
Received April 2, 2018, accepted May 6, 2018, date of publication May 15, 2018, date of current version June 26, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2836342

Verification of Program by Inspecting Internal
Relations Relying on User Requirements
YUZHOU LIU1,2, LEI LIU1,2, HUAXIAO LIU 1,2, AND HONGJI YANG3
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
3Department of Informatics, Leicester University, Leicester LE1 7RH, U.K.

Corresponding author: Huaxiao Liu (liuhuaxiao@jlu.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2017YFB1003103.

ABSTRACT Software verification can ensure the software quality by inspecting the properties of program.
A key issue for software verification is to check whether the software can meet user requirements especially
when the requirements change frequently. To tackle this problem, we propose an approach to verify the
program by inspecting the internal relations with the user requirements. In the approach, the constraints
in the requirements are represented by a concern-based model defined in our previous work by Liu et al.
and the internal relations of program are extracted based on static analysis methods; then, a framework of
verification system is defined to inspect whether the program can satisfy the constraints for discovering the
errors with their locations. The main contribution of this paper includes: 1) kinds of internal relations of
program are defined and their calculation methods are given to transform the source codes to a formalized
model, which is taken as the object to be verified and 2) formal description of verification system framework
is given to support the automation of verification process. Since the verification tasks can be set freely based
on the requirements in the system, the proposed approach can help developers to cope with the change of
requirements better.

INDEX TERMS Software verification, user requirements, internal relations, formal description.

I. INTRODUCTION
The essential goal of software development is to estab-
lish the system that fully satisfies user requirements. As an
effective way to guarantee the achievement of this goal,
software verification has been widely studied and used in
practice [1], [2]. In the process of software verification,
the developers must identify what the program should do,
then a verifier will check whether the program actually does
what the programmer wants it to do by inspecting certain
properties of the codes [3], [4]. In recent years, with the
vigorous development of software industry, the change of
user requirements becomes more frequent and it accelerates
the update speed of software. However, when requirement
changes, the corresponding changed information in prop-
erties of program is hard to be inspected directly in the
verification process, which may lead to deviation or lag
in software verification [5]–[7]. In such conditions, how to
verify a software system efficiently becomes a new research
problem.

The properties/constraints contained in user requirements
play an important role for solving the above problem.
In requirements, there exists the goals of a software system
and the properties/constraints that the system should satisfy

to realize these goals. These properties/constraints can reflect
the user requirements directly, and they can be used in the
verification process to discover related errors in program.
Based on such ideas, many methods have been proposed and
achieved good performance.

In the field of dynamic verification, which takes testing
as the main form, there are many researches aim at gener-
ating testing cases more reasonable according to the proper-
ties/constraints contained in user requirements, such as the
cases related to the requirements boundary [8], the auto-
mate generation of cases [9]. These cases can support the
testing process and improve the testing efficiency. However,
as the test cases cannot cover all the running situations of
program, dynamic verification can discover the existence of
errors but cannot ensure the nonexistence of them. Static
software verification focuses on analyzing the codes them-
selves without running the program, it usually selects impor-
tant properties/constraints (such as scenario constraints) as
the specific goals and inspects the satisfaction degree of
codes on them [10], [11]. These researches indicate that it is
meaningful and feasible to use the information of user
requirements (especially properties/constraints) in software
verification.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

30737

https://orcid.org/0000-0002-8151-1413

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

Software requirements engineering translates the abstract
user requirements into a well-defined question, in which
the properties/constraints are described more accurately and
clearly. This can provide the basis for introducing require-
ments to software verification. However, existing approaches
and technologies in verification seldom consider using the
results of software requirements engineering for inspecting
the codes directly. Thus, we try to construct the bridge
between requirement engineering and software verification:
we take the internal relations of software as the verifica-
tion object, and use the model established in the phase of
requirement engineering as the standards in the process of
verification. As internal relations of a program are important
properties of software in deciding its functionalities, the satis-
faction of them on the constraints given by requirements is the
precondition for a software to meet its intended goals. In this
paper, we propose the approach to Verify the Internal Rela-
tions based on the constraints in Requirements (VIRR) for
inspecting whether the software can satisfy the requirements.
The approach mainly includes three parts as follow.

Firstly, the concern-based model defined in our previous
work [12] is used to formally describe the user requirements,
where the constraints on relations are defined as the proper-
ties for the subsequent verification process.

Secondly, the internal relations of program are extracted
from program. The kinds of internal relations are defined and
the corresponding calculation methods are given based on
static analysis of program. To simplify the process of analysis,
the pre-process of program is implemented and the ordered
sequence of statement numbers are defined for each internal
relation to record the program path it depends on.When errors
are discovered, the ordered sequences can locate the errors in
the statements level.

Finally, a framework of verification system is described
to support the automatic verification. We give the definition
of components in the system, and use semantic functions to
formally describe the execution process of system. In addi-
tion, the verification tasks can be set by developers flexibly,
so that the program can be verified according to the changing
of requirements for helping developer locate the codes need
to be modified when updating the software.

The paper is organized as follows. The introduc-
tion of requirements model is presented in Section 2.
Section 3 defines the internal relations of program and
proposes the method to calculate them. In Section 4,
the framework of verification system is formally described.
Section 5 shows an experiment to validate the effectiveness
of our approach. Then, related work and discussion are
separately presented in Section 6 and Section 7. Finally,
conclusion is given in the last section.

II. INTRODUCTION OF A CONCERN-BASED
REQUIREMENTS MODEL
Currently, many requirements models are widely stud-
ied, such as goal-oriented model [13] and scenario-based
model [14]. These methods describe user requirements from

different angles. ‘Separate of Concern’ is a fundamental prin-
ciple complied in software engineering, and many require-
ment models have been proposed based on it [15], [16]. In our
previous work [12], we have proposed a method to model the
requirements with Concerns and achieve good results. In this
paper, we use this method to formally describe the constraints
on the internal relations of software in requirements. The
definitions are introduced briefly in this section and detailed
information can be found in [12].
Definition 2.1 (Requirements-Concerns Model (RCM)):

RCM is the formal presentation of software requirements
based on Concern, and it is specified as a 2-tuple (Cset,RL),
where:
• Cset is a set of concerns;
• RL is a set of relationships between concerns.

The specific definition of each part is presented as follows.
Definition 2.2 (Concern): each concern C is specified as a

6-tuple (Id, Des, Rs, type, Vset,VL), where
• Id refers to the name of C;
• Des is a text description of C;
• Rs is a set of labels of requirements that C relates to;
• type is the category of C;
• Vset is the three variable sets in C;
• VL reflects the relationships among the three variable
sets.

Concerns are classified into four types: topic is a theme
concern. There exits one and only one topic in each RCM
to present the overall objectives; kinds presents the abstract
functionality; instance represents the concrete functionality;
property represents the functionality attributes.

There are three kinds of variable sets that can be defined
in a concern: input, user_def, output. Vset represents the con-
crete variable sets for a concern and contains three elements at
most. For example, if a concern C contains input and output,
we write C.Vset = {input, output}.

VL is a six-digit code, encoding the relationships among
variable sets. We use 1 and 0 to denote the non-empty
and empty states, respectively. The digits of the code, from
the first to the last, stand for input→user_def, input→
output, user_def→output, user_def→input output→input,
output→use_def, respectively.

By defining the Vset and VL, the internal structure of each
concern is described and gives constraints on the program.
Definition 2.3 (Relationship Between Concerns): The rela-

tionship between two concerns is defined as a 4-tuple
(Ci,Cj, reqls, type), where Ci and Cj are two concerns and
there exists the relationship from Ci to Cj, representing that
there may be the relationship of calling, information trans-
mission, functional division, etc., between the two concerns.
reqls is a set of requirements, which is the basis of the
relationship, and we have reqls=Ci.Rs∩Cj.Rs.
The relationship is categorized into five types:
• Kinds-of: the two concerns have the same kinds.
• Instance-of: the two concerns have the same instance.
• Specific-of: the relationship from kinds-concern to
instance-concern, represents Cj is the specific

30738 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 1. Type-kind matrix.

implementation of Ci that corresponds to the abstract
functionality.

• Send-of: the relationship from instance-concern to
kinds-concern, represents that the information produced
in Ci is delivered to Cj as input.

• Property-of: the relationship from property-concern to
kinds-concern or instance-concern.

It should be noted that the relationship between topic-
concern and kinds-concern is also shown as Kinds-of.
Moreover, the five types of relationships above and the

corresponding data/control constraints can be determined by
analyzing the features of the concerns [12]. The constraints
are presented in Table 1.

Based on the analysis above, RCM can be established to
present software requirements in a formal way. The RCM
gives the constraints on the internal relations of the program
to be developed. To better support the subsequent verification
process, we give the following definitions to qualify the
relationship information in RCM.
Definition 2.4. (Distance Between Concerns): For the two

concerns C and C ′, distance is the qualified value of the rela-
tionship between them, donated by D(C,C′) and calculated
by the formula below:

D
(
C,C′

)
=

1∑
wri

{ri|ri ∈ reqls, (C,C′, reqls, type) ∈

RCM.RL};
∞ else.

Where wri is the weight of ri in the set of requirements and
given by the developers according to the practical conditions.

As the calculation of D(C,C′) is based on the relationship
(C,C′, reqls, type), D(C,C′) has its direction and D(C,C′) 6=
D(C′,C) in most conditions. In addition, we define that
the distance between a concern and itself is zero, that is
D (C,C) = 0. Although D

(
C,C′

)
can reflect the degree

of correlation between C and C′, we cannot understand its
meaning only by itself. For example, suppose that D

(
C,C′

)
=

0.03, we do not know whether 0.03 means the relation is
close or not. Thus, the distance information in RCM should
be analyzed as a whole.
Definition 2.5 (Correlation Degree Between Concerns):

For the two concerns C and C ′, correlation degree between
them is the weight of relation between them in RCM, donated
by CD(C,C′) and calculated by the following formula:

CD
(
C,C′

)
=

1/D(C,C ′)∑i=n
i=1

∑j=n
j=i+1 1/D(Ci,Cj)

.

For all the relationship in RCM, CD(C,C′) ∈ [0, 1] and the
sum of them is 1. The larger value of CD(C,C′) indicates the
closer relation between C and C′.
In order to reflect the mapping relationship between RCM

and software, we have the following definition:
Definition 2.6 (Realization-Relation A⇒ B): Realization-

relation is a kind of abstract relations, where A is a variable
in program, and B is a concern or a variable set in RCM.
Its semantic interpretation is that the existing of A is for the
realization of B in program. Meanwhile, we have:

Rr (A,B) =

{
true A⇒ Bexists;
false else.

As the requirements are the basis of program development,
some requirements related information labels can be added
to the source codes based on requirements. Suppose that
Cset = {C1,C2, . . . ,Cn is the set of concerns in RCM,
the principle of labels is: if the existence of a programmodule
is to achieve a functionality corresponding toCi, the variables
in this module are named byCi_x. In this way, the relationship
between the program and requirements can be established.

III. EXTRACTING THE INTERNAL
RELATIONS FROM PROGRAM
The internal relations are essential properties of a program
for deciding its functionalities. In RCM, the constraints in
user requirements on the internal relations of program have
been defined. By inspecting whether the internal relations
of program could satisfy these constraints, the software is
verified to check whether it can meet user requirements.
However, as the internal relations cannot be simply extracted
from source codes, the program cannot be used in the process
of verification directly. In this section, we give the process
to extract internal relations from program based on the static
analysis of source codes. The process includes three parts as
is shown in Figure 1.

Firstly, the source codes are preprocessed. By the instanti-
ation of function calls and the update of statement numbers,
the relation information contained in function/procedure calls
is integrated into one procedure, so that the static analysis
of program can be simplified. Secondly, the internal rela-
tions are defined and the corresponding calculation methods
are given to extract the variables and relations from codes.
Finally, the variables are classified and redundant relations
are deleted utilizing the information in RCM. We establish
a Program Internal Relation Model (PIRM) to describe the
information of internal relations gained in this process.

VOLUME 6, 2018 30739

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

FIGURE 1. The process of acquiring the internal relations from source codes.

A. THE PREPROCESS OF SOURCE CODES
In the program, there are some kinds of statements that do
not affect internal relations, such as variable declaration state-
ments, input and output statements, etc. These statements can
be ignored in the process of static analysis. Thus, we define
grammars of the program to be analyzed in our approach as
shown in Figure 2, where the meanings of symbols are shown
in Table 2.

FIGURE 2. Grammar of program.

TABLE 2. Type-kind matrix.

The verification object of our approach is the program
conforming to the above grammar. It can be seen that there
are no side effects in the program. As the statement with

side effects usually could be expressed by a combination of
statements (for example: z=x+y++ is the same as z=x+y
and y=y+1), we do not give special analysis method for such
statements. In addition, our method is for serial program, so
the questions in parallel program are not considered in the
grammar.

For the static analysis of program, the handlings of
function/procedure calls are always a difficult question to
be solved [17]. A effective way is to denote the program
by a dependence graph or complex network, in which
nodes and edges are modeled based on functions and their
calls [18], [19]. However, the characters of our verifica-
tion object provide a unique condition for us to simplify
this question. In our approach, we aim at extracting the
internal relations generated for meeting user requirements.
In other word, we want to acquire the relations that is the
embodiment of requirements in program. In this condition,
the relations generated during some function/procedure calls
are the same, so these function/procedure calls only need to
handle once in the static analysis. To analyze the influence of
function/procedure calls on internal relations, the following
definition is given.
Definition 3.1 (Isomorphic Function/Procedure Calls):

In a function/procedure f (v1, v2, . . . , vn), Suppose that
(y1, y2, . . . , yn) and (y′1, y

′

2, . . . , y
′
n) are two actual parameter

vectors of f . ∀i ∈ [1, n], if ∃Cj ∈ Cset, st. Rr(yi,Cj) ∧
Rr(y′i,Cj) = true, the two function/procedure calls are iso-
morphic. If there is no formal parameter defined in f , any
arbitrary calls are isomorphic. In addition, if two statements
S and S′ contain isomorphic function/procedure calls, the two
statements are isomorphic, and we write (S w S ′) = true.
For example, suppose that a fragment of a program is

shown in Figure 3(1), the corresponding Cset = {C1,C2,

C3,C4 in RCM. There are three function calls of f in the
statements (2), (4) and (6): the calls in (2) and (4) are isomor-
phic because the parameters correspond to the same concerns

30740 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

FIGURE 3. A fragment of a program.

C2 and C3; while, the call in (6) is not isomorphic with the
former two because its parameters correspond to the concerns
C2 and C4 which are different with the ones in (2) and (4).

In program, the internal relations generated by isomorphic
function/procedure calls are the same. Thus, in the prepro-
cessing of program, we can generate function instances to
eliminate function/procedure calls by analyzing the isomor-
phic relations among function/procedure calls. In addition,
in order to record the information of function/procedure calls
accurately, we re-defined the form of number to annotate a
statement, so that errors discovered in the verification can be
located.
Definition 3.2 (Statement Number (N)): For a statement S,

its N is a 2-puple and donated by (n, n_set), where:
• n: the unique natural number annotating location of S in
source codes;

• n_set: a set of locations of statements.
There are three conditions for identifying n_set: 1) if S con-
tains a function/procedure call, n_set records all the locations
of the statements that are isomorphic to S; 2) if S is a
statement in the function instance, n_set records the locations
of the statement that calls the function contains S and the
locations of the statements that are isomorphic to this function
call; 3) otherwise, n_set = ∅.
We take Figure 3(2) as example. Due to the statements (2)

and (4) in Figure 3(1) are isomorphic calls, the statement
number is changed to (2,{4}) and (4,{2}). As the unique iden-
tification of a statement, statement number can help develop-
ers to locate its place easily. Thus, an ordered sequence of
statement numbers can be used to express the program path
and record the information of function/procedure calls.

Then, two operations are given for preprocessing the
source codes. Suppose that the program conforming to the
grammar shown in Figure 2, and in the program, the set of
statements is S and the set of declarations of functions is Dp
Operation 3.1 (Function/Procedure Instancing Opera-

tion (FucIPo)): Function/procedure Instancing Operation
transfers a function/procedure call and the body of corre-
sponding function/procedure to a new sequence of program
statements, it can be described by the following semantic
function:

FucIOp : S× Dp −→ S.

FucIOp uses the actual parameters in S instead of the
formal parameters in the body of function/procedure declared

by Dp. Furthermore, if S is an assignment statement,
the relation between the variables is assigned and the func-
tion/procedure returns the values. In this way, an instance is
created and expressed as a sequence of program statements.
Operation 3.2 (Statement Number Updating Opera-

tion (StUpOp)): StUpOp can change an original natural num-
ber n to statement number N or update an existing N . It is
described as follow:

StUpOp : S→ N × S.

Based on the definitions and operations above, the program
can be preprocessed. For a given program, we scan its state-
ments in turn. Suppose that the current statement is S:

1) If S do not contain any function/procedure call, just
change its number to a statement number as we defined;

2) Otherwise, there are two conditions: if there exists a
function instance created for the call that is isomorphic
to the call in S, the statement numbers in function
instance are updated by adding the location of S to
each n_set; otherwise, a function instance is created for
the call in S and a statement number is added to each
statement in the function instance.

To describe the above preprocess clearly, we give its formal
description as below:

In the preprocess of program, function instances and re-
defined statement numbers are used together to integrate the
internal relation information in function/procedure calls into
a main function. So that the subsequent static analysis of
program can be simplified and done in one procedure.

B. THE DEFINITIONS AND CALCULATION METHOD
OF INTERNAL RELATIONS
After preprocessing, the program is analyzed to extract vari-
ables and the relations among them. To simplify the descrip-
tion, there are some description rules in this subsection as
follow:

VOLUME 6, 2018 30741

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

• V is the set of all the variables in program;
• E is the set of all the expressions in program;
• Suppose that e ∈ E , V (e) is the set of all the variables
that appear in e.

Based on the rules above, the definitions of internal rela-
tions are given.
Definition 3.3 (Relation Ds): If S is an assignment state-

ment for the variable v, we say that S defined v. And a two-
tuple (v, N) is used as an element to record variable defined
v, where N is the statement number of S. Ds is a set of all
elements defined in S.
Definition 3.4 (Relation λs): Suppose that v ∈ V , e∈E ,

if the value of v takes part in the calculation of e directly
or indirectly, v and e have the relation λs, written as
(v, e,N ∗) ∈ λs. Where N ∗ is an ordered sequence of state-
ment numbers to record the path which is depended by the
forming of relation between v and e.
Definition 3.5 (Relation µs): Suppose that v ∈ V , e∈E ,

if the e takes part in calculating the value of v directly or indi-
rectly, v and e have the relationµs, written as (e, v,N ∗) ∈ µs.
Where N ∗ is an ordered sequence of statement numbers to
record the path which is depended by the forming of relation
between e and v.
Definition 3.6 (Relation ρs): Suppose that v ∈ V , v′∈V ,

if the value of v takes part in calculating the value of
v′directly or indirectly, v and v′ have the relation ρs, written
as (v, v′,N ∗) ∈ ρs. Where N ∗ is an ordered sequence of
statement numbers to record the path which is depended by
the forming of relation between v and v′.
Definition 3.7 (Relation ηs): Suppose that v ∈ V , e∈E ,

if the e is judgment condition for branching or looping
construct and there exists S that defines v in the body of
branching or looping construct, e controls the execution of
S directly or indirectly, v and e have the relation ηs, written
as (v, e,N ∗) ∈ ηs. Where N ∗ is an ordered sequence of state-
ment numbers to record the path which is depended by the
forming of relation between v and e.
Definition 3.8. (Relation σs): Suppose that v ∈ V , v′∈V ,

if the value of v controls the execution of Swhich defines
v′directly or indirectly, v and v′ have the relation σ s, written
as (v, v′,N ∗) ∈ µs. Where N ∗ is an ordered sequence of
statement numbers to record the path which is depended by
the forming of relation between v and v′.
The operation between any two kinds of relations is

defined. Suppose that Rset = {λs, µs, ρs, ηs, σ s, for any two
relations R,R′, we have:

(x, y,N ∗ ∈ R) ∧ ((y, z,N
′
∗) ∈ R′)⇒

((x, z,N ∗ :: N
′
∗) ∈ RR′) ∧ (RR′ ∈ Rset),

Where :: is a connector which means that N ∗ and N
′
∗ are

connected orderly.
From the above basic definitions, it can be seen that the

relation among ρs, λs andµs is ρs = λsµs, while, the relation
among σ s, λs and ηs is σ s = λsηs.

The calculation methods of Ds and the other relation types
are given separately according to the three basic program
structures and the assignment statement that delivers the data.

1) Assignment statement S: ass v e, (N is the statement
number of S):

Ds = {(v,N)} ,

λs =
{
(v′, e,N | v′ ∈ V (e)

}
,

µs = {(e, v,N)}, ηs = ∅,

ρs = {(v′, v,N)|v′ ∈ V(e)}, σs = ∅.

2) Sequence structure S:S1; S2.

Ds = Ds1 ∪ Ds2, λs = λs1 ∪ ρs1λs2 ∪ λs2,

µs = µs1 ∪ µs1ρs2 ∪ µs2, ηs = ηs1∪ηs1σ s2 ∪ ηs2
ρs = ρs1 ∪ ρs2 ∪ ρs1ρs2,

σ s = σ s1 ∪ σ s2 ∪ σ s1σ s2 ∪ ρs1σ s2.

3) Branching structure S: if e S1S2, (the statement number
of e is N):

Ds = Ds1 ∪ Ds2,

λs = λs1 ∪ λs2 ∪ {(v, e,N)|v ∈ V (e)} ,

µs = µs1 ∪ µs2, ηs = ηs1∪ηs2∪{(e, v,N
∗)|(v,N ′)

∈ Ds1∪Ds2,N ∗ = N :: (e −→v)N ∗},

where:

(e −→v′)N ∗ =

N ∗1 ∃(e′, v,N ∗1) ∈ ηs1;
N ∗2 ∃(e′, v,N ∗2) ∈ ηs2;
N ′ otherwise.

ρs = ρs1 ∪ ρs2,

σ s = σ s1 ∪ σ s2 ∪ λsηs.

4) Looping structure S : whileeS1, (the statement number
of e is N):

Ds = Ds1,

λs = {(v, e,N)|v ∈ V (e) ∪ ρs∗1 ∪ ({(v, e,N)|v

∈ V (e) ∪ λs1) ∪ λs1,

where ρs∗ = ρs ∪ ρs2 ∪ . . .∪ρsn,

µs = µs1 ∪ µs1ρs
∗

1,

ηs = ηs1 ∪ {(e, v,N
∗)|(v,N) ∈ Ds1,

N ∗ = N :: (e −→v)N ∗},

where:

(e −→v′)N ∗ =

{
N ∗1 ∃(e′, v,N ∗1) ∈ σ s1;
N otherwise.

ρs = ρs∗1, σ s = σ s1 ∪ λsηs.

The ρs and σ s contain the internal relations and their path
information, which can support the verification of program.
The roles of λs, µs and ηs are helping the calculation of ρs
and σ s.

30742 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

Based on the above definitions and calculation methods,
static analysis of program can be done to extract the internal
relations. And the program can be abstractly expressed as a
three-tuple P = (V, ρs, σ s).

C. HANDLING OF REDUNDANT RELATIONS AND
CLASSIFICATION OF VARIABLES
In practice, there are variables in program that cannot be
connected to the requirements, for example, a programmer
can define memory management and memory assignment for
implementing an algorithm which may not be linked directly
to the requirement. These variables and the relations between
them cannot provide useful information for the verification,
so the program P is further analyzed to delete such redundant
information. Furthermore, there are three elements in C .Vset
and constraints between them are given in VL of RCM (intro-
duced in section 2). In order to support the verification of
these constraints, the variables are classified and connected
with the three kinds of elements in a Concern. To simplify
the description, we define the mapping function between
variables and concerns in RCM.
Definition 3.9. (Mapping Function Mv→C): A mapping

function of Mv→C returns the concern that has realization-
relation with the given variable in RCM. The form ofMv→C

is shown as below:

Mv→C
: v× RCM → C .

Mv→C (v,RCM) =

{
Ci ∃Ci ∈ RCM · Cset∧Rr(v,Ci);
Null else.

1) HANDLING OF REDUNDANT RELATIONS
The process of deleting redundant relations includes two
sub-process: deletion of relations and establishment of new
mapping relationships. Next, the detailed introduction of each
sub-process is given.

1) In the sets of relations ρs and σ s, if a relation established
by two variables that cannot be connected with requirements,
the relation is useless in the verification and can be deleted.
Take ρs as example, the concrete rules is shown:
∀(v, v′,N ∗) ∈ ρs:

• if v = v′, delete (v, v′,N ∗).
• if Mv→C (v,RCM) 6= ∅ ∧ Mv→C (v′,RCM) 6= ∅,
(v, v′,N ∗) ∈ ρs;

• if Mv→C (v,RCM) = ∅∧Mv→C (v′,RCM) 6=

∅ ∧ (∃ (v′′, v,N
′
∗) ∈ ρs),

delete (v, v′,N ∗) and add (v′′, v′,N
′
∗
::N ∗) to ρs;

• if Mv→C (v,RCM) 6= ∅ ∧ Mv→C (v′,RCM) = ∅∧
(∃ (v′, v′′,N

′
∗) ∈ ρs),

delete (v, v′,N ∗) and add (v, v′′,N ∗::N
′
∗) to ρs;

• if Mv→C (v,RCM) = ∅∧M v→C (v′,RCM) = ∅,

delete (v, v′,N ∗).

According to the rules above, the redundant relations in
ρs are deleted. Meanwhile, σ s is handled in the same way.
The new ρs and σ s are acquired as the basis of the following
process.

2) In the new ρs and σ s, if a relation still contains a variable
that cannot be connected with requirements, the relation is
used to send data between two functional modules corre-
sponding to different Concerns in RCM, and the variables in
this relation are mapped to the same concern. In this case,
a new mapping relationship is established to alleviate the
effect of information labels missing caused by non-standard
programming. The rules are given by taking ρs as example.
∀(v, v′,N ∗) ∈ ρs:
• if Mv→C (v,RCM) 6= ∅ ∧ Mv→C (v′,RCM) = ∅,
Rr(v′,Mv→C (v,RCM)) = true;

• if Mv→C (v,RCM) = ∅∧Mv→C (v′,RCM) 6= ∅,
Rr(v,Mv→C (v′,RCM)) = true.

The above two sub-processes are executed in turn, that
is only after 1) deletion of relations has completed, 2) the
establishment of new mapping relationships can be exe-
cuted. In this way, the race conditions between the two sub-
processes can be avoided. After the handling of relations,
ρs and σ s meet the following the property:

∀(v, v′,N ∗) ∈ ρs ∪ σ s⇒

Mv→C (v,RCM) 6= ∅ ∧Mv→C (v′,RCM) 6= ∅.

That is, there are corresponding information in RCM for all
the relations in ρs and σ s.

2) CLASSIFICATION OF VARIABLES
According to the mapping relationship with the concern in
RCM and the role it plays in the program, a variable is
classified in two levels: concern level and internal variable
sets level.
1) In the concern level, the variables are classified into n

kinds based on the concerns in RCM:
∀v ∈ V:

ifMv→C (v,RCM) = Ci,V (Ci) = V (Ci) ∪ v;

otherwiseMv→C (v,RCM) = ∅, delete v.

Thus, the set of variables V can be expressed as
V = {V(C1), . . . ,V(Cn), where the variables in V(Ci) are
related to the concern Ci in RCM.
2) Furthermore, in the internal variable sets level, the vari-

ables in a certain V(Ci) are further analyzed to establish map-
ping relationships with the three variable sets input,outputand
user_def of Ci. In this process, three corresponding sets
of variables V(Ci)input , V(Ci)output ,V(Ci)use_def are created
based on whether relations containing the given variables can
send or receive message from a variable related to another
Concern in RCM:
∀v ∈ V (Ci):
• if ∃(v′, v,N ∗) ∈ ρs ∪ σ s ∧ v′ /∈ V(Ci),V(Ci)input =
V(Ci)input ∪ {v};

• if ∃(v, v′,N ∗) ∈ ρs ∪ σ s ∧ v′ /∈ V(Ci),V(Ci)output =
V(Ci)output ∪ {v};

• if v /∈ V(Ci)input ∧ v /∈ V(Ci)output ,V(Ci)use_def =
V(Ci)use_def ∪ {v}.

VOLUME 6, 2018 30743

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

Based on the rules above, each V(Ci) is further classified.
V(Ci)input contains the variables that receive data or control
information from other fragments of program that correspond
to the concerns different form Ci. V(Ci)output contains the
variables that send data or control information to other frag-
ments of program. In V(Ci)use_def , the variables are created
just to realize the functionality related to Ci. It is worth to
note that the sets V(Ci)input ,V(Ci)output ,V(Ci)use_def meet
the following properties:
• V(Ci)input ∪ V(Ci)output ∪ V(Ci)use_def = V(Ci);
• V(Ci)input ∩ V(Ci)use_def = ∅;
• V(Ci)output ∩ V(Ci)use_def = ∅.
However, V(Ci)input∩V(Ci)output can be not null. That is

because a variable can go through a program fragment for
both receiving and sending information.

Based on the above three parts, the internal relation of pro-
gram is acquired. To express the final information, a model is
established.
Definition 3.10. (Program Internal Relation Model

(PIRM)): PIRM is specified as 3-tuple (V, ρs, σ s) where
• V = {V(C1), . . . ,V(Cn), where V(Ci) = {V(Ci)input ,
V(Ci)output ,V(Ci)use_def ;

• ρs is the set of internal relations of data in program;
• σ s is the set of internal relations of control in program.
PIRM is the presentation of internal relations, it describes

a program with its variables and the relations between
them. Thus, PIRM can be utilized instead of the program
itself as the object to be verified for inspecting whether
the program can satisfy the corresponding constraints in
requirements.

IV. VERIFICATION SYSTEM FOR VIRR
Internal relations of program are expressed by PIRM and its
constraints in requirements are defined in RCM. Based on the
PIRM and RCM, we give a framework of verification system
for VIRR in this section. In order to support automatic real-
ization of the system, formal definitions of the components in
the system are given and the implementation process of the
system is defined by formal semantic functions.

A. THE VERIFICATION METHOD AND THE FRAMEWORK
OF VERIFICATION SYSTEM
In RCM, the relationship can be divided into two kinds: inner
relationship of concerns and relationship between concerns.
Correspondingly, there are two forms of the constraints on
the internal relations of program: 1) inner relationship of
concerns, the constraints restrict the construction of a concern
by defining the relationship among the three variable sets;
2) the constraints on relationship between concerns, and this
kind of information is specified by defining the type of the
relationship. Furthermore, we can identify the kind of con-
straints that a relation in PIRM should obey according to the
variables contained in the relation, that is for a given relation
r = (v, v′,N ∗) and r ∈ ρs ∪ σ s, there are two conditions:
• If Mv→C (v,RCM) = Mv→C

(
v′,RCM

)
= C , the r

should satisfy the constraints on inner relationship of C ;

• if (Mv→C (v,RCM) = C) ∧ (Mv→C (v′,RCM) =
C ′) ∧ (C 6= C ′), the r should obey the constraints
between C and C ′.

Based on the rules above, the mappings between inter-
nal relations PIRM and constraints in RCM are established.
Then, the verification of software can be done also from two
aspects:

1) Whether all the constraints in RCM can be realized in
the program;

2) Whether all the internal relations in PIRM satisfy their
corresponding constraints.

The verification process of above two aspects are driven by
the requirements. Specifically speaking, the constraints in the
requirements are acquired from RCM and the set S of internal
relations related to the constraints is gained from PIRM, then
we have the following judgements:
• If S = ∅, it presents that the program lacks of the
realization to the constraints, that is the program cannot
meet the requirements;

• If S 6= ∅, further judgements are given: If there exists
a relation r ∈S and r does not meet the constraints, r
contains errors and the program needs to be modified;
otherwise, the program meets the requirements.

To support the application of above verification idea,
we give a framework of verification system in Figure 4, where
solid lines link the operations in the system and indicate
their execution sequence in the verification process, while the
dotted lines show the input and output of these operations.

Firstly, a verification task is selected. Then, the constraints
and internal relations related to the task are acquired from
RCM and PIRM separately according to the task. Finally,
the result is generated by inspecting whether the internal
relations can meet the constraints, and a signal is generated as
the feedback for the system to select another task. The above
process is executed in an iterative way until all the tasks have
been verified, and the result is send to the developers. The
detailed description of the verification system is given in the
following sub-sections.

B. THE FORMAL DEFINITIONS OF THE COMPONENTS
As is shown in Figure 4, the rectangles represent the input
and output of our system. The RCM and PIRM that have been
defined in the Section 2 and Section 3, and the meaning and
definition of verification task, result and signal are given next.

1) VERIFICATION TASK
Verification task is the input of the system, and it is set by
the developers as the objects of verification. By controlling
the verification task, the developers are free to select the
requirements they want to verify. According to the forms of
constraints in requirements, there are two types of concrete
verification tasks defined as below.
Definition 4.1 (Task of Constraints Between Concerns):

A task of constraints between concerns donated by cortask
is defined as a three-tuple (Ci,Cj, State),Ci 6=Cj, where:

30744 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

FIGURE 4. Framework of verification system.

• Ci,Cj are two different concerns, that is Ci,Cj ∈
RCM .Cset;

• State records whether the task has been imple-
mented or not. If it is, State = true; otherwise,
State = false.

cortask is the task that aims at inspecting whether the con-
straints of relationship between two concerns can be satisfied
by the program.
Definition 4.2 (Task of Constraints Inner One Concern):

A task of constraints inner one concern donated by sigtask is
defined as a three-tuple (Ci,∅, State), where:
• Ci is a concern, that is Ci ∈ RCM .Cset;
• State records whether the task has been imple-
mented or not. If it is, State = true; otherwise,
State = false.

sigtask is the task that inspects whether the constraints of
the inner relationship of a concern can be satisfied by the
program.

Based on the definitions above, the verification task is
defined.
Definition 4.3 (Verification Task): The verification task is

specified as two-tuple TASK = (CorTASK,SigTASK), where:
• CorTASK is the finite set of cortask , that is CorTASK =
{cortask1, cortask2, ..,cortaskn};

• SigTASK is the finite set of sigtask , that is SigTASK =
{sigtask1, sigtask2, . . . , sigtaskm}.

There are two ways to set TASK for the developers: one is
setting the TASK according to its form directly, which speci-
fies the tasksmore accurately provided by the developers who
have definite verification goals and know the related informa-
tion in RCM clearly; the other is giving the requirements that

need to be verified and the TASK is generated automatically
according to the relations between requirements and concerns
in RCM. When a requirement is given, the related con-
cerns in RCM can be identified based on the Definition 2.2.
Then constraints related to these concerns are taken as
the TASK.

2) RESULT
Result is the output of the system, and it records conclusion
of the verification task. When errors are discovered, the result
contains the type of errors and related internal relations of
program to support the modification of program.
Definition 4.4 (Verification Result (Result)): It is defined

by a two-tuple (kind,Content), where
• kind is the category of the result;
• Content ⊂ ρs ∪ σ s is the set of internal relations in the
PIRM, it records the concrete information.

The Result is given to developers when the verification
is complete. The kinds of Result are given in Table 3.
If Result.kind 6= Correct , it indicates that there are errors
in the program and Result.kind describes the reasons of
these errors; furthermore, Result.Content gives the locations
of errors in the statement level. For example, a Result =
(CorExtraControl, (X ,Y , (1, 2))}), it indicates that the control
relation between variablesX and Y makes the program cannot
satisfy the constraints in the requirements, and such errors are
generated from the statements 1 and 2 in the program. This
information gives suggestions to the developers onmodifying
the errors.

It is noteworthy that there may be much information in
Content and the location of errors is not accurate enough.

VOLUME 6, 2018 30745

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 3. Information of kind in result.

In such situation, Content needs to be further analyzed
to give the probability of location, so that the developers
can inspect the location with high probability first. The
essential of Content is a set of internal relations described
by variables and ordered sequence of statement numbers,
so if the frequency of a statement appeared in Content is
high, the probability of errors that exit in the statement
is accordingly high. For example, if there are two internal
relations (x1,y1,(1,2,4,5)) and (x2,y2,(3,4,6,7)) in Content ,
the statement 4 is the location that should be checked first
because it appears in both relations.

3) SIGNAL AND VERIFICATION RULES
Signal is used for the information exchange in the system to
drive the process of verification.
Definition 4.4 (Signal (SIGN)): A signal is specified as a

two-tuple (C,C ′), where
• C ∈ Cset is a concern in RCM;
• C ′ ∈ Cset ∪{∅∧C ′ 6=C : If C ′ 6= ∅, the signal contains
the information between C and C ′; otherwise, the signal
contains the information related to C.

In the verification system, there are a set of rules (denoted
by Rule) in the system. These rules control the detailed pro-
cess of verification and can be changed by the developers
based on the actual situation. We use a set of preset functions
to describe these rules.
Function 4.1 (Concern and Relationship Selected

Function (Mcrs)):

Mcrs
:(C,C ′)× RCM −→(Ci,Cj),

where C,Ci ∈ RCM .Cset,C ′,Cj ∈ RCM · Cset ∪ {∅}.
The input of Mcrs is RCM and (C,C ′) which can express
a relationship either between concerns or inner-concern.
The output of Mcrs is (Ci,Cj), which also describes a
relationship.

The Mcrs is a traversal strategy of the information in
RCM. In our previous work [12], [16], we have analyzed
the relationship between requirements and given a method
to quantify the affection degree between them. We introduce

the core idea in Section 2 and give the correlation degree
between concerns in definition 2.5. Here, we use it as the
traversal strategy Mcrs for scheduling our verification pro-
cess. Specifically, When the system receive a signal (C,C ′),
the strategy decides which relationship would be inspected
next. In our experiment, correlation degree between concerns
CD(introduced in definition 2.5) is used to find the relation-
ship that have the biggest correlation with the current one,
that is: If (C,C ′) = (C,∅) and there is a C′′ giving the biggest
value of CD(C,C′′), we have next task as (Ci,Cj) = (C,C ′′);
otherwise, if C ′ 6= ∅, (Ci,Cj) = (C ′,∅). Based on Mcrs,
when an error is discovered and a corresponding SIGN is
generated with the result, the verification system can use the
SIGN to find other requirement most related to the error and
set it as the new verification task. In this way, the system can
discover new errors more efficiently.
Function 4.2. (Element Selected Function (S)): S is a strat-

egy for the set to select one element.

S : Set → element.

For the different sets, they can have different strategies and
we use SSet to present the concrete strategy for the given Set .
In fact, S usually is a random selection strategy when the
developers do not give any restrictions.
Function 4.3 (Element Selected Function (F)): F is a strat-

egy to judge whether an element is in the given set.

F : Set × element → element,

where Set is a given set and element .

C. IMPLEMENTATION PROCESS OF THE SYSTEM
Based on the definitions above, the implementation process
of verification system is described in a formal way using

30746 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

semantic functions. The process inspects the internal relations
of program to check whether they can satisfy the constraints
in requirements according to the verification task, its seman-
tic function is given.
Function 4.4 (Verification System (VerifySys)):
VerifySys:

RCM× PIRM× TASK× SIGN
Rule
−→ Result × SIGN.

When a task is selected (expressed by function TaskCOp),
it needs to judge the kind of the task for choosing a
proper method to implement the verification task. Func-
tion VerifyOPSig expresses the process of verifying the task
belonging to SigTASK, while function VerifyOPCor expresses
the process of verifying the task in CorTASK. Then, the result
and signal are generated where the state of finished task is
changed (described by functionMstate). If the selected task is
null, that is all the verification tasks are verified, the process
of verification is ended. The concrete descriptions of func-
tions in this process are shown next.
Function 4.5. (State Changed of Task (Mstate)):

Mstate
: XTASK × (C,C′, false)→ XTASK,

where XTASK ∈ SigTASK ∪ CorTASK.

Function Mstate describes that the process of changing the
state of task when it has been verified.
Function 4.6. (Task Choosing Operation (TaskCOp)):

TaskCOp : RCM× TASK× SIGN
Rule
−→ SIGN.

TaskCOp is the realization of automatically choosing the
next task from TASK for the system. When a task is fin-
ished, the RCM is traversed according to the strategy Mcrs

and a new constraint is chosen. Then, the system judges
whether there are any unfinished tasks related to the con-
straint (described by MJudge): if there exists, the task is
chosen and returned by a signal; otherwise, another concern
is selected according to the preset rule SCset to find related
task. When all the concerns in RCM are traversed and no
related task is unfinished, the function TaskCOp returns
null.

As there are two kinds of tasks, the function MJudge has
two formsMJudge_sig andMJudge_co respectively.
Function 4.7(1). (Task Judge (MJudge_sig)):

MJudge_sig
: C × TASK

Rule
−→ TASK.

When the input of MJudge_sig is a concern and TASK, the
function judges if there is an unfinished task related to the
concern in TASK. The related taskmeans that the task is about
the constraints generated from either the relationship in the
concern C or the relationship between concern C and another
concern. The MJudge_sig returns the related task and the task
belonging to SigTASK has precedence.

VOLUME 6, 2018 30747

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

Function 4.7(2) (Task Judge (MJudge_co)):

MJudge_co
: (C × C)× TASK

Rule
−→ TASK.

The input ofMJudge_co is a relationship between concerns.
In this condition, MJudge_co is a simple searching function
that is to judge if there is unfinished task of constraint
between the concerns in CorTASK.
To verify the task, its related information must be acquired

from RCM and PIRM. The processes are described by func-
tions InforRetrRCM and InforRetrPIRM separately. Similar
to function MJudge, InforRetrRCM and InforRetrPIRM also
have two forms for different kinds tasks.
Function 4.8(1) (Information Retrieval of RCM

(InforRetrRCM_sig)):

InforRetrRCM_sig
: RCM×(C,∅)

Rule
−→ (C,∅,VL).

InforRetrRCM_sig acquires the inner constraints of one
concern from RCM for the task belonging to SigTASK,
the constraints are contained in the C .VL expressed as a
six-digit code.
Function 4.8(2) (Information Retrieval of RCM

(InforRetrRCM_co)):

InforRetrRCMco :RCM×(C,C ′)
Rule
−→ (C,C ′, type),

where C′ 6= ∅.

InforRetrRCM_co acquires the constraints between two
concerns from RCM for the task belonging to CorTASK,
the constraints are contained in the CL expressed as the type
of relationship between concerns.

Function 4.9(1) (Information Retrieval of PIRM
(InforRetrPIRMsig)):

InforRetrPIRM_sig
: PIRM× (C,∅)

Rule
−→ V × V × V

× (Content × Content × Content × Content
×Content × Content).

InforRetrPIRM_sig corresponds to InforRetrRCM_sig, its
input is a concern and PIRM, and it returns the sets of
variables and internal relations. In the returning, the three
sets of variables correspond to three variable sets of the
concern, which include input, output and user_def; and the
six sets of internal relations correspond to each digit code of
VL acquired by InforRetrRCM_sig separately in order.
Function 4.9(2) (Information Retrieval of PIRM

(InforRetrPIRMco)):

InforRetrPIRM_co
: PIRM × (C,C ′)

Rule
−→

V × V × (Content × Content) ,C ′ 6= ∅.

30748 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

The input of InforRetrPIRM_co is a relationship (C,C ′)
and PIRM. Since the type in RCM restricts the type of
information in the program, the different types of internal
relations should be separated. Thus the returning includes:
two sets of variables that are corresponding to the output of
C and input of C ′; two sets of internal relations containing
the control relations and data relations separately. To simplify
the description, functions MControl and MData are used to
describe the acquirement of sets of control relations and data
relations.

MControl
: V × V×σ s

Rule
−→ Content.

MData
: V × ρs

Rule
−→ Content.

According to the given variables, MControl and MData

search the internal relations from σ s and ρs in PIRM, where
σ s is the set of control relations and ρs is the set of data
relations. If the relation contains the variables same as the
given ones, the relation is taken as part of returning.

Based on the InforRetrRCM and InforRetrPIRM , the infor-
mation related to a task including constraints and its
corresponding internal relations are acquired from RCM

and PIRM. Then, the verification can be processed and the
result is generated.
Function 4.10 (Verification Operation for Task Belong to

SigTASK (Verif yOPSig))

VerifyOPSig : RCM × PIRM × SigTASK
Rule
−→ Result.

VerifyOPSig describes the verification process for the task
in SigTASK. For such task, its related constraints are expressed
in the VL as a six-digital code. For each digital, it stands for
whether there can be relations between two certain variable
sets of a concern (introduced in Section 2). The verifica-
tion is inspecting whether the internal relations can satisfy
the constraints. Because the verification of each digital is
same, we use the function Mver to express the process,
where

Mver
:n× V × V×Content→ Result.

Function 4.11 (Verification Operation for Task Belongs to
CorTASK (Verif yOPCor)):

VerifyOPCor : RCM × PIRM × CorTASK
Rule
−→ Result.

VOLUME 6, 2018 30749

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 4. Concerns in RCM of LCS.

VerifyOPCor describes the verification process for the task
in CorTASK. For such task, its related constraints are expressed
by the type of relationship between concerns. For a given type
of relationship in RCM, we check if there are corresponding
internal relations in the program and whether the internal
relations can meet the constraints.

V. EXPERIMENT
To validate our approach VIRR, we conducted experiments
based on the Light Control System (LCS). As the LCS is
widely studied and used in our previous work [12], we choose
it as our experiment object. The requirements text of LCS is
given in [20]. Our experiments aim at answering the follow-
ing two questions:
Q1: Can VIRR discover the errors and locate them in the

program efficiently?
Q2: Can VIRR help developers tomodify the programwhen

requirements change?
The steps and results of the experiments are analyzed in

this section

A. RCM OF LCS
The requirements of LCS is described by a set of num-
bered statements, and we choose parts of the requirements
{FM1-2, FM4,FM6-7,NF3-5,U13,U14} as the requirements
set because they are related to each other closely and describe
the functional needs of users. In RCM, the set of concerns
Csetand their part relationship RL are shown in Table 4 and
Table 5 respectively.

B. EXTRACTING INTERNAL RELATIONS FROM
CODES AND ESTABLISHING PIRM
We invited three programmerswho hadmore than three year’s
software development experience in our experiments: one of
them wrote the source codes in C++ to realize the require-
ments above, and the other two programmers inspected the
codes. As the requirements is not complicated, the program
built for them was in small scale and we assumed that the
three programmers could guarantee it satisfy the require-
ments. Then, we gained 5 different versions of the pro-
gram by inserting errors and used them as the materials for
answering Q1.

We established PIRM from the program for VIRR. One
segmentation of program shown in Figure 5(1) is chosen

30750 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 5. Relationship between concerns in RCM of LCS.

FIGURE 5. Preprocessing of a program segment.

as an example to illustrate this process. The major func-
tionality of program segmentation is to receive information
about light intensity and motion, etc. Based on the infor-
mation, the control signal of the ceiling light is generated
through logic judgment and delivered into the control seg-
ment. Since the internal structure of this program segmenta-
tion and its relationship with other programs being stable, it is
representative.

Firstly, the preprocessing of program is conducted. The
result of Figure 5(1) is shown in Figure 5(2). As the state-
ments {16,17,19,20,24,26} in Figure 5(1) define the global
variables and they do not reflect the internal relations of
program, they are ignored in Figure 5(2). Meanwhile, since
there is no formal parameter defined in function CS(), any
calls of it are isomorphic. As is shown in Figure 5(2),
(248,{162,168,149,141,209}) expresses that the statements

VOLUME 6, 2018 30751

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 6. Examples of Internal relations in PS.

TABLE 7. Examples of Internal relations in σs.

of {162,168,149,141,209} in source codes are the isomor-
phic. In addition, (279,{265}) and (279,{269,272}) are two
function instances of LC(boolean light), that is because the
parameters delivered in these two function calls are related
to different concerns: Override_Switch ⇒ Override and
CS_Output ⇒ CS.
Secondly, the sets ρs and σ s of internal relations are cal-

culated according to the methods introduced in Section 3.2.
Finally, the redundant relations are handled and variables

are classified based on the rules introduced in Section 3.3.
For the program segmentation shown in Figure 5(2), we have
V(CS) = (V(Ci)input ,V(Ci)output ,V(Ci)use_def), where

V (Ci)input =

CS_SIGOLS,CS_SIGOMD,
CS_timeout,
CS_JC,CS_Overrid,
CS_MALOLS,CS_MALMD

 ,
V(Ci)output = {CS_Output},

V(Ci)use_def = {CS_SIG_Output.

Parts of data relations and control relations are shown
in Table 6 and Table 7.

C. IMPLEMENTATION OF VERIFICATION SYSTEM
In the experiment, we used the verification system to inspect
the whole program. Thus, TASK of the verification included
the constraints in all concerns and the constraints between
concerns in RCM. For Mcrs, we adopted the strategy of
top-down combined with biggest correlation (introduced in
subsection 4.2), that is the concern in RCM was chosen
according to its type in the order of topic → kinds →
instance→ property, and biggest correlation was used when
the kind of concerns is same. For other sets, random selection
strategy was used. In this way, a simply verification system
was established based on our framework. Then, the system
was implemented to verify the tasks.

D. THE ANALYSIS OF THE RESULTS FOR Q1
Table 8 shows an example of results of verifying one version
of program by VIRR. The meaning of results is introduced

TABLE 8. Examples of results.

in subsection 4.2. For example, in the row of CorExtraControl,
3 means there are 3 extra control relations in the program and
14 means there may 14 paths in the program that are related
to these 3 errors. Totally, our VIRR discovered 12 relation
errors and located 53 related paths in this case.

Based on the results, three evaluation parameters are used
in experiments: TP, the number of errors which are inserted
by programmers and discovered by VIRR; FP, the number
of errors which are discovered by VIRR but not inserted by
programmers; FN, the number of errors which are inserted
by programmers but not discovered by VIRR. Then we
evaluate the performance of VIRR for Q1 by calculating:
Precision, Recall, and F-measure, which are defined as
follows:

Precision =
TP

TP+ FP
;Recall =

TP
TP+ FN

;

F−measure =
2× Precision× Recall
Precision+ Recall

.

Table 9 summarizes the results of the evolution. It can be
seen that the precision and recall of VIRR are 89.47% and
90.88% on average respectively. The values of F-measure
for all program are above 85%, and the highest one
can reach 93.75%. This indicates that our method can
achieve a good performance for discovering and locating
the internal relations of program that do not satisfy the
requirements.

30752 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

TABLE 9. Results for Q1.

E. THE EXPERIMENT FOR ANSWERING Q2
Evaluating the usefulness of VIRR when requirements
change is a nontrivial task. To answer Q2, we designed the
experiment with following steps.

We firstly changed/added one requirement of LCS and
used VIRR to locate the place that needs to be modified.
In such condition, the verification TASK was set based on
the changed requirement, so the VIRR did not need to verify
the whole program again. For example, when requirement
FM6 was changed and a new requirement that ‘‘the facility
manager can achieve the supreme authority to control the
light’’ was added, the VIRR inspected related parts and gave
2 relation errors with 17 program paths that might need to be
modified.

Secondly, we gave the changed requirements and informa-
tion gained in the first step to the three programmers, and
asked them to update the program. Meanwhile, we required
the programmers to respond whether such information was
useful in the updating process on a scale of 1 to 5, where
1 indicates ‘totally no’ and 5, ‘totally yes’.

We compared the modification part of a program by pro-
grammerswith the information provided byVIRR, and define
the Coverage to evaluate the performance of VIRR. For each
case, suppose that the statements in source codes modified
by programmers for meeting the changed/new requirement
established a set ChangS (sourcecodes), while the statements
in the information provided by VIRR were a set VIRRSet ,
the Coverage was calculated by the formula:

Coverage =
|ChangS (sourcecodes) ∩ VIRRSet|

|ChangS (sourcecodes) |
.

That is how many statements modified by programmers are
also given by VIRR. Note that the new added statements are
not considered in this process.

TABLE 10. Results for Q2.

The experiment included 5 cases, 3 changes of require-
ments and 2 new requirements. The results gained from three
programmers are shown in Table 10. It can be seen that the

Coverage is 80.91% for the cases that changed requirements
and 87.80% for the cases that added new requirements on
average. Furthermore, the scores given by the programmers
are all above 3 and the average is 4.07. This indicates that
VIRR can help programmers modify the codes to cope with
the changed/added of requirements.

After the experiment, we had an open discussion with
the programmers for getting their suggestions. All of them
emphasized the usefulness of VIRR in modifying the codes
that related to the changes of requirements indirectly. As there
are relationships between requirements, when changing
a requirement or adding a new one, the statements in the
codes for connecting it with other requirements need to be
considered besides the part for realizing the requirement
itself. VIRR can provide valuable information for locating
these statements, which is beneficial for reducing the time-
cost of updating the software.

F. THREATS AND LIMITATIONS OF THE EXPERIMENT
Although the results were good in our experiments, the valid-
ity of our study suffers several threats and limitations.
We analyze them from two aspects.

1) THREATS TO THE VALIDITY OF EXPERIMENTS
Firstly, the scale of the dataset in our experiments is not very
large. Due to our approach relies on both requirements and
corresponding codes, we could not evaluate our approach
with additional datasets in a short time. Thus, it is unclear
whether our approach can achieve similar performance when
it is applied to large-scale software. However, LCS is a typical
object used in many studies, and our experiments based on it
can guarantee the effectiveness of our conclusions to some
extent. In addition, the discussion provides an open way for
programmers to evaluate our approach.

Secondly, there lacks of comparisons between VIRR and
existing methods. There are mainly three reasons. a) With
respect to the execution time: the RCM is established in
the phase of requirements engineering and the construction
of PIRM only needs to scan the program once, meanwhile,
the verification process can be taken as searching the graph of
PIRM according to the information in RCM, so the time com-
plexity of the proposed approach is O(n2). In our experiment,
the time of verification process is very short as the scale of
codes is small, so we could not compare the time with other
methods. b) In addition, our approach requires the program
containing the labels related to requirements, this means we
need additional information and it would be not fair for other
methods in the comparisons. c) Furthermore, there are no
methods in software verification that help programmers to
cope with the change of requirements to our knowledge,
so we could not give the comparison from this point.

G. LIMITATIONS OF OUR APPROACH
Firstly, the kind of errors can be discovered in our approach
is limited. As we focus on inspecting the internal relations
of program with the constraints in requirements, only related

VOLUME 6, 2018 30753

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

errors can be identified. Thus, we evaluate the performance of
VIRR by only inserting this kind of errors in our experiments.
In the further, we will mine more kinds of information from
requirements and introduce them into software verification,
so that our approach can be extended to cope with different
kinds of errors in program.

Secondly, our methods could not correct the errors auto-
matically. As verification system inspect the software based
on the requirements, the results can provide the informa-
tion for locating the codes that may be modified, while the
decisions still need to be made by programmers manually.
In addition, an important goal of our approach is supporting
the update of software according to the changes of require-
ments, and these changed requirements must be realized
by developers. However, by accumulating the errors and
their corresponding modification strategies in one particular
domain, we may provide a list of common errors with the
solutions. In this way, the system could modify some errors
automatically. We wish to study this problem by cooperating
with companies to apply our approach in practice.

VI. RELATED WORK
Software verification as a hot research topic in the field
of computer science, it often includes two aspects, practice
studies and theory researches. On one hand, some practice
studies rely on verification projects, such as the certified com-
piler CompCert [21] and the microkernel seL4 [22], while
others give verification system for specific target, Linux’s
USB BP Keyboard Driver [23] and event-condition-action
systems [24]; meanwhile, the properties of the verification
project are also studied [25], [26]. On the other hand, there
are many researches on the theory of software verification,
they are not limited by actual projects and have a broader
research space. Due to lack of projects resource, our work
pays more attention to the theoretical study and we discuss
the related work from this aspect. Our work focuses on using
requirements in the verification process, and tries to provide
theoretical basis for bridging the gap between software ver-
ification and requirements engineering. Thus, we divide the
related work from the perspective of requirements, into non-
functional requirements and functional requirements.

Non-functional requirements evaluate the operations of the
system and its features (such as safety, stability, etc.). Many
researches are given to verify these properties of program.
Alastair F. Donaldson utilizes a new k-induction rule for ver-
ifying software programs, which allows program verification
using weaker loop invariants [27]. In [28], a bounded time
safety verification technique for periodically actuated linear
control systems is presented, by using matrix exponentia-
tion, and symbolic evaluation of inputs, the paper gives a
transformation procedure to reduce the verification problem
of such systems into software verification with computation
over reals. In [29], a controller is synthesized for the meshing
process of Motor-Transmission Drive System with uncertain
initial states and its safety property is verified with respect
to the CHA model. Reference [30] presents a methodology

and a tool to perform automated static analysis of embed-
ded controller code to verify the stability of the controlled
physical system, which can guarantee that the physical plant
converges to a desired behavior under the actions of the
controller. In [31], a new method for automatically inferring
loop invariants is presented to help make extended static
checking more acceptable. Reference [32] establishes the
PolyPaver tool which can naturally deal with the integral
operator and interval expressions and inclusions, and the
paper gives a formal account of the main concepts behind it.
Reference [33] proposes a novel approach for static software
verification of embedded C sensor applications to verify the
program and report error traces and gives a support tool.
These researches focus on discovering the errors caused by
coding, such as out-of-bounds arrays, null-pointer derefer-
ences, etc. However, they do not use the information in the
requirements essentially, so some high-level non-functional
requirements, such as the structure of program, cannot be
inspected. Different from them, our approach establishes the
relationship between requirements and verification, and uses
the requirement model directly in the process of verification,
so it can help developers analyze software based on high-level
non-functional requirements as well as functional require-
ments, we give a detailed discussion in Section 7.

Functional requirements define the functionality of a
software system and its components. Many researches
of software verification take the functionalities or behav-
iors of software as the objects to inspect the satisfaction
degree of software on functional requirements. S.Liu pro-
poses a method by inspecting whether every functional sce-
nario defined in the specification is implemented correctly
by a set of program paths and whether every program path
of the program contributes to the implementation of some
functional scenario in the specification to complete the ver-
ification of program [11]. Reference [34] reports a case
on static analysis of critical C code, establishing a prop-
erty on functional behavior of this code to verify the pro-
grams involving floating-point computations. In [35], the
verification of parallel programs correctness is based on
the axiomatic approach. In [36], a simulation framework is
described to verify the real-time embedded control applica-
tions by simulating functional behavior of operating system
services and hardware components at a level of abstraction.
In [37], a simulation-based verification framework is firstly
presented for nonlinear switched systems, in which users
are required to annotate the dynamics in each control
mode by a discrepancy function that formally measures the
nature of trajectory convergence/divergence of the system.
Reference [38] models Behaviors of the vehicle in Markov
Decision Processes (MDPs) and verifies them by a prob-
abilistic model checker PRISM. Reference [39] proposes
a novel approach focusing on a process algebra structure
that captures behavior-based programming to verification of
performance guarantees for behavior-based robot programs.
Reference [40] proposes an approach based on model
checking to verify the satisfiability of behavior-aware

30754 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

privacy requirements in services composition. Similar to
these researches, our work also extracts functionality related
information from user requirements for software verification.
But our approach introduces the formal model of require-
ments into the verification process, which makes our work
different from them significantly. As the model describes the
functionalities and their relationship more accurately, devel-
opers can verify part of codes based on the requirements they
concerned without inspecting the whole program. Moreover,
the changes of requirements are reflected by the model better,
so that our approach can locate statements that need to be
modified by verifying the program according to the model,
this can help developers update the software to meet the ever-
changing requirements efficiently.

VII. DISCUSSION
The RCM and PIRM can help establish the relations between
user requirements and software, and provide the basis for
inspecting whether the software can meet the requirements.
Although VIRR is the verification of software from perspec-
tive of functional requirements, the information in RCM and
PIRM can also help the developers to analyze and verify the
program from the aspect of non-functional requirements to
some extent. In this section, we propose a simply discussion
on this issue.

We divide the non-functional requirements into two levels
from the angle of program: one level is about the concrete
requirements to the codes, such as safety; the other level
is the requirements about the structure of program, such as
maintainability, easy to update, etc. For the first level, many
existed researches are introduced in Section 6. However, it is
difficult to inspect the second level just depending on the
existed methods. During our research, we discover that the
relations established between RCM and PIRM are benefit for
the verification and analysis of the non-functional require-
ments of the second level. We shows the benefits from the
following three aspects.

A. PARTITION OF PROGRAM MODULES
To analyze the structure of program, the program must be
partitioned into modules. Since the structured development
approaches of software are mostly used recent years, there
usually exist natural program modules. And many analysis
methods are based on such program modules. However,
the relations between natural modules and user requirements
are unclear. When requirements changed, it is hard to judge
the modules that need to be modified correspondingly. Thus,
the analysis of structure based on the natural modules cannot
directly reflect the complexity of software updating and is not
adapt to verify the related non-functional requirements. In our
approach, the elements in PIRM.V = {V(C1), . . . ,V(Cn)}
are corresponding to the concerns in RCM, which means
that they are related to the requirements. Based on the set
PIRM.V, the program statements containing the variables in
one element of the set are taken as a program module. The
modules partitioned in this way are closer to the software

requirements, so the relations between such modules can
better reflect the structure of software under the constraints
of requirements.

B. DESCRIPTION OF PROGRAM STRUCTURE
After the program modules have been acquired, the next
question is how to describe the structure of program based
on these modules. The information in ρs and σ s can describe
the relations inside and among these modules helping to solve
this problem. Since ρs and σ s contain almost all the relations
in the program but not all the relations can describe the
structure, we need to analyze these relations to extract useful
ones. For a given relation r ∈ PIRM.ρs ∪ PIRM.σ s, it can be
a backbone relation if it can satisfy the following conditions:

• @r′, r′′ ∈ PARM · ρs ∪ PARM · σ s, st · r = r′ + r′′;
• @r′ ∈ PARM · ρs ∪ PARM · σ s, st · r′ ⊂ r.

The backbone relation is the embodiment of informa-
tion direct transmission in the program and reflects the
program intuitively. By acquiring the backbone relations
in ρs and σ s, we establish the new set ρs′ and σ s′.
And we define DPIRM= (PIRM.V, ρs′, σ s′), which
is the basis of describing the structure of program.
In DPIRM, the relations can be divided into two type: if
r =

(
v, v′,N ∗

)
,Mv→C (v,RCM) = Mv→C

(
v′,RCM

)
,

r can be used to describe the structure inside the mod-
ule corresponding to concern Mv→C (v,RCM); if r =(
v, v′,N ∗

)
,Mv→C (v,RCM) 6= Mv→C

(
v′,RCM

)
, r can

be used to describe the structure between modules that are
corresponding toMv→C (v,RCM) andMv→C

(
v′,RCM

)
.

C. ANALYSIS OF PROGRAM STRUCTURE
Based on the description of program structure, the properties
of program can be analyzed to inspect whether they can meet
non-functional requirements. To achieve this goal, the weight
of a relation in the program structure should be identified.
For a given relation r =

(
v, v′,N ∗

)
, the number of nodes in

N ∗ can measure the correlation degree between v and v′. And
we use this number to quantify the relation r, which provides
basis for the next analysis. Then, two important structure
properties, coupling and cohesion, are taken as examples to
discuss the approaches of analyzing program structure.

Coupling represents the overall loose degree of program
structure. In general, the lower coupling is, the more easily
program updates. The sum of relations among modules has
the similar feature, that is, the more relations amongmodules,
the more complex program changes. However, since the scale
of program is different, only the above sum cannot be used as
coupling. For instance, such sum of a large program is bigger
than the one of a small program, but we cannot say that the
coupling of the large program is also bigger. Thus, we think
that the percent of relations among modules in ρs′ and σ s′

can be defined as the coupling of program.
Cohesion is defined in a module to represent its indepen-

dence degree. The relations related to a module can help the
developers to analyze its cohesion. For amodule, the relations

VOLUME 6, 2018 30755

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

inside it embody its inner structure and the relations between
it and other modules embody its dependence or effect with
other modules, so we think that the ratio of the above two
kinds relations can be used to define cohesion of the module.

The coupling and cohesion defined above can be easily
calculated based on DPIRM, and they can help the developers
to analyze the structure of program. In this way, whether the
program meets related non-functional requirements can be
inspected.

Based on the discussion above, we believe that the appli-
cation scope of the information in our method VIRR can
be expanded. And the relations established between program
and user requirements can make the verification of software
more comprehensive.

VIII. CONCLUSION AND FUTURE WORK
An important goal for software verification is to inspect
whether the program can meet user requirements, where the
frequent change of requirements proposes new challenges.
This paper proposes an approach called VIRR, that verifies
the software by inspecting the internal relations of program
with the user requirements. In VIRR, the requirements are
presented by a concern-based model RCM, which defines
the constraints that the program should satisfy; the internal
relations of program are defined asλs, µs, ηs, ρs and σ s,
and the program is transformed to PIRM by calculating these
relations; then, a verification system framework is formally
described using semantic functions to support the automation
of the proposed approach. Furthermore, the verification task
can be set to focus on inspecting part of a program with the
changing requirements. Our work shows that the verification
process can be implemented to discover the errors related to
internal relations at statement level, and to locate or to inspect
the changed parts in the program to help developers cope
better with the ever-changing requirements.

Our future work will focus on two aspects. First, as the
framework of verification system has not defined the concrete
structure, we will compare the efficiency of different struc-
tures to find a best one for realizing the system. Second, there
are other properties/constraints defined in user requirements,
and it will be studied to find whether they can be used in the
software verification.

REFERENCES
[1] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, ‘‘Formal

methods: Practice and experience,’’ ACM Comput. Surv., vol. 41, no. 4,
p. 19, 2009.

[2] D. Beyer and T. Lemberger, ‘‘Software verification: Testing vs. model
checking,’’ in Proc. Haifa Verification Conf., 2017, pp. 99–114.

[3] D.Matichuk, T. Murray, J. Andronick, R. Jeffery, G. Klein, andM. Staples,
‘‘Empirical study towards a leading indicator for cost of formal software
verification,’’ in Proc. IEEE/ACM, IEEE Int. Conf. Softw. Eng., May 2015,
pp. 722–732.

[4] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens, ‘‘Software verification with VeriFast: Industrial case studies’’
Sci. Comput. Program., vol. 82, no. 2, pp. 77–97, 2014.

[5] D. Beyer, ‘‘Second competition on software verification,’’ in Proc. Int.
Conf. TOOLS Algorithms Construction Anal. Syst., 2013, pp. 594–609.

[6] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf, ‘‘Linking func-
tional requirements and software verification,’’ in Proc. 17th IEEE Int.
Requirements Eng. Conf. (RE), Aug. 2009, pp. 295–302.

[7] T. Yamaguchi, T. Kaga, and S. A. Seshia, ‘‘Combining requirementmining,
software model checking and simulation-based verification for industrial
automotive systems,’’ in Proc. IEEE Formal Methods Comput.-Aided
Design, Oct. 2017, pp. 201–204.

[8] C. Pfaller, ‘‘Requirements-based test case specification by using infor-
mation from model construction,’’ in Proc. Int. Conf. Softw. Eng., 2008,
pp. 7–16.

[9] R. Gao, J. S. Eo, W. E. Wong, X. Gao, and S. Y. Lee, ‘‘An empirical study
of requirements-based test generation on an automobile control system,’’
in Proc. ACM Symp. Appl. Comput., 2014, pp. 1094–1099.

[10] T. Ovatman, A. Aral, D. Polat, and A. O. Ünver, ‘‘An overview of model
checking practices on verification of PLC software,’’ Softw. Syst. Model.,
vol. 15, no. 4, pp. 937–960, 2016.

[11] S. Liu, Y. Chen, F. Nagoya, and J. A. McDermid, ‘‘Formal specification-
based inspection for verification of programs,’’ IEEE Trans. Softw. Eng.,
vol. 38, no. 5, pp. 1100–1122, Sep. 2012.

[12] H. Liu, Y. Liu, and L. Liu, ‘‘The verification of program relationships in
the context of software cybernetics,’’ J. Syst. Softw., vol. 124, pp. 212–227,
Feb. 2017.

[13] M. A. Teruel, E. Navarro, V. López-Jaquero, F. Montero, and P. González,
‘‘CSRML: A goal-oriented approach to model requirements for collabora-
tive systems,’’ in Proc. Int. Conf. Conceptual Modeling, 2011, pp. 33–46.

[14] G. Babin and F. Lustman, ‘‘Application of formal methods to scenario-
based requirements engineering,’’ Int. J. Comput. Appl., vol. 23, no. 12,
pp. 141–151, 2015.

[15] A. Rashid and Y. Yu, ‘‘Aspect-oriented requirements engineering:
An introduction,’’ in Proc. 16th IEEE Int. Requirements Eng. Conf. (RE),
Sep. 2008, pp. 306–309.

[16] Y. Jin, H.-X. Liu, and P. Zhang, ‘‘An approach to analysing and verifying
aspect-oriented requirements model,’’ Chin. J. Comput., vol. 36, no. 1,
pp. 63–73, 2013.

[17] L. Wenhui, Z. Kuanjiu, F. Jinjin, and C. Zongzheng, ‘‘Research on soft-
ware cascading failures,’’ in Proc. Int. Conf. Multimedia Inf. Netw. Secur.
(MINES), 2010, pp. 310–314.

[18] D. Kang, B. Xu, J. Lu, andW. C. Chu, ‘‘A complexity measure for ontology
based on UML,’’ in Proc. 10th IEEE Int. Workshop Future Trends Distrib.
Comput. Syst. (FTDCS), May 2004, pp. 222–228.

[19] C. Y. Chong and S. P. Lee, ‘‘Analyzing maintainability and reliability of
object-oriented software using weighted complex network,’’ J. Syst. Softw.,
vol. 110, pp. 28–53, Dec. 2015.

[20] S. Queins, G. Zimmermann, M. Kronenburg, C. Peper, R. Merz,
and J. Schäfer, ‘‘The light control case study: Problem description,’’
J. Universal Comput. Sci., vol. 6, no. 7, pp. 586–596, 2000.

[21] X. Leroy, ‘‘Formal verification of a realistic compiler,’’ Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[22] G. Klein et al., ‘‘Comprehensive formal verification of an OS microker-
nel,’’ ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 2:1-2:70, Feb. 2014.

[23] W. Penninckx, J. T. Müehlberg, J. Smans, B. Jacobs, and F. Piessens,
‘‘Sound formal verification of Linux’s USB BP keyboard driver,’’ in Proc.
Int. Conf. NASA Formal Methods, 2012, pp. 210–215.

[24] M. Schordan and A. Prantl, ‘‘Combining static analysis and state transition
graphs for verification of event-condition-action systems in the RERS 2012
and 2013 challenges,’’ Int. J. Softw. Tools Technol. Transf., vol. 16, no. 5,
pp. 493–505, 2014.

[25] P. Philippaerts, F. Vogels, J. Smans, B. Jacobs, and F. Piessens, ‘‘The
Belgian electronic identity card: A verification case study,’’ in Proc. 11th
Int. Workshop Automated Verification Crit. Syst. (AVoCS), vol. 46, 2011,
pp. 1–16.

[26] F. Ivančić et al., ‘‘Scalable and scope-bounded software verification in
VARVEL,’’ Automated Softw. Eng., vol. 22, no. 4, pp. 517–559, 2015.

[27] A. F. Donaldson, L. Haller, and D. Kroening, ‘‘Software verification
using k-induction,’’ in Proc. Int. Symp. Static Anal. (SAS), Venice, Italy,
Sep. 2011, pp. 351–368.

[28] P. S. Duggirala and M. Viswanathan, ‘‘Analyzing real time linear control
systems using software verification,’’ inProc. Real-Time Syst. Symp., 2016,
pp. 216–226.

[29] H. Chen and S. Mitra, ‘‘Synthesis and verification of motor-transmission
shift controller for electric vehicles,’’ in Proc. ACM/IEEE Int. Conf. Cyber-
Phys. Syst. (ICCPS), Apr. 2014, pp. 25–35.

30756 VOLUME 6, 2018

Y. Liu et al.: Verification of Program by Inspecting Internal Relations Relying on User Requirements

[30] A. A. Martinez, R. Majumdar, I. Saha, and P. Tabuada, ‘‘Automatic ver-
ification of control system implementations,’’ in Proc. EMSOFT, 2010,
pp. 9–18.

[31] C. Flanagan and S. Qadeer, ‘‘Predicate abstraction for software verifica-
tion,’’ ACM SIGPLAN Notices, vol. 37, no. 1, pp. 191–202, 2002.

[32] J. Duracz and M. Konečný, ‘‘Polynomial function intervals for floating-
point software verification,’’ Ann. Math. Artif. Intell., vol. 70, no. 4,
pp. 351–398, 2014.

[33] D. Bucur and M. Kwiatkowska, ‘‘On software verification for sensor
nodes,’’ J. Syst. Softw., vol. 84, no. 10, pp. 1693–1707, 2011.

[34] C. Marché, ‘‘Verification of the functional behavior of a floating-point
program: An industrial case study,’’ Sci. Comput. Program., vol. 96,
pp. 279–296, Dec. 2014.

[35] S. M. Kropacheva and I. A. Legalov, ‘‘Formal verification of programs in
the functional data-flow parallel language,’’ Autom. Control Comput. Sci.,
vol. 47, no. 7, pp. 373–384, 2013.

[36] S. Resmerita and W. Pree, ‘‘Verification of embedded control systems by
simulation and program execution control,’’ in Proc. Amer. Control Conf.
(ACC), Jun. 2012, pp. 3581–3586.

[37] P. S. Duggirala, S. Mitra, and M. Viswanathan, ‘‘Verification of annotated
models from executions,’’ in Proc. Int. Conf. Embedded Softw., Sep. 2013,
pp. 1–10.

[38] T. Sekizawa, F. Otsuki, K. Ito, and K. Okano, ‘‘Behavior verification of
autonomous robot vehicle in consideration of errors and disturbances,’’ in
Proc. IEEE Comput. Softw. Appl. Conf., Jul. 2015, pp. 550–555.

[39] D. M. Lyons, R. C. Arkin, S. Jiang, T. M. Liu, and P. Nirmal, ‘‘Per-
formance verification for behavior-based robot missions,’’ IEEE Trans.
Robot., vol. 31, no. 3, pp. 619–636, Jun. 2015.

[40] J. Lu, Z. Huang, and C. Ke, ‘‘Verification of behavior-aware privacy
requirements in Web services composition,’’ J. Softw., vol. 9, no. 4,
pp. 944–951, 2014.

YUZHOU LIU received the bachelor’s degree
in optical information science and technology
from the Beijing Institute of Technology, China,
in 2010. He is currently pursuing the Ph.D. degree
with the College of Computer Science and Tech-
nology, Jilin University, China. He was a Software
Engineer with China Unicom until 2014. During
the period of work, he is mainly engaged in data
extraction and data analysis. His current research
concerns on requirements engineering.

LEI LIU received the master’s degree in computer
science from Jilin University, China, in 1985. He
is currently a Doctoral Supervisor with the Col-
lege of Computer Science and Technology, Jilin
University. At Jilin University, he has held respon-
sibilities for over 30 projects as a lead person in
the area of computer science. He has authored
numerous papers and technical reports on various
international journals and conferences. The cen-
tral themes of his research are programming lan-

guage and its realization technology, software security and cloud computing,
the semantic Web and ontology engineering, and knowledge representation
and reasoning.

HUAXIAO LIU received the Ph.D. degree in com-
puter science from Jilin University, China, in 2013.
He is currently anAssistant Professor with the Col-
lege of Computer Science and Technology, Jilin
University. The central theme of his research is
improving software quality, and his recent research
concerns the software requirements engineering,
software cybernetics, and formal methods of soft-
ware development. More specifically, he develops
techniques to verify aspect-oriented requirements
model based on ontology.

HONGJI YANG is currently a Professor with
the Department of Informatics, Leicester Uni-
versity, U.K. He has published five books and
over 400 research papers in the area of software
engineering, distributed computing, and creative
computing. He is a Golden Core Member of the
IEEE CS. He served as a Program Chair for
the IEEE International Conference on Software
Maintenance in 1999 and the IEEE International
Computer Software and Application Conference

in 2002. He is editing the International Journal of Creative Computing.

VOLUME 6, 2018 30757

	INTRODUCTION
	INTRODUCTION OF A CONCERN-BASED REQUIREMENTS MODEL
	EXTRACTING THE INTERNAL RELATIONS FROM PROGRAM
	THE PREPROCESS OF SOURCE CODES
	THE DEFINITIONS AND CALCULATION METHOD OF INTERNAL RELATIONS
	HANDLING OF REDUNDANT RELATIONS AND CLASSIFICATION OF VARIABLES
	HANDLING OF REDUNDANT RELATIONS
	CLASSIFICATION OF VARIABLES

	VERIFICATION SYSTEM FOR VIRR
	THE VERIFICATION METHOD AND THE FRAMEWORK OF VERIFICATION SYSTEM
	THE FORMAL DEFINITIONS OF THE COMPONENTS
	VERIFICATION TASK
	RESULT
	SIGNAL AND VERIFICATION RULES

	IMPLEMENTATION PROCESS OF THE SYSTEM

	EXPERIMENT
	RCM OF LCS
	EXTRACTING INTERNAL RELATIONS FROM CODES AND ESTABLISHING PIRM
	IMPLEMENTATION OF VERIFICATION SYSTEM
	THE ANALYSIS OF THE RESULTS FOR Q1
	THE EXPERIMENT FOR ANSWERING Q2
	THREATS AND LIMITATIONS OF THE EXPERIMENT
	THREATS TO THE VALIDITY OF EXPERIMENTS

	LIMITATIONS OF OUR APPROACH

	RELATED WORK
	DISCUSSION
	PARTITION OF PROGRAM MODULES
	DESCRIPTION OF PROGRAM STRUCTURE
	ANALYSIS OF PROGRAM STRUCTURE

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YUZHOU LIU
	LEI LIU
	HUAXIAO LIU
	HONGJI YANG

