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ABSTRACT This paper generalizes and proves the discrete and finite nature of the capacity-achieving
signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs)
under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-
achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM)
noise Z consisting of Gaussian elements with arbitrary means and the interference U with an arbitrary
distribution. The only very mild condition imposed on U is that its second moment is finite. To this end, one
of the important results is the establishment of the Kuhn–Tucker condition (KTC) on a capacity-achieving
input and the proof of analyticity of the KTC using Fubini–Tonelli’s and Morera’s theorems. Using the
Bolzano–Weierstrass’s and Identity’s theorems, we then show that a capacity-achieving input is continuous
if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the
tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such,
any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit U
having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of
an M -user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct
points that achieve the sum capacity on the rate region.

INDEX TERMS Channel capacity, Gaussian mixture, multiple access channels, non-Gaussian interference,
optimal inputs.

I. INTRODUCTION
The presence of multi-tier heterogeneous architectures mixed
with limited spectral resources in current and future wired
and wireless communication systems leads to increased
co-channel interference, which is intermittent and asyn-
chronous with the main communication. In many cases,
the aggregate co-channel interference plus noise cannot be
treated as Gaussian [2]–[7]. Examples of such channels
include impulsive interference channels in digital subscriber
line (DSL) [8]–[10], power line communications (PLC) [4],
[11]–[14], underwater acoustic channels [15]–[17], and
heterogeneous wireless networks involving marcocells,
microcells, femtocells, device-to-device (D2D) links, Wi-Fi

access points, and cognitive radio (CR) [2], [5]–[7], [18]. As a
result, the traditional approach of using Gaussian signaling
schemes for system analysis and design no longer holds.
It should be noted that non-Gaussian interference is also
observed in speech and audio signals [19], as well as in
imaging science [20], [21]. For instance, in image process-
ing, corruption of images due to impulsive interference is a
significant hurdle. This interference is caused by a noisy sen-
sor or sensor heat. It may also occur during image acquisition,
recording, or transmission [20], [21].

Over the years, several interesting results on information-
theoretical aspects of non-Gaussian channels have been
obtained for single-user point-to-point channels [22]–[28].
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For example, in [29], the characteristics of a capacity-
achieving input were studied for channels under generalized
Gaussian noise, and the discreteness of a capacity-achieving
input was shown for some special cases of generalized
Gaussian noise. However, a generalized Gaussian distribution
is not general enough to represent any arbitrary distribution.
In [22] and [23], predefined conditions on noise distribu-
tions have been examined to guarantee the discreteness of
the optimal input under the input average power constraint.
Unfortunately, for many non-Gaussian models, the noise dis-
tributions do not satisfy those pre-defined conditions. If a
more practical limitation of the input peak constraint is
imposed, the capacity-achieving input signal is shown to be
finite and discrete [24]–[26]. Recently, [30] has considered a
general class of non-Gaussian channels under the assumption
of two conditions imposed on the noise distribution. These
two conditions rely on a lower bound and an upper bound
on the noise distribution. While these conditions are satisfied
by several well-known distributions, they do not hold in
more general cases. Thus, the characterizations of capacity-
achieving inputs for more general non-Gaussian point-to-
point channels remain to be elucidated. It is worth mentioning
that the discreteness of the optimal input amplitude has also
been observed in Gaussian channels under the average power
constraint together with other constraints, such as peak con-
straint [31], [32], non-coherent conditions [33]–[36], rapid
phase variations [37], or duty cycle [38]. Due to the difficulty
in studying the detailed properties of the optimal input and in
establishing the capacity in closed-form for a non-Gaussian
channel, a novel approach was proposed in [39] to study
the sensitivity of the capacity, i.e., how the capacity changes
when the channel parameters vary.

While information-theoretical results for point-to-point
links are certainly useful, it is also important to extend
the analysis and design to multi-user networks. One of the
most fundamental network scenarios is the multiple access
channel (MAC) for the uplink, and this scenario has been
well-investigated for Gaussian channels under average power
constraints withmany breakthroughs. Under this line of work,
Gaussian signals are usually assumed to be optimal for the
design and analysis. In a recent work in [40], a two-user Gaus-
sianMAC under peak power constraints is investigated. It has
been shown in [40] that both users can use finite and discrete
signaling schemes to achieve any point on the boundary of the
capacity region. The proof in [40] is relied on the key result
that for a point-to-point link that is affected by a Gaussian
noise and an interference having a finite support, the capacity-
achieving input is discrete under the peak power constraint.
To our knowledge, network information-theoretical results
for non-Gaussian noise and interference are lacking. There-
fore, considering non-Gaussian interference plus noise in
multi-user networks presents new challenges.

In this work, we attempt to generalize and prove the dis-
crete and finite nature of the capacity-achieving signaling
schemes for general classes of non-Gaussian point-to-point
and multiple-access channels under peak power constraints.

Specifically, we first investigate the detailed characteris-
tics of capacity-achieving inputs for a single-user channel
that is impaired by two types of noise: a Gaussian mix-
ture (GM) noise Z consisting of Gaussian elements with
arbitrary means, and the interference U with an arbitrary
distribution. Different from [40] that assumed a finitely sup-
ported U , the only very mild condition we impose on U is
that its second moment is finite. Note that when U is either
Gaussian or GM, the total noise W = U + Z is a GM.
We then extend the results to a general M -user Gaussian
mixtureMAC. Different from the previous literature that only
investigated GM noise with zero-mean components (please
see [27], [41], and references therein), our considered GM
noise with arbitrary-mean Gaussian components can be used
to approximate any distribution of engineering interest to
arbitrary accuracy [42]–[45]. The significance of our results
is two-fold as follows:
• Since the considered GM is general enough to rep-
resent all PDFs of engineering interest, the proof of
the discreteness and finiteness of the capacity-achieving
input partially addresses the conjecture in [24] that the
capacity-achieving input for any peak power constrained
channel is discrete with finite number of mass points.
The results in this work can be used in system analy-
sis for various channels impaired by different sources
of interference, such as cognitive radio with imperfect
spectrum sensing and 5G and beyond heterogeneous
cellular networks [2], [3], [5]–[7], [18], [46].

• The obtained results also shed important light on the
characteristics of capacity-achieving signaling schemes
for a multiple-access non-Gaussian channel, which has
not been explored in the literature so far.

In this paper, we follow a standard procedure to prove the
optimality of discrete input by first showing the existence
of the optimal solution before eliminating the possibility of
having an optimal continuous input. However, the novelty in
technical derivations and analysis makes our work stand out
from the current state-of-the-art. Specifically, for the point-
to-point channel, by using lower and upper bounds on the
probability density functions (PDFs) of the total noiseW and
the output, we first show that the mutual information (MI)
is continuous and concave. Therefore, the capacity-achieving
input exists. We then establish a necessary and sufficient
Kuhn-Tucker condition (KTC) on an optimal input, and show
that the KTC function is analytic on the complex plane.While
this analyticity is obvious for Gaussian channels, the consid-
eration of the general noise modelW = U +Z is much more
challenging, and it requires new techniques. In particular,
our proof relies on Fubini-Tonelli’s and Morera’s theorems,
which is very different from the standard approach employed
in [31]. Then using the Bolzano-Weierstrass and Identity The-
orems, we show that a capacity-achieving input is continuous
if only if the KTC is zero on the entire real line. However,
by establishing and examining an upper bound on the tail of
the output PDF, the KTC is proved to be bounded away from
zero. As such, any capacity-achieving input must be discrete
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with a finite number of mass points. Note that the traditional
approach of using the Fourier transform of the noise distribu-
tion as in [31] cannot be used, since there exist zeros in the
transformation. Finally, building upon the results of the point-
to-point channel, we characterize the sum-capacity achieving
signaling schemes of a multiple access channel under GM
noise. Specifically, we exploit the arbitrary nature of U to
show that the optimal input distributions that achieve the sum-
capacity of an M -user MAC under GM noise are discrete
and finite. In addition, we prove that there exist at least two
different points that achieve the sum capacity on the rate
region.

The results and tools developed in this work will be
important to major communication systems, such as power
line communications, digital subscriber lines, urban indoor
and outdoor wireless communications, cognitive radio, and
underwater acoustic communications. More importantly,
insights from the developed information-theoretic results can
be exploited to develop powerful and efficient signaling and
coding techniques for practical purposes. In addition, other
disciplines such as imaging science can also benefit from the
proposed results and methodologies to advance the current
state-of-the-art.

The rest of this paper is organized as follows. Sec. II
introduces the considered single-user and multiple-access
non-Gaussian channels. Detailed characteristics of a
capacity-achieving input for the single-user channel are stud-
ied in Sec. III. Numerical examples are also provided in
this section to confirm the analysis. In Sec. IV, we address
the characterization of optimal inputs for a multiple-access
channel. Finally, conclusions are drawn in Sec. V.

II. POINT-TO-POINT AND MULTI-USER NON-GAUSSIAN
CHANNELS: CHANNEL MODELS
A. SINGLE-USER CHANNEL
We consider a non-Gaussian point-to-point channel with the
following input-output model

V = X + U + Z , (1)

where X and V are the channel input and output, respectively.
Here, it is assumed that the input is subject to a peak power
constraint |X | ≤ A, which is a practical constraint for any
communication system. In (1), U and Z are two sources
of additive noise/interference. We assume that U follows a
fixed yet arbitrary distribution with only a mild condition that
its second moment is finite. This assumption in fact holds
true for almost all practical interference sources. In addition,
Z ∈ R is a Gaussian Mixture (GM) with its PDF being
a weighted sum of N Gaussian component densities with
arbitrary means. The PDF of Z can be expressed as

fZ (z) =
N∑
n=1

εnN (z, an, σ 2
n ), (2)

where N (z, µ, σ 2) denotes a real Gaussian distribution with
meanµ and variance σ 2, and εn > 0 is the mixing probability

satisfying
∑N

n=1 εn = 1. For convenience, let W = U + Z
be the total noise. It is not difficult to realize that when U is
selected as either Gaussian, GM or a discrete distribution,W
becomes a GM.

For a given input cumulative distribution function (CDF)
FX (x), the mutual information between the input and output
of the channel can be calculated as

I (X;V ) = h (V ;FX (x))− h (V | X)
1
= I (FX (x)), (3)

where h (V ;FX (x)) is the output entropy given as

h (V ;FX (x)) = −
∫
R
fV (v;FX (x)) ln fV (v;FX (x)) dv. (4)

Note that fV (v;FX (x)) is the PDF of the output V for a given
input FX (x). In addition, h (V | X) = h (W ) is the total noise
entropy. Under the peak input power constraint |X | ≤ A,
the Shannon capacity of the channel is the supremum of
I (X;V ) over the feasible set of FX (x), which is expressed as

C = sup
FX (x)∈F

I (FX (x)), (5)

where F is the set of all CDFs having all mass points in the
interval [−A,A], i.e., F =

{
F :

∫ A
−A dF (x) = 1

}
. The opti-

mal input distribution, which is denoted as F?X (x), is referred
to as the capacity-achieving input. Since h (W ) is independent
of FX (x), the capacity-achieving input maximizes the output
entropy. For convenience, hereafter, the use of FX (x) and FX
to indicate the distribution of the input is interchangeable.

FIGURE 1. An M-user multiple-access channel (MAC) under GM noise Z .

B. MULTIPLE-ACCESS CHANNEL (MAC) UNDER GM NOISE
In this paper, we are also interested in a MAC under a GM
noise Z in (2) in whichM users communicate with a common
receiver as shown in Fig. 1. Let’s assume that Xi is the signal
of user i, i = 1 · · ·M , and it is imposed by the peak constraint
|Xi| ≤ Ai. The received signal Y is then written as:

Y =
M∑
i=1

Xi + Z . (6)

Note that with a suitable choice of {N , εn, an, σn}, a GM
Z can be used to represent any PDF of engineering inter-
est [42]–[45]. Furthermore, with arbitrary mean Gaussian
components, the GM model considered in this work is more
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general than other GM channels studied earlier using all zero-
mean Gaussian elements.

For the considered MAC, the sum-capacity is the supre-
mum of the joint MI between the inputs and output over the
feasible set of the inputs, and it is given as:

Csum = sup
FXi∈Fi,i=1···M

I (X1,X2, . . . ,XM ;Y )

1
= sup

FXi∈Fi,i=1···M
I
(
{FXi}

M
i=1

)
. (7)

In (7), each set Fi, 1 ≤ i ≤ M , consists of all CDFs having
mass points in the interval [−Ai,Ai]. A given set of the input
distributions {F?Xi} that achievesCsum is called the optimal set.

III. DETAILED CHARACTERISTICS OF OPTIMAL F ?
X IN

POINT-TO-POINT CHANNELS
In this section, the focus is on the point-to-point channel
in (1). In the following, we will first show the existence of an
optimal input distribution F?X before investigating its detailed
characteristics.

A. EXISTENCE OF F ?X
It has been well-known that the set F of all distributions FX
satisfying the peak power constraint is convex and weakly
compact with respect to weak* topology [47]. In addition,
the output entropy and the mutual information are concave
with respect to FX . As such, to prove the existence of the
optimal F?X , we only need to show the weak continuity of
the output entropy on the feasible set of input distributions.
Therefore, the key steps are to show the weak continuity
of fV (v;FX ) on FX and obtain an integrable upper bound
on |fV (v;FX ) ln fV (v;FX )|. Toward this end, we first have
the following proposition regarding the continuity of the
PDF fW (·).
Proposition 1: The function fW (w) : R → R is

continuous.
Proof: We first have:

fW (w) =
∫
∞

−∞

fZ (w− u)dFU (u). (8)

Now, let {wn} ∈ R be a sequence such that lim
n→∞

wn = w0

for some w0 ∈ R. Since the GM PDF fZ (z) is continuous,
we have

lim
n→∞

fZ (wn − u) = fZ (w0 − u), ∀u ∈ R.

Without loss of generality, it is assumed that σ1 ≥ · · · ≥ σN .
Therefore, fZ (z) ≤ 1√

2πσ 2N
. It then follows that

0 ≤ fZ (wn − u) ≤
1√

2πσ 2
N

. (9)

Then by applying Dominated Convergence Theorem [48],
we can conclude that

lim
n→∞

fW (wn) = fW (w0),

which implies the continuity of fW (w).

Note that in a similar manner, we can show the continuity
of fV (v;FX ) in v for a given FX . The next proposition states
the weak continuity of fV (v;FX ) with respect to the input
distribution.
Proposition 2: fV (v;FX ) is weakly continuous in FX .
Proof: Assume we have a sequence {F (n)

X } that weakly
converges to some specific F (0)

X , i.e., {F (n)
X }

w∗
→ F (0)

X . Besides
its continuity, fW (·) is also upper bounded by the constant d =∑N

n=1
εn√
2πσ 2n

as shown in Appendix A. In addition, we have

fV (v;F) =
∫
∞

−∞
fW (v− x)dF(x). Therefore,

lim
n→∞

fV (v;F
(n)
X ) = lim

n→∞

∫
∞

−∞

fW (v− x)dF (n)X (x)

=

∫
∞

−∞

fW (v− x)dF (0)X (x) (10)

= fV (v;F
(0)
X ) (11)

It should be noted that (10) comes from Helly-Bray
theorem [49].

We then have the following theorem regarding the weak
continuity of the output entropy h (V ;FX (x)).
Theorem 1: The entropy h (V ;FX ) is weakly continuous

in FX .
Proof: First, assume that F (n)X

w∗
→ F (0)X . From Proposi-

tion 2, we have lim
n→∞

fV (v;F
(n)
X ) = fV (v;F

(0)
X ) for all v ∈ R.

Moreover, since f (ξ ) = ξ ln ξ is continuous for ξ > 0,
we obtain

lim
n→∞

fV (v;F
(n)
X ) ln fV (v;F

(n)
X ) = fV (v;F

(0)
X ) ln fV (v;F

(0)
X ).

Therefore, by Lebesgue Dominated Convergence Theorem,
to prove the weak continuity of output entropy, it is enough
to show that |fV (v;F

(n)
X ) ln fV (v;F

(n)
X )| is upper bounded by

an integrable function of v uniformly in n. First, as shown in
Appendix A, there always exist positive k0 and k1 such that

fW (w) ≤ k1w−2 when |w| > k0. (12)

Therefore, for all |v| > A+ k0 we have:

fV
(
v;F (n)X

)
=

∫ A

−A
fW (v− x)dF (n)X (x)

≤

∫ A

−A
k1 (v− x)−2 dF

(n)
X (x)

≤ k1 (|v| − A)−2 . (13)

In addition, as we demonstrate in Appendix B, fV
(
v;F (n)X

)
is

always upper bounded by the constant d . Therefore, we have

fV
(
v;F (n)X

)
≤

{
k1 (|v| − A)−2 , |v| > A+ k0
d, |v| ≤ A+ k0.

(14)

It is well known that ln xγ−1 ≤ xγ−1 for 0 < x, γ < 1, and
ln x ≤ xγ

γ
for any positive x and γ . As such, for any 0 < γ <

1, we have |x ln x| ≤ max{ 1
1−γ ,

β
γ
}xγ when 0 < x < β for

any positive β. By combining this with (14), we have

|fV (v;F
(n)
X ) ln fV (v;F

(n)
X )| ≤ g(v), (15)
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where g(v) is given as:

g(v) =


max{

1
1− γ

,
d
γ
}

(
k1 (|v| − A)−2

)γ
, |v|>A+k0

max{
1

1− γ
,
d
γ
}dγ , |v|≤A+k0.

(16)

It can be verified that g (v) is an integrable function for 1
2 <

γ < 1. Therefore, h(V ;FX ) is weakly continuous.
Given the result in Theorem 1, it can be concluded that the

output entropy, and as a consequence, the mutual information
is weakly continuous and concave. Therefore, the optimal
input distribution exists on F .

B. DISCRETENESS OF F ?X
Given the existence of F?X , this subsection focuses on the
characterization of F?X . In particular, we prove that the opti-
mal input support set E? of any optimal F?X has a finite
number of mass points. To this end, we first establish the
Kuhn-Tucker condition (KTC), which is a necessary and
sufficient condition for an input to be optimal, and show that
the KTC is analytic on the complex plane. By exploiting this
analyticity of the KTC, we then demonstrate that it is not
possible to have a continuous F?X .

1) THE KTC AND ITS ANALYTICITY
For convenience, some preliminaries regarding the concepts
of directional derivative and optimization theory are given in
Appendix D. We then have the following theorem regarding
the KTC:
Theorem 2 (KTC): F?X is an optimal input distribution if

and only if
i) 8(x) =

∫
∞

−∞
fW (v − x) ln fV (v;F?X )dv + H?

≥

0, ∀x ∈ [−A,A]
where H?

= C + h(W ).
ii) The equality is achieved when x ∈ E?, with E? being the

set of points of increase for F?X defined as

E? =
{
z ∈ R : F?X (z+ r) > F?X (z− r) , ∀r > 0

}
.

(17)
The proof of this theorem is similar to the arguments

in [31]. It is because I (FX ) is concave and continuous, and we
have the existence and finiteness of the directional derivative
for I (FX ) (See Lemma 7 in Appendix D).

In the following, we will show that the KTC function8(x)
is analytic on the complex plane. To this end, we have the
following lemmas regarding the analyticity of fW (v− s) and
ρ(s) =

∫
∞

−∞
fW (v− s) ln fV (v;FX ) dv as functions of s.

Lemma 1: For any v ∈ R, the function fW (v− s) : C →
C is analytic.

Proof: We will first demonstrate that fW (v− s) is con-
tinuous. Specifically, let {sn}n∈N, be a sequence in C such
that limn→∞ sn = s∗ for s∗ ∈ C. From (8), and the fact
that fZ (.) is continuous and analytic over C, which results
in limn→∞ fZ (v − sn − u) = fZ (v − s∗ − u) for all u, v ∈ R,
the continuity of fW (v− s) is reduced to finding an integrable

upper bound for fZ (v−sn−u). Since sn converges, there exists
b > 0 such that |sn| ≤ b for any n ∈ N. We then have:

| fZ (v− sn − u)|

≤

N∑
n=1

εn√
2πσ 2

n

∣∣∣∣∣exp
(
−
(v− sn − u− an)2

2σ 2
n

)∣∣∣∣∣
=

N∑
n=1

εn exp
(
[(=(sn)]2

2σ 2n

)
√
2πσ 2

n

exp

(
−
(v−< (sn)− u− an)2

2σ 2
n

)

≤ e
b2

2σ2N fZ (v−< (sn)− u) (18)

≤
1√

2πσ 2
N

e
b2

2σ2N , (19)

where < and = denote the real and imaginary parts, respec-
tively. Note that the inequality in (18) is obtained by using
σ1 ≥ σ2 ≥ · · · ≥ σN and the fact that |sn| ≤ b. Then
by using the Dominated Convergence Theorem, we have
limn→∞ fW (v − sn) = fW (v − s∗). Equivalently, s →
fW (v− s) is continuous in C. Now, let 4 be an arbitrary
triangular path in C. Then,∣∣∣∣∮
4

fW (v− s) ds

∣∣∣∣ ≤ len(4) max
s∈1
|fW (v− s)| <∞, (20)

where len(4) denotes the length of the path 4 and we have
used the fact that maxs∈1 |fW (v− s)| exists and is finite due
to continuity of fW (v− s) on the compact set 4. As a result,
we can use Fubini-Tonelli theorem [50] and exchange the
integrals

∮
4
and

∫
∞

−∞
to obtain the following:∮

4

fW (v− s) ds =
∫
∞

−∞

∮
4

fZ (v− s− u)dsdFU (u). (21)

As fZ (·) is analytic everywhere, we have
∮
4
fZ (v−s−u)ds = 0

from Cauchy’s Integral theorem [51]. It then follows that∮
4
fW (v− s) ds = 0 for any triangular path 4. Then by

Morera’s Theorem [51], we can conclude that fW (v− s) is
analytic everywhere.
Lemma 2: The function ρ(s) : C→ C is analytic for any

FX ∈ F .
Proof: We will first show that ρ(s) is continuous.

As before, let {sn}n∈N, be a sequence in C such that
limn→∞ sn = s∗ for s∗ ∈ C. As we know that fW (v− s) is
continuous, then by Generalized Lebesgue Dominated Con-
vergence Theorem, it is enough to show that ∃{gn (v)}, g (v)
such that
i) |fW (v− sn) ln fV (v;FX )| ≤ gn (v).
ii) gn (v)→ g (v) almost everywhere.
iii) lim

n→∞

∫
∞

−∞
gn (v) dv =

∫
∞

−∞
g (v) dv <∞.

It is clear that for a function g(α) such that 0 < g(α) ≤ β <
∞ for all α ∈ R and some β > 0, we have | ln g(α)| ≤
− ln g(α) + 2 |ln β|. As fV (v;F

(n)
X ) is upper bounded by d ,

we have:

| ln fV (v;F
(n)
X )| ≤ − ln fV (v;F

(n)
X )+ 2| ln d |. (22)
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Then using the upper bound on − ln fV (v;F
(n)
X ) given in

Appendix B, we end up with the following
inequality:

| ln fV (v;F
(n)
X )| ≤ av2 − 2b2v+ c2 + 2| ln d |. (23)

As a result, using (18) and (23), we obtain the following
bound:

|fW (v− sn) ln fV (v,FX )|

≤ e
b2

2σ2N fW (v−< (sn))
(
av2 − 2b2v+ c2 + 2| ln d |

)
= gn (v). (24)

Furthermore, we have:∫
R
gn (v) dv

= e
b2

2σ2N

∫
R
fW (v−< (sn))

(
av2 − 2b2v+c2 + 2| ln d |

)
dv

= e
b2

2σ2N

[
a
∫
R
v2fW (v−< (sn)) dv

− 2b2

∫
R
vfW (v−< (sn)) dv+ c2 + 2 |ln d |

]
. (25)

Now by changing the variables as t = v−< (sn) we have∫
R
gn (v) dv

= e
b2

2σ2N

[
a
∫
R
t2fW (t)dt+2a<(sn)

∫
R
tfW (t)dt+a (<(sn))2

− 2b2

∫
R
tfW (t) dt − 2b2< (sn)+ c2 + 2 |ln d |

]
= e

b2

2σ2N

[
aE
[
W 2

]
+ (2a< (sn)− 2b2)E [W ]+ a (< (sn))2

− 2b2< (sn)+ c2 + 2 |ln d |
]
. (26)

Since E
[
W 2

]
and E [W ] are finite, and the fact that

|< (sn)| ≤ b, we have
∫
R gn (v) dv < ∞. Moreover,

as < (sn) → < (s∗), it is straightforward to verify that
lim
n→∞

∫
∞

−∞
gn (v) dv =

∫
∞

−∞
g (v) dv based on equation (26),

where g (v) is defined as gn (v) with s? replacing sn. Then
using the Generalized Dominated Convergence Theorem,
we can conclude that ρ(s) is continuous. Considering the
analyticity of fW (v− s) and following a similar procedure
as in the proof of Lemma 1 using Fubini-Tonelli, Cauchy’s
Integral, and Morera’s theorems, it can be shown that ρ (s) is
analytic.
Combining Lemmas 1 and 2, it can be concluded

that the KTC function 8(s) : C → C is analytic
everywhere.

2) DISCRETENESS OF OPTIMAL INPUT
Given the analyticity of the KTC function 8(s) : C → C,
we then now shed light on the characterization of an opti-
mal input F?X . To this end, assume that the set E? of F?X

includes an infinite number of mass points on a bounded
interval. This includes a continuous F?X as a special case.
From Bolzano-Weierstrass Theorem [50], this set of mass
points admits a limit point. Furthermore, following the Iden-
tity Theorem [52], we know that if two analytic functions are
identical on an infinite set of points in a region along with
their limit points, these two functions must be identical in
the entire region. As a result, we obtain the extended KTC
as follows:

8(x) =
∫
∞

−∞

fW (v−x) ln fV
(
v;F?X

)
dv+ H?

= 0 ∀x ∈ R.

(27)

In the following, we will show that it is not possible to
have (27). Consider the two constants k0 and k1 defined in
the proof of Theorem 1. We can then select a constant m such
that m > A + k0 + E [|W |] and ln

(
eH
∗
k1

(m−A)2

)
< 0. It then

follows that for all |v| > m

ln
(
eH
∗

fV
(
v;F?X

))
≤ ln

(
eH
∗

k1
(|v| − A)2

)

≤ ln

(
eH
∗

k1
(m− A)2

)
< 0, (28)

where the first inequality is obtained from (13). Now,
we rewrite the KTC in (27) as∫
�+

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv

= −

∫
�−

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv, (29)

where

�+ =
{
v ∈ R : ln

(
eH
∗

fV
(
v;F?X

))
≥ 0

}
, (30)

�− =
{
v ∈ R : ln

(
eH
∗

fV
(
v;F?X

))
≤ 0

}
. (31)

Now, let first examine the left-hand side of (29). From (28),
we have �+ ⊂ [−m,m]. Thus,

0 ≤
∫
�+

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv

≤

[
max
v∈�+

ln
(
eH
∗

fV
(
v;F?X

))] ∫ m

−m
fW (v− x)dv. (32)

Because of the continuity of ln
(
eH
∗

fV
(
v;F?X

))
, ζ =

maxv∈�+ ln
(
eH
∗

fV
(
v;F?X

))
exists and is finite. Hence, for

x > m+ k0, we have

0 ≤
∫
�+

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv

≤ ζ

∫ m

−m
fW (v− x)dv

≤ 2mζk1 (x − m)−2 , (33)

where the last inequality follows from (12). Therefore,
as x →∞, the left hand side of (29) goes to zero.
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For the right-hand side of (29), we have

−

∫
�−

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv

≥ −

∫
∞

m
fW (v− x) ln

(
eH
∗

fV
(
v;F?X

))
dv

≥ − ln

(
eH
∗

k1
(m− A)2

)∫
∞

m
fW (v− x)dv

= − ln

(
eH
∗

k1
(m− A)2

)
Pr (W > m− x) . (34)

Moreover, for all x > 2m, by using Markov’s inequality,
we have

Pr (W > m− x) ≥ 1− Pr (|W | > m) ≥ 1−
E [|W |]
m

> 0.

(35)

By combining (35) and (34) we then have

−

∫
�−

fW (v− x) ln
(
eH
∗

fV
(
v;F?X

))
dv > l, ∀x > 2m,

(36)

where l = − ln
(

eH
∗
k1

(m−A)2

) (
1− E[|W |]

m

)
> 0. The inequalities

in (33) and (36) therefore result in a contradiction. As a
consequence, E? consists of only a finite number of elements
and, hence, any optimal F?X is discrete with a finite number
of mass points.

C. NUMERICAL EXAMPLES
In this section, several numerical examples are provided to
confirm the discreteness of the capacity-achieving input for
the considered non-Gaussian channels. To find the optimal
input numerically, we apply the well-known gradient descent-
based method [31], [33]. In particular, starting with a single
mass point distribution, we will identify the number of mass
points, the locations of the mass points and their correspond-
ing probabilities in an iterative manner. To guarantee the
global optimality of the solution, the obtained distribution is
verified with the necessary and sufficient condition given in
Theorem 2.

We first consider a non-Gaussian channel impaired by a
two-term GM noise Z with fZ (z) = 0.2N (z,−4, 10) +
0.8N (z, 1, 1) and a BPSK-like interference U with fU (u) =
1
2δ (u− 2)+ 1

2δ (u+ 2). It is not hard to verify that the total
interference W is a four-term GM, and its PDF is shown
in Fig. 2. The optimal input distributions at different signal-
to-noise ratios (SNRs), (with SNR defined as SNR = A2

E[W 2] ),
are plotted in Fig. 3. Observe from Fig. 3 that at sufficiently
low SNRs, the optimal input has only two mass points. As the
SNR increases, the number of mass points also increases.
To verify the optimality of the solutions, we have also plotted
the left hand side of KTC function at SNR = 1dB in Fig. 4.
Clearly, the KTC is equal to zero at three mass points. It is
also interesting to note that in this case, we always have

FIGURE 2. The probability distribution function of a four-term GM W .

FIGURE 3. The location of mass points of the optimal input distribution
and the corresponding probabilities with fZ (z) = 0.2N (z,−4,10)+
0.8N (z,1,1) and fU (u) =

1
2 δ

(
u− 2

)
+

1
2 δ

(
u+ 2

)
.

FIGURE 4. The KTC values for the input distribution fX (x) = 0.4362 δ(
x + 1.8775

)
+ 0.2043 δ

(
x − 0.004

)
+ 0.3595 δ

(
x − 1.8775

)
at SNR=1dB.

transmission at the peak power level, i.e., there are two mass
points at A and −A.

In the second example, we consider another non-Gaussian
channel impaired by a GM noise Z with fZ (z) =

0.1N (z, 0, 2) + 0.9N (z, 3, 1), and an interference U that
follows a Laplace distribution with fU (u) = 1

2 exp (− |u|).
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FIGURE 5. The probability distribution function of W resulting from
Laplace distributed U .

FIGURE 6. The location of mass points of the optimal input distribution
and the corresponding probabilities with fZ (z) = 0.1N (z,0,2)+
0.9N (z,3,1) and fU (u) =

1
2 exp (− |u|).

In this case, W is no longer a GM, and its PDF is given
in Fig. 5. The optimal inputs for this channel are shown
in Fig. 6 at different SNRs. We also plot the corresponding
KTC at SNR = 1dB. As similar to the previous example, at a
given SNR, it is clear that the optimal input is discrete.

IV. EXTENSION TO MULTI-USER CHANNELS
UNDER GM NOISE
In this section, we address the detailed characterization of
optimal inputs for anM -user MAC with GM noise under the
peak-power constraints in (6). While we follow closely the
arguments in [40] for a Gaussian MAC, the results in this
section mainly rely on the arbitrary property of U and the
results established in Section III. Specifically, we first show
that the sum-capacity of the channels can only be achieved
if each user uses a discrete distribution with a finite number
of mass points. An interesting important property of the rate
region is also given.

Now, for the considered MAC, by following a similar
analysis as in Section III, it can be shown that a set of optimal
input distributions {F?Xi} that achieves Csum always exists.

FIGURE 7. The KTC value for the input distribution fX (x) =
0.5139 δ

(
x + 1.9755

)
+ 0.4861 δ

(
x − 1.9755

)
at SNR=1dB.

However, such a set is not necessarily unique. For a given
optimal set {F?Xi}, it is clear that:

{F?Xi} = arg sup
FXi∈Fi,i=1···M

h

(
M∑
i=1

Xi + Z

)
. (37)

To shed light on the characteristics of {F?Xi}, 1 ≤ i ≤ M , con-
sider a point-to-point link with an input Xi subject to the peak
constraint in the feasible set Fi and the output V impaired
by two types of noise, the GM noise Z and the interference
U =

∑M
j=1,j 6=i X

?
j . Here, eachX

?
j , j ∈ {1, . . . ,M}\{i}, follows

the distribution F?Xj , which is unknown yet fixed. Let F ′Xi be
an optimal input distribution of this point-to-point channel,
i.e.,

F ′Xi = arg sup
FXi∈Fi

I
(
FXi
)
= arg sup

FXi∈Fi

I (Xi;Xi + U + Z ).

(38)

We then have the following lemma regarding the characteris-
tics of F ′Xi .
Lemma 3: F ′Xi exists, and it is discrete and unique.
Proof: Since each F?Xi , 1 ≤ i ≤ M , is peak constrained,

the distribution of U is fixed but unknown with a finite
second-order moment. Therefore, it follows from the results
for the point-to-point channel thatF ′Xi exists, and it is discrete.

Next, it can be verified that the moment-generating func-
tion (MGF) of U =

∑M
j=1,j6=i X

?
j exists on an interval

around 0. As a result, the MGF of W = U + Z denoted as
MW (t) exists in the range |t| < t0 for a positive constant t0.
As we show in Appendix C, when extended to the complex
plane, the function MW (s) : D → C is analytic on D,
where D = {s ∈ C : |< (s)| < t0}. As a result, MW (s) has
isolated zeros on D. Since the characteristic function (CF)
φW (t) of W is its MGF evaluated along the imaginary axis,
i.e., φW (t) = MW (jt), φW (t) is analytic on the real line
and has isolated zeros. Now, besides F ′Xi , assume that F ′′Xi
is another optimal distribution. It means both F ′Xi and F ′′Xi
maximize the output entropy h(V ; ·). Since the output entropy
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h(·) is strictly concave in fV (·), we then have fV
(
v,F ′Xi

)
=

fV
(
v,F ′′Xi

)
. Therefore,

φW (t)
(
φ′Xi (t)− φ

′′
Xi (t)

)
= 0, ∀t ∈ R, (39)

where φ (.) denotes the CFs of the corresponding random
variables. Because zeros of φW (.) are isolated, and a CF is
uniformly continuous on the entire real line [53], it is clear
that φ′Xi (t)− φ

′′
Xi (t) = 0, ∀ t ∈ R. Therefore, F ′Xi = F ′′Xi .

Given the result in Lemma 3, a similar argument as in [40]
can be used to addresses the characteristics of the optimal
input distributions {F?Xi}. The result is stated in the following
proposition.
Proposition 3: For any set of optimal distributions {F?Xi}

in (37), F?Xi = F ′Xi where F
′
Xi , 1 ≤ i ≤ M, is the optimal input

defined in (38). As a result, each F?Xi is discrete with a finite
number of mass points.

Proof: The proof follows the method used in [40].
In particular, from Lemma 3, we know that F ′Xi is unique
and discrete, having a finite number of mass points. Fur-
thermore, it is clear from (38) that F ′Xi = arg sup

FXi∈Fi

h(Xi +

U + Z ). It then follows that h
(
X ′i +

∑M
j=1,j 6=i X

?
j + Z

)
≥

h
(∑M

j=1 X
?
j + Z

)
, where X ′i follows the distribution F ′Xi .

On the other hand, since the set {F?Xi} achieves the sum-

rate, we have from (37) that h
(
X ′i +

∑M
j=1,j 6=i X

?
j + Z

)
≤

h
(∑M

j=1 X
?
j + Z

)
. Thus, h

(
X ′i +

∑M
j=1,j 6=i X

?
j + Z

)
=

h
(∑M

j=1 X
?
j + Z

)
. Equivalently, F?Xi is also optimal for the

point-to-point channel. Therefore, F?Xi = F ′Xi , and each F
?
Xi is

discrete with a finite support set.
While the sum-capacity is one of the most important

benchmarks, it is also of interest to understand the charac-
teristics of the rate region of the considered MAC. By fol-
lowing a similar analysis as in [40], we can also show that
for the considered MAC, there exist at least two distinct
points achieving the sum capacity on the rate region. For
completeness, the proof of this result is given in Appendix E.
Finally, it is worth mentioning that we can use time-sharing
arguments to show that there exists a linear segment between
these two points in which any point belonging to the segment
is also sum-capacity achieving. As a result, there exists an
infinite number of sum-capacity achieving points.

Before closing this section, we should emphasize that it is
certainly of great interest to obtain some numerical results to
confirm the finiteness and discreteness of the optimal inputs
for the case of multiple-access channels. Towards this end,
an effective numerical method to accurately calculate the
optimal mass points and their corresponding probabilities is
required. The development of such a method is, however,
non-trivial. It is because for the considered multiple-access
channel, we need to deal with the optimization of multiple
input distributions simultaneously. It should be noted that
even for the single-user cases, there exist several drawbacks
of the well-known gradient decent-based method we adopted

earlier to find the optimal input [33], [36]. It is due to the
relatively small sensitivity of the MI to the number of mass
points as well as their locations and probabilities used in
each iteration. As a consequence, it is difficult to find the
optimal input consisting of more mass points, some of which
having low probabilities, with high accuracy. Dealing with
multiple inputs, and at the same time, paying attention to
the convergence behavior of the solution are therefore more
challenging. Given that, we believe the investigation on such
new numerical methods is beyond the scope of the current
work, and the topic deserves further studies.

V. CONCLUSION
This paper has proved the existence and discreteness of the
capacity-achieving input signals for general class of point-
to-point and multiple access channels with additive non-
Gaussian noise under peak-power constraints. In particular,
the considered non-Gaussian link consists of a Gaussian mix-
ture noise having Gaussian elements with arbitrary means,
and an arbitrary interference U having finite second order
moment. The novelty of the work lies in the establishment
of the necessary and sufficient condition for an input signal
to be optimal and the use of Fubini-Tonelli’s and Morera’s
theorems to show the analyticity of this condition. The con-
tinuity of the optimal input is then ruled out by proving that
the optimal support set admits no limit point. Taking these
into account, it is concluded that the capacity-achieving input
is discrete with a finite number of mass points. We also
exploited the arbitrary property of U to show that the opti-
mal input distributions that achieve the sum-capacity of an
M -user multiple access channel under GM noise are discrete.
In addition, there exist at least two distinct points that achieve
the sum capacity on the rate region. The point-to-point and
multiple-user channels considered in this paper are general
enough to represent all non-Gaussian additive channels of
engineering interest.

APPENDIX A
TWO UPPER BOUNDS AND A LOWER BOUND ON fw (·)
In this section, upper and lower bounds on the distributions
fW (·), which are useful for the developments in Sections III-A
and III-B, are derived. The bounds are given in the following
two lemmas.
Lemma 4: The distribution fW (·) can be upper-bounded by

a constant d as fW (w) ≤ d. Furthermore, there exist two
positive constants k0 and k1 such that fW (w) ≤ k1 w−2 when
|w| > k0.

Proof: Since W = U + Z , we have

fW (w) =
∫
∞

−∞

fZ (w− u)dFU (u)

=

N∑
n=1

εn√
2πσ 2

n

∫
∞

−∞

exp

(
−
(w− an − u)2

2σ 2
n

)
dFU (u)

≤

N∑
n=1

εn√
2πσ 2

n

= d (40)
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Furthermore, as Z is a GM, it can be verified that there are
positive constants α0, α1 and α2 such that fZ (z) ≤ α1 e−α2|z|

for all |z| > α0. As a consequence, there exist finite constants
α3 > 0 and α4 ≥ α0 such that fZ (z) ≤

α3
z2

for all |z| > α4.
Then when w > 2α4 we have:

fW (w) =
∫ w/2

−∞

fZ (w−u)dFU (u)+
∫
∞

w/2
fZ (w−u)dFU (u)

≤

∫ w/2

−∞

α3

(w− u)2
dFU (u)+ cPr (U ≥ w/2) (41)

≤
α3

(w− w/2)2
+

4cE
[
U2
]

w2 (42)

=
4
(
α3 + cE

[
U2
])

w2 = Tu(w). (43)

where (41) comes from the fact that the PDF of any GM
random variable is upper bounded by any constant c that
is great than d , and (42) follows from Markov’s inequality.
By using the same procedure, we can also obtain the same
upper bound when w < −2α4. Therefore, by choosing k0 =
2α4 and k1 = 4

(
α3 + cE

[
U2
])
, the lemma is proved.

Now, a lower bound on fW (·) is stated in the following.
Lemma 5: The distribution fW (·) can be lower bounded as

Tl(w) =
e−c1

e(aw2−2b1w)
≤ fW (w) (44)

for finite constants a, b1, c1.
Proof: We know that the function− ln (x) is convex for

x ∈ (0,∞). It then follows that:

− ln (fW (w))

= − ln

 N∑
n=1

εn

∫
∞

−∞

exp
(
−
(w−an−u)2

2σ 2n

)
√
2πσ 2

n

dFU (u)


≤

N∑
n=1

εn

− ln

∫ ∞
−∞

exp
(
−
(w−an−u)2

2σ 2n

)
√
2πσ 2

n

dFU (u)

 (45)

≤

N∑
n=1

εn

∫
∞

−∞

− ln

exp
(
−
(w−an−u)2

2σ 2n

)
√
2πσ 2

n

 dFU (u) (46)

=

N∑
n=1

εn

2σ 2
n

∫
∞

−∞

[
w2
− 2w (u+ an)+ (u+ an)2

]
dFU (u)

+

N∑
n=1

εn ln
(√

2πσ 2
n

)
(47)

≤

N∑
n=1

εn

2σ 2
n

∫
∞

−∞

[
w2
− 2w (u+an)+ 2

(
u2 + a2n

)]
dFU (u)

+

N∑
n=1

εn ln
(√

2πσ 2
n

)
(48)

= aw2
− 2b1w+ c1 (49)

where

a =
N∑
n=1

εn

2σ 2
n
, (50)

b1 =
N∑
n=1

εn

2σ 2
n
(an + E [U ]), (51)

c1 =
N∑
n=1

εn ln
(√

2πσ 2
n

)
+

N∑
n=1

εn

σ 2
n

(
a2n + E

[
U2
])
. (52)

Note that the inequality in (45) follows from the convexity
of − ln (x), while we obtain (46) using Jensen inequality
and (48) using the fact that (α + β)2 ≤ 2

(
α2 + β2

)
. It is

clear to see that the above upper bound for − ln (fW (w)) is
equivalent to the lower bound fW (w) ≥ e−c1

e(aw
2−2b1w)

.

It is worth mentioning that the two bounds in (43) and (44)
do not satisfy the two conditions used in [30]. It is because
L (w) = ln

[
1

Tl (w)

]
is not non-increasing for w < 0, and we

also have
∫
∞

−∞
Tu (w) ln [Tl (w)] dw = −∞.

APPENDIX B
BOUNDS ON fV (·)
Lemma 6: The distribution fV (·) for a given input distribu-

tion FX can be bounded as

e−c2

e(av2−2b2v)
≤ fV (v;FX ) ≤ d (53)

for finite constants a, b2, c2 and d.
Proof: The upper bound on fV (·) comes directly from

that of fW (·), which is:

fV (v;FX ) =
∫
∞

−∞

fW (v− x)dFX (x)

≤

N∑
n=1

εn√
2πσ 2

n

= d (54)

For the lower bound, we have:

− ln (fV (v;FX ))

= − ln
[∫
∞

−∞

fW (v− x)dFX (x)
]

≤

∫
∞

−∞

− ln [fW (v− x)] dFX (x) (55)

≤

∫
∞

−∞

[
a (v− x)2 − 2b1 (v− x)+ c1

]
dFX (x) (56)

= av2 − 2b2v+ c2, (57)

where

b2 = b1 + aE [X ], (58)

c2 = c1 + aE
[
X2
]
+ 2b1E [X ]. (59)

Note that for the above, we apply Jensen inequality
in (55). In addition, (56) comes from the upper bound on
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− ln (fW (w)). The lower bound on fV (v;FX ) therefore fol-
lows directly from the upper bound on − ln (fV (v;FX ))
in (57).

APPENDIX C
ANALYTICITY OF MW (s)
Because MW (t) is finite for all |t| < t0, we have

|MW (s)| ≤
∫
∞

−∞

∣∣esw∣∣ dFW (w) = ∫ ∞
−∞

e<(s)wdFW (w)

< ∞, (60)

for any s ∈ D. Therefore, MW (s) exists on D. Let {sn}n∈N,
be a sequence in D such that limn→∞ sn = s∗ for s∗ ∈ D.
Then there exists a constant b > 0 such that |< (sn)| ≤
b < t0 for any n ∈ N. As such, for any w ∈ R, we have
|esnw| = e<(sn)w ≤ ebw. Moreover,

∫
R e

bwdFW (w) < ∞
since b < t0 and

∫
R e

twdFW (w) < ∞ for all |t| < t0.
So by applying Dominated Convergence Theorem, we have
limn→∞MW (sn) = MW (s∗). Equivalently, MW (s) is con-
tinuous on D. Furthermore, because of the analyticity of esw,
we can apply the same procedure as in the proof of Lemma 1
using Fubini-Tonelli, Cauchy’s Integral, and Morera’s theo-
rems to show the analyticity of MW (s).

APPENDIX D
DIRECTIONAL DERIVATIVE AND LAGRANGIAN THEOREM
This appendix provides some well-known concepts, which
are helpful for the establishment of the KTC.
Definition 1: Let f : V → R be a function on a normed

linear space V . The directional derivative of f at a ∈ V along
a direction d ∈ V is defied by

Da(f ; d) = lim
t→0

1
t
(f (a+ td)− f (a)),

if this limit exists.
Lemma 7: Let f : A → R be a concave function where

A is a convex set. For any a ∈ int(A) and for any a′ ∈ A,
the directional derivative of f along a′ − a

Da(f ; a′ − a) = lim
t→0

1
t
(f ((1− t)a+ ta′)− f (a))

exists and is finite. Moreover, a is a point of global maximum
for f if and only if Da(f ; a′ − a) ≤ 0 for any a′ ∈ A.

Proof: The proof is given in [54].
Theorem 3 (Optimization Theorem): Let � be a compact

and convex metric space, and f a continuous, weakly differ-
entiable and convex-cap functionals on � to R. Define:

C = sup
x∈�

f (x).

Then
1) C = max

x∈�
f (x); i.e., f (x) achieves its maximum on �.

2) The necessary and sufficient condition for f (x0) = C is
Dx0 (f ; x − x0) ≤ 0 for all x ∈ �.

3) If f is strictly convex-cap, C is achieved by a unique x0
in �.
Proof: See [47], [55].

APPENDIX E
THE PROOF OF TWO DISTINCT POINTS
ACHIEVING THE SUM CAPACITY
Let {F?Xi} be a given set of sum-capacity-achieving distribu-
tions. If there exists only a single point S in the rate region
that achieves the sum capacity, it is clear that

Csum =

M∑
i=1

I
(
F?Xi |

{
X?j
}M
j=1,j 6=i

)
. (61)

On the other hand, based on the chain rule of MI, we have

Csum = I
(
{F?Xj}

M
j=1

)
=

M∑
i=1

I
(
F?Xi |

{
X?j
}i−1
j=1

)
. (62)

LetQ andQ′ denote the sets
{
X?j
}M
j=i+1

and
{
X?j
}i−1
j=1

, respec-

tively and X represent the support set of Q. Since {F?Xi} are
finite and discrete, X has finite number of elements. It then
follows that:

I
(
F?Xi |

{
X?j
}M
j=1,j 6=i

)
=

∑
q∈X

Pr (Q = q) I
(
F?Xi | Q = q,Q′

)
=

∑
q∈X

Pr (Q = q)

×D
(
fX?i ,Y ?|Q,Q′ (., . | q, .) ‖ fX?i (.) fY ?|Q,Q′ (. | q, .)

)
≥ D

∑
q∈X

Pr (Q = q) fX?i ,Y ?|Q,Q′ (., . | q, .)

‖

∑
q∈X

Pr (Q = q) fX?i (.) fY ?|Q,Q′ (. | q, .)


= I

(
F?Xi | Q

′
)
= I

(
F?Xi |

{
X?j
}i−1
j=1

)
. (63)

where D (.) is the relative entropy between two distribu-
tions, Y ? =

∑M
i=1 X

?
i + Z and the inequality comes

from the log-sum inequality. It can be verified that the
equality in (63) can only be achieved if and only if
fY ?|X?i ,Q,Q′ (. | ., ., .) = fY ?|Q,Q′ (. | ., .), which is equivalent
to E

[
Y ? | X?i = x,Q,Q′

]
= E

[
Y ? | Q,Q′

]
for any mass

point x in the support set of X?i . Therefore, the equality in (63)
only happens if E

[
X?i
]
= x for any mass point x in the

support set of X?i , or equivalently, X
?
i has only a single mass

point, which is not possible. As a result, I
(
{F?Xj}

M
j=1

)
<∑M

i=1 I
(
F?Xi |

{
X?j
}M
j=1,j 6=i

)
, which contradicts with (61).
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