracted from current battery level of the device
hosting the service. The amount of consumed power is chosen
randomly in the interval [100 mA.s, 10000 mA.s] after every
service invocation.

In our study, a service composer is used to find an optimal
balance between QoS and consumed energy and prolong the
network life time. In the following sections we will refer to
the proposed algorithm by Bi-Objective Service Composition
(BOSC). In order to show the added value of the proposed
selection approach in a large-scale IoT services environment,
we compared our results with two variants of our algorithm:
QoSC, where only the QoS is taken into account in the selec-
tion process, and EPC, where only the power profile is taken
into account in the selection process. The results presented
here are derived based on the average of 100 simulations.

B. SIMULATION RESULTS
To evaluate the performance of the proposed model and
algorithm we considered the following metrics: (1) Selection
time which represents the computational time of the selec-
tion algorithm; (2) Energy consumption of the composite
service which is equal to the total energy consumed by its
components; (3) Composition lifetime which is the number
of compositions that can be executed before the first candi-
date service failure. A service is considered failed when its
autonomy is no longer sufficient to be invoked; (4) Optimality
which is the ratio between the QoS value of the composite
service obtained by BOSC and the optimal QoS value of the
composite service, obtained by that of QoSC and EPC.

1) SELECTION TIME VERSUS NUMBER OF SERVICES
To validate the scalability of BOSC, we tested the execution
time of the selection algorithm under various numbers of
tasks involved in the composition process and various num-
bers of available candidate services for each task.

In the first experiment, we set the number of tasks involved
in the composition to be 10, 15 and 20 tasks. We also set
the number of candidate services for each task to be between
100 and 1000. Fig. 3 compares the average execution time
(in millisecond or ms) of the composition algorithm with
various numbers of tasks and candidate services for each task.
As shown in Fig. 3, the average execution time increases
as the number of tasks of the composite service increases.
As shown in the figure, the average execution time is short
and suitable for a large scale IoT environment. For example,
the selection time does not exceed 10 ms when running
10 tasks each with 1000 candidate services. When increasing
the number of tasks to 20 each with 1000 candidate services,
the average execution time increases slightly to reach less
than 70 ms. However, this increase is still reasonable and
acceptable.

FIGURE 3. Selection time versus number of candidate services
(10, 15, 20 tasks).

2) ENERGY CONSUMPTION VERSUS NUMBER OF SERVICES
In the second simulation, we compared the performance of
the three algorithms in consumed energy (in mA.s). In the
simulation, we considered a composition path consisting
of 10 tasks where each task has 100 to 1000 candidate ser-
vices. As shown in Fig. 4, the amount of consumed energy in
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FIGURE 4. Energy consumption versus number of candidate services.

BOSC and EPC gets close to each other. Note that in EPC the
candidate services with the lowest energy profile are always
selected.

From Fig. 4, we can see that when candidate services
are between 100 and 1000, the amount of consumed energy
by BOSC is about 35% more than that by EPC in average.
Certainly, EPC provides the best composite service in energy
consumption. An interesting observation is that the amount of
consumed power decreases when the number of the available
services increases. This can be explained by the fact that
when increasing the number of candidate services the proba-
bility of selecting more services with less power consump-
tion increases, and hence, the energy consumed decreases.
Another advantage of BOSC is that it saves more power than
that by QoSC. BOSC consumed energy 70% less than that
by QoSC.

In the third experiment, we intended to show the con-
sumed energy under various numbers of tasks between 10 and
50 tasks when the number of candidate services for each task
are set to be 100. Fig. 5 shows that the energy consumption
of the composite path increases when the number of service
classes increases. In fact, increasing the size of composite
path will increase the number of selected services which
causes more power consumption.

3) COMPOSITION LIFETIME VERSUS NUMBER OF
CONCRETE SERVICES
Studying the performance of the proposed algorithm in terms
of service composition life time is the aim of the fourth exper-
iment. We evaluated and compared the composition lifetime
by BOSC with that by EPC and QoSC. In the simulation,
we considered a composition path consisting of 10 tasks
and each task has 100 to 1000 candidate service. As shown
in Fig. 6, the composition life time with BOSC is slightly
less than that by EPC when only the lowest energy profile
is selected. On the other hand, EPC guarantees the lowest
energy consumption while reducing theQoSU of the compos-
ite path. Indeed, BOSC can achieve a good balance between

FIGURE 5. Energy consumption versus number of tasks.

FIGURE 6. Composition lifetime versus number of candidate services.

the amount of consumed energy and QoSU of the composed
path. Thus, BOSC ensures a long composition life time,
which provides a high availability of candidate services.

4) OPTIMALITY OF THE SOLUTION
Studying the performance of BOSC in terms of optimality
of the obtained QoSU is the purpose of this experiment. In
the simulation we considered a composed path consisting
of 10 tasks and each task has 100 to 1000 candidate services.
As shown in Fig. 7, the optimality of the proposed method

FIGURE 7. Optimality QoS versus number of candidate services.
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guaranteed a QoS level about 80% close to that acquired
by QoSC. It is worth noting that BOSC does not apply any
constraint on QoS attributes in the simulation. The results of
BOSC can be further improved if we apply some constraints
on QoS attributes, such as execution time and cost thresholds.
This is because it helps to reduce the solution choices with
lower QoSU and hence better QoS can be achieved. As we
can observe from Fig. 7, the QoS optimality level of EPC
dramatically decreases, while BOSC can provide a solution
close to optimal solutions.

VIII. CONCLUSION
Service-oriented IoT has received considerable attention over
the past few years. A crucial factor for the success of IoT
and its applications is creatingmore complex IoT applications
with advanced features by composing smart objects functions
and services.

In this paper, a bi-objective shortest path optimization
model is presented to model IoT service composition where
energy consumption and QoS are considered. The pulse algo-
rithm with four embedded pruning techniques, namely, prun-
ing by cycle, nadir point, efficient set, and label, is developed
to solve efficiently the presented problem. Results show that
our proposed IoT service composition scheme overcomes and
surpasses other schemes that only consider QoS or power
consumption individually. Experiments also show that the
proposed scheme works reasonably fast in selecting suitable
smart objects; the average execution time needs less than
70 ms, which makes the proposed model scalable for large-
scale IoT environments. The amount of consumed energy by
BOSC is about 35% more than that consumed by EPC on
average. The composition lifetime with BOSC is 90% more
than that by the QoS only scheme. Also, the acquired opti-
mality level of the BOSC guaranteed a QoS level about 80%
close to that obtained by QoSC. Therefore, the proposed
solution provides an optimal balance between QoS level and
consumed energy in IoT service composition.
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