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ABSTRACT In this paper, we investigate the effect of selfish behaviors on the media stream delivery in
selfish wireless networks with selfish relay nodes (RN). The RN’s selfish behavior of forwarding media
streams, depicted as its degree of node-selfishness (DeNS), is affected by both its available resources and the
received incentives, while an incentive mechanism is employed to depress the selfish behaviors of the RNs
having limited available resources. Under the RN’s node-selfishness, the optimal incentives are controlled
by the sources delivering media streams to maximize the finite-horizon utility, namely, the tradeoff between
the path reliability and the incentive cost for delivering media streams during a finite time period. With the
unknown node-selfishness owing to the dynamic information about the RNs’ available resources and their
received incentives being private, we provide a dynamic node-selfishness model to formulate the dynamic
of the RN’s DeNS, and further design an online neural-networks aided approximation scheme to identify
the node-selfishness dynamics and to determine the optimal incentives. The convergence of this scheme
is analyzed by Lyapunov techniques. Simulation results demonstrate the effectiveness of delivering media
streams.

INDEX TERMS Neural networks, selfish wireless networks, node-selfishness dynamics, delivering media
streams.

I. INTRODUCTION
A drastic growth of the media stream delivery has been
witnessed [1], and the media streams of some nodes (namely
the sources) are delivered with the aid of relay nodes (RNs)
in wireless networks. With the proliferation of smart devices,
the RNs have autonomic functions and would prefer to for-
ward media streams selfishly rather than altruistically in
wireless networks. The wireless network consisting of nodes
exhibiting a selfish behavior is referred to as a selfish wire-
less network (SeWN). In SeWNs, the selfish behavior of
RNs resulting from its energy resources may degrade the
path reliability for the end-to-end (E2E) delivery of media
streams, but the source generating media streams employs
incentive mechanisms to control the RNs’ selfish behaviors
for delivering media streams. Accordingly, the RN’s selfish

behaviors, i.e., its node-selfishness, dynamically change with
both its available energy resources and the received incen-
tives, and their relationshipmay be complex owing to the RNs
possessing different behavior characteristics [10] and/or they
being in different contexts [12], [13]. Since the amount of the
RN’s available energy resources and the effective sensitivity
of its received incentive are its private information, the RN’s
node-selfishness dynamic is unable to be known by other
nodes. Hence, for deliveringmedia streams, the source should
firstly determine the node-selfishness dynamics of the RNs
within the path. Meanwhile, with the time requirement of
media streams [3], the source should guarantee the reliabil-
ity of delivering media streams through the paths during a
finite-horizon duration. Therefore, under the unknown node-
selfishness and with the finite-horizon-duration constraint,
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the source needs to effectively and dynamically control the
media stream delivery by providing some appropriate incen-
tives at network layer.

Some dynamically optimal schemes for delivering media
streams have been investigated in many literatures [4]–[9].
An optimal rate allocation and admission control scheme
was proposed in [5] for adaptive video streaming in wireless
networks with user dynamics. For effectively delivering the
multi-source video on-demand streaming, a joint routing and
rate allocation algorithm was proposed in [4] over wireless
mesh networks. The system metrics of delivering packets on
delay, symbol error probability and packet loss probability
were balanced in wireless multimedia relay networks [9].
A quality-of-user-experience (QoE)-driven cross-layer opti-
mization scheme was developed in [6] for dynamic adaptive
streaming transmission of scalable videos in wireless broad-
band access networks. In [7], a bit-rate switching mechanism
was determined QoE metrics for video streaming service in
wireless networks. A routing optimization of wireless vehicu-
lar ad-hoc networks was designed in [8] for achieving a better
tradeoff between the transmission power consumption and
the E2E reliability. Although these aforementioned schemes
have optimized the media stream delivery from the perspec-
tive of multi-layer parameters, their feasibilities disregard
the impact of the node-selfishness in distributed wireless
networks.

The node-selfishness analysis has been investigated
in many literatures [10]–[16]. Three energy-based node-
selfishness models were elicited in [10] from the psycholog-
ical behavior of human beings in mobile ad-hoc networks,
while the variation of the node’s residual energy with its
node-selfishness was modeled in [11] as the semi-Markov
process. In addition, the incentive mechanisms based on cred-
ibility and virtual currency were employed in [12] and [13] to
stimulate selfish nodes for forwarding packets. To motivate
nodes for cooperation in ad hoc networks, a hybrid tech-
nique of reputation-based and incentive-based mechanisms
was addressed in [14]. These literatures just analyze the
effect of the available resource or the incentive mechanism.
For analyzing the synthetical effects of these factors, a dis-
tributed framework of the node-selfishness management was
constructed in [15] to manage the RNs’ node-selfishness.
A dynamic incentive incentive model was proposed in [16]
based on Markov decision process to determine the opti-
mal incentives. Nevertheless, the aforementioned literatures
have a precondition that the node-selfishness model is firstly
known, thus it is not adaptive for the wireless networks
with unknown node-selfishness. Although the offline NN-
based scheme was employed in [17] to estimate the RN’s
node-selfishness in the case of the unknown node-selfishness
dynamics, the requirement of obtaining a large amount of
training data was the precondition of its feasibility.

In this paper, we investigate the effect of selfish behaviors
on the media stream delivery in SeWNs with selfish RNs
under the unknown node-selfishness. The RN’s behavior of
forwarding the packets of media streams is affected by both

its available resources and the received incentives. Accord-
ingly, we define the RN’s degree of node-selfishness (DeNS)
and design its node-selfishness dynamic to its selfish behav-
iors. Additionally, a finite-horizon utility is defined to maxi-
mize the path reliability and to minimize the incentive cost
for delivering media streams during a finite time period.
Under the known RN’s node-selfishness dynamic, by using
the neural-network (NN) techniques, the source of delivering
media streams controls some optimal incentives to maximize
its finite-horizon utility.

The main contributions of this paper are outlined as fol-
lows:

• Adynamic node-selfishnessmodel is designed to formu-
late the dynamic of the RN’s DeNS with respect to both
its available resources and the received incentives. And
this RN’s dynamic model includes an intrinsic dynamic
and an extrinsic dynamic for separating the dynamic
impacts of its available resources and its received
incentives, which is propitious to obtain the optimal
incentives.

• An online NN-aided approximation scheme (ONAS) is
conceived to determine the optimal incentives received
from the source for the path reliability of delivering
media streams during a finite time period. It identifies
the dynamic node-selfishness model, which is uncertain
for the source, and approximates the finite-horizon util-
ity function and the optimal incentives, which is hard
to be solved by traditional methods owing to the for-
mulations related with the RNs’ future DeNSs and the
incentive decisions during the finite time period.

• The convergence of the ONAS is proved to be achievable
by Lyapunov techniques.

The remainder of the paper is organized as follows. The
system model of the media stream delivery in SeWNs is
introduced in Section II. Section III depicts the problem of
the optimal media stream delivery. In Section IV, the ONAS
is employed for delivering media streams under the unknown
node-selfishness dynamics of all RNs. Simulation results are
provided in Section V, and Section VI concludes this paper.

II. SYSTEM MODEL
In this section, we introduce the network model including
some selfish RNs and the RN’s node-selfishness. Finally,
we give the path reliability and the incentive cost of delivering
media streams.

A. NETWORK MODEL
Media streams are continuous flows generated at sources and
continue a finite time period [3], and this finite time period is
divided into K time frames. The media streams are delivered
between the source-destination pairs with the aid of some
selfish RNs in SeWNs. The path of delivering media streams
includes selfish RNs, and its reliability degrades owing to
their selfish behaviors resulting from their limited residual
energy. For raising the path reliability, a virtual-currency
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FIGURE 1. A topology example of the SeWN consisting of selfish RNs
forwarding media streams and the network controller extracting the
RNs’ NSI.

incentive mechanism is employed to stimulate these selfish
RNs for forwarding media streams. While delivering media
streams, in terms of RNs’ selfish behaviors, the sources select
the most reliable and/or shortest one from the paths obtained
by a route protocol, e.g., dynamic source routing (DSR) pro-
tocol [2]. The set of the RN in the selected path R is denoted
by R = {R1, · · · ,Ri, · · · ,RN } with Ri being the selected
RN and N being the number of RNs. At the beginning of
each time frame k (k ∈ {1, 2, · · · ,K }), the sources provide
some incentives for selfish RNs cascaded in the selected path
R to depress their selfish behaviors and enhance the path reli-
ability of delivering media streams. In SeWNs, the network
controller manages the incentive resources and extracts the
RNs’ node-selfishness information (NSI) by surveilling their
selfish behaviors, and the selfish RNs decide their forwarding
behaviors in terms of their residual energy and the incentives
received from the network controller, shown in Fig. 1.

B. RN’s NSI
In SeWNs, the RN’s residual energy is the indispensable
element of determining the forwarding willingness, and the
virtual-currency incentive stimulates it to forward media
streams. The RN’s residual energy and its received incen-
tive, referred to as its intrinsic and extrinsic factors, respec-
tively, affect its behavior of forwarding media streams. Here,
the RN’s DeNS is defined to reflect the RN’s selfish behavior,
related to its intrinsic and extrinsic factors, as follows.
Definition 1 (DeNS): The RN’s DeNS s is defined as the

degree reflecting the effect of its residual energy and its
received incentive on its behavior of forwarding packets. The
DeNS s varies from 0 (altruistic) to 1 (completely selfish),
i.e., s ∈ [0, 1].
The RN of abundant energy has the high forwarding will-

ingness, and the value of its DeNS gets closes to 0. The RN
of low residual energy may cherish its energy resource and
has the low forwarding willingness, so the value of its DeNS
gets closes to 1. In addition, the incentive enforces forwarding
media streams on RNs, so the value of its DeNS decreases
to 0. The high incentive largely enhances the forwarding
willing of the RN, and thus the decreasing level of its DeNS in

case of the high incentive is larger than that in case of the low
incentive. Accordingly, the variations of both the RN’s resid-
ual energy and its received incentive cause the variation of its
DeNS. When building the RN’s node-selfishness dynamics,
its DeNS inherently varies with the variation of its residual
energy, but the incentive is employed in order to control its
DeNS.

C. SOURCE’s UTILITY OF DELIVERING MEDIA STREAMS
Since the RNs’ selfish behaviors degrade the path reliabil-
ity of delivering media streams, the source should utilize
some incentives to stimulate these RNs for forwarding media
streams and depress their selfish behaviors. Accordingly,
we configure the source’s utility of delivering media streams
in terms of both the path reliability and the incentive cost.

The path reliability of delivering media streams is mainly
related with the RNs’ selfish behaviors, i.e., their DeNSs.
As the DeNS of each RN Ri (∀Ri ∈ R) increases, the path
reliability of delivering media streams through the path R
decreases. Hence, the path reliability of the path R is defined
as the product of the reliable degrees of all selected RNs
during frame k , expressed as [18]

P(Sk ) =
∏
Ri∈R

(1− si,k ), (1)

where Sk = [s1,k , · · · , sN ,k ]T is the vector of all RNs’ DeNSs
during frame k with si,k being the DeNS of RN Ri.

Meanwhile, due to the cascaded structure of the path R,
the received incentives of the RNs within the path R are corre-
lated. And then, we formulate the incentive cost of delivering
packets through this path during frame k in a simple quadratic
form as

C(u(Sk )) = uT (Sk )Qu(Sk ), (2)

where u(Sk ) = [u(s1,k ), · · · , u(si,k ), · · · , u(sN ,k )]T is the
vector of the incentives received with u(si,k ) being the
received incentive for RN Ri during frame k , Q ∈ RN×N

is the correlation matrix of the incentives depending on the
localities of the RNs within the path R.

While delivering a media stream, the source should main-
tain the reliability of the selected path during K time frames.
During each frame k , the source provides some incentives to
all RNs within the path R for decreasing their DeNSs, which
raises up the path reliability of delivering media streams
through this path. Hence, the finite-horizon utility of the
source is to balance the path reliability and the incentive cost
from frame k to frame K − 1 and to maximizes the path
reliability with regard to its incentive cost during the terminal
frame K , expressed as

V (Sk ,u(Sk )) = P(SK )+
K−1∑
j=k

(
P(Sj)− πC(u(Sj))

)
, (3)

where π (π > 0) is a factor, like a price parameter in [19],
to balance the path reliability and the incentive cost. Here, for
the sake of reading, we summarize some important notations
in Table 1.
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TABLE 1. List of Important Notations

III. PROBLEM FORMULATION OF OPTIMAL MEDIA
STREAM DELIVERY
Before delivering media streams with the aid of the selfish
RNs cascaded in the selected path R, the source obtains their
NSI and adjusts the incentives to stimulate their forwarding
behaviors for maintaining the reliability of this path during K
frames. For each frame k (1 ≤ k < K ), the source needs to
maximize its finite-horizon utility V (Sk ,u(Sk )), expressed as

V ∗(Sk ,u(Sk ))

= max
u(Sk )

P(SK )+
K−1∑
j=k

(
P(Sj)− πC(u(Sj))

)
= max

u(Sk )
P(Sk )− πC(u(Sk ))+ V ∗(Sk+1,u(Sk+1)). (4)

For frame K , the source just maximizes the reliability of
this path without regard to its incentive cost. By getting the
derivation of Eq. (4) and setting it to zero, we obtain the
optimal incentives paid by the source, expressed as

u∗(Sk ) =
1
2π

Q−19(Sk )
∂V ∗(Sk+1,u(Sk+1))

∂Sk+1
, (5)

where9(Sk) =
∂Sk+1
∂u(Sk )

reflects the variation of theDeNS Sk+1
with the incentive u(Sk ).

In our considered networks, the network controller extracts
the RNs’ NSI by observing their behaviors of forwarding
media streams, and offers some incentives to the RNs in
terms of the sources’ demands [15], [27]. At the beginning
of each frame k (k ∈ {1, · · · ,K }), the source obtains the
RNs’ current NSI Sk and future NSI Sk ′ (k ′ ∈ {k+1, · · · ,K })
from the network controller, and then maximizes its finite-
horizon utility (cf. Eq. (4)), and finally determines the optimal

FIGURE 2. Flowchart of maximizing the source’s finite-horizon utility and
determining the optimal incentives during K frames.

incentives (cf. Eq. (5)). This controller offers these optimal
incentives to the corresponding RNs for stimulating their
forwarding behaviors. Not until frame k = K , the source con-
tinually updates the RNs’ NSI, its finite-horizon utility and
optimal incentives for effectively delivering media streams.
Fig. 2 shows the flowchart of maximizing the source’s finite-
horizon utility and obtaining the optimal incentives for deliv-
ering media streams during K frames,

However, in the aforementioned flowchart, there are two
problems: how for network controller to obtain the RNs’
future NSI and how for the sources to compute the values of
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∂V ∗(Sk+1,u(Sk+1))
∂Sk+1

in Eq. (5) while determining the RNs’ opti-
mal incentives u∗(Sk ). Due to the effects of the RNs’ selfish
behaviors on both the finite-horizon utility and the incentive
cost, the source should know beforehand the RNs’ current
NSIRk and future NSIRk ′ (∀k ′ ∈ {k+1, · · · ,K }). Although
the network controller has had the function of extracting
the RNs’ current NSI in terms of their behaviors, as shown
in Fig. 4, it is unavailable for the network controller to directly
know the RNs’ future NSI. Additionally, since the current
optimal incentive cost u∗(Sk ) is related with the derivation
of the future finite-horizon utility ∂V ∗(Sk+1,u(Sk+1))

∂Sk+1
, the source

should obtain its future value ∂V ∗
∂Sk+1

while computing the
value u∗(Sk ).

To overcome these issues, in the following sections,
we design the ONAS, i.e., learning their dynamic node-
selfishness model, the maximum finite-horizon utility, and
the optimal incentive cost by using NNs [20], in order to
effectively deliver media streams from frame k to frame K .

IV. ONLINE NN-AIDED APPROXIMATION SCHEME
UNDER UNKNOWN NODE-SELFISHNESS DYNAMICS
In this section, the ONAS is designed for delivering
media streams while the source is completely unaware of
the RNs’ node-selfishness. Firstly, we design a dynamic
node-selfishness model in terms of the RN’s intrinsic and
extrinsic factors. And then, we describe the ONAS under
unknown node-selfishness dynamics. Finally, we analyze its
convergence.

A. NODE-SELFISHNESS DYNAMICS
From Definition 1, the RN’s DeNS is related with its resid-
ual energy and the incentive provided by the source. The
RN’s DeNS varies with its residual energy, which is referred
to as its intrinsic dynamic. Meanwhile, the RN’s DeNS is
controlled by the source’s incentive to depress its selfish
behaviors, which is referred to as its extrinsic dynamic.
Accordingly, we design the node-selfishness dynamic of RN
Ri by using the plant model of the control system [21] as

si,k+1 = f (si,k )+ g(si,k )u(si,k ), (6)

where si,k+1 ∈ [0, 1] is theDeNS of RNRi during frame k+1,
f (si,k ) ∈ [0, 1] is the intrinsic dynamic under the RN’s DeNS
si,k depending on the variation of its residual energy, e.g.,
the energy consumption of its forwarding behavior (cf. [10]),
and g(si,k )u(si,k ) ∈ [−1, 0] is the extrinsic dynamic under
the RN’s DeNS si,k with g(si,k ) being its incentive-gain
rule depending on its incentive sensitivity (cf. [12]) and
the control input u(si,k ) being the received incentive. If RN
Ri receives no incentive from the source during frame k ,
i.e., u(si,k ) = 0, the DeNS of RN Ri is just depended on its
intrinsic factor during frame k+1, i.e., si,k+1 = f (si,k ). When
u(si,k ) 6= 0, the DeNS of RN Ri is controlled by the source’s
incentive, besides of the effect of its residual energy.

According to Eq. (6), the node-selfishness dynamics,
i.e., the dynamic DeNSs of all RNs within the selected path R,

are expressed as

Sk+1 = f(Sk )+G(Sk )u(Sk ) (7)

=


f (s1,k )
f (s2,k )
...

f (sN ,k )

+

g(s1,k ) 0 · · · 0

0 g(s2,k ) · · · 0
...

...
. . .

...

0 0 · · · g(sN ,k )



u(s1,k )
u(s2,k )
...

u(sN ,k )

,
(8)

where Sk+1 is the vector of the DeNSs of all RNs within the
path R during frame k + 1, f(Sk ) represents the vector of
the intrinsic dynamics of these RNs during frame k . G(Sk )
is the diagonal matrix whose diagonal entries are the vector
entries of the incentive-gain rules g(Sk ), which consist of the
incentive-gain rule g(si,k ) of RNRi (∀Ri ∈ R) during frame k ,
and ||Gk || ≤ GM . Additionally, GT (Sk ) =

∂Sk+1
∂u(Sk )

= 9(Sk).
Since the residual-energy information of these RNs is their

private information and the incentive-gain rules are their own
characteristics, it is hard for the source to know the closed-
form expressions of the intrinsic dynamics f(Sk ) and the
incentive-gain rules g(Sk ). In the ONAS, we employ the NNs
to determine the intrinsic dynamics f(Sk ) and the incentive-
gain rules g(Sk ) of the RNs within its selected path R for
delivering media streams during frame k .

B. ONLINE NN-AIDED APPROXIMATION SCHEME
The ONAS includes three parts: the NN-aided identifica-
tion of the dynamic node-selfishness model, the NN-aided
approximations of the finite-horizon utilityV ∗(Sk ,u(Sk )) and
the optimal incentive u∗(Sk ). Meanwhile, we also describe
the flowchart of this scheme.

1) NN-AIDED IDENTIFICATION OF NODE-SELFISHNESS
DYNAMICS
An NN-aided identification is proposed to estimate f(Sk ) and
g(Sk ), which are expressed by using NNs

f(Sk ) = WT
f θf (Sk )+ εf ,k , (9)

g(Sk ) = WT
g θg(Sk )+ εg,k , (10)

where Wf ∈ RL×N and Wg = [Wg,1,Wg,2, · · · ,Wg,N ] ∈
RL×N are the NN weights of the node-selfishness dynamics
with L being the number of hidden neurons, θf (Sk ) ∈ RL×1

and θg(Sk ) ∈ RL×1 are the NN activation functions of
the node-selfishness dynamics, εf ,k ∈ RN×1 and εg,k =
[ε1g,k , ε

2
g,k , · · · , ε

N
g,k ]

T
∈ RN×1 are the NN approximation

errors. Accordingly, the diagonal matrix G(Sk ) in Eq. (7) is
written as

G(Sk ) =


WT

g,1 01×L · · · 01×L
01×L WT

g,2 · · · 01×L
...

...
. . .

...

01×L 01×L · · · WT
g,N


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×


θg(Sk ) 0L×1 · · · 0L×1
0L×1 θg(Sk ) · · · 0L×1
...

...
. . .

...

0L×1 0L×1 · · · θg(Sk ))



+


ε1g,k 0 · · · 0
0 ε2g,k · · · 0
...

...
. . .

...

0 0 · · · εNg,k


= WT

GθG(Sk )+ εG,k (11)

where WG ∈ RNL×N and θG(Sk ) ∈ RNL×N are the
NN weights and activation functions of G(Sk ), respectively,
εG,k ∈ RN×N is theNN approximation errors. By substituting
Eqs. (9) and (11), the node-selfishness dynamics of Eq. (7) are
rewritten as

Sk+1 = (WT
f θf (Sk )+ εf ,k )+ (WT

GθG(Sk )+ εG,k )u(Sk )

=

[
WT

f WT
G

] [
θf (Sk ) 0L×N
0NL×1 θG(Sk )

] [
1

u(Sk )

]
+
[
εf ,k εG,k

] [ 1
u(Sk )

]
= WT

s 2s(Sk )U (Sk )+ ε̄s,k , (12)

where Ws ∈ R(N+1)L×N and 2s(Sk ) ∈ R(N+1)L×(N+1)

are the NN weights and activation functions of the dynamic
DeNSs of all RNs during frame k , U (Sk ) ∈ R(N+1)×1,
ε̄s,k ∈ RN×1, with ||2s(Sk )|| ≤ 2M , 0 < 8min ≤

||2s(Sk )U (Sk )|| ≤ 8M , and ||ε̄s,k || < ε̄M , ∀k . Accordingly,
the RNs’ DeNSs Sk+1 during frame k + 1 can be estimated
as

Ŝk+1 = ŴT
s,k2s(Sk )U (Sk ), (13)

where Ŵs,k is the estimated value of the NN weight Ws
during frame k .

From Eqs. (12) and (13), the identification error of the
node-selfishness dynamics during frame k + 1 is expressed
as ek+1 = Sk+1 − Ŝk+1. Meanwhile, we should update the
estimated NN-aided identification weights Ŵs for determin-
ing the RNs’ future DeNSs Sk+1 ∀k . The update law for the
corresponding NN weights can be expressed as

Ŵs,k+1 = (2s(Sk )U (Sk )UT (Sk )2T
s (Sk ))

−1

2s(Sk )U (Sk )(Sk+1 − αsek )T , (14)

where αs is the tuning parameter of the NN-aided identifica-
tion satisfying 0 < αs < 1 and ek+1 = αsek .

2) NN-AIDED APPROXIMATION OF FINITE-HORIZON UTILITY
By using NNs, the finite-horizon utility function is expressed
as

V (Sk ) =WT
c θc(Sk )+ εc,k , (15)

where Wc ∈ RL×1 are the NN weights of the finite-horizon
utility, θc(Sk ) ∈ RL×1 are the NN activation functions of the
finite-horizon utility with θcm ≤ ||θc(Sk )|| ≤ θcM and its

gradient ∇θc(Sk ) are bounded as ||∇θc(Sk )|| ≤ ∇θcM , εc,k ∈
R is the NN approximation error of the finite-horizon utility.
Using the approximation property of NNs [22], the approxi-
mation of this finite-horizon utility is expressed as

V̂k (Sk ) = ŴT
c,kθc(Sk ), (16)

where Ŵc,k ∈ RL×1 are the estimated values of the
NN weights Wc during frame k . Nevertheless, there exists
an error between the approximated finite-horizon utility of
Eq. (16) and the optimal finite-horizon utility of Eq. (4), and
this error consists of two parts, expressed as ec,k = e1c,k+e

2
c,k ,

where e1c,k and e1c,k are referred to as Bellman error and
terminal constraint error, respectively. The Bellman error is
the approximate error associated with Eq. (16) during frame
k (1 ≤ k ≤ K − 1) [20], written as

e1c,k = V̂k (Sk+1)− V̂k (Sk )+ P(Sk )− C(u(Sk ))

= P(Sk )− C(u(Sk ))+ ŴT
c,k1θc(Sk ), (17)

where1θc(Sk ) = θc(Sk+1)−θc(Sk ). Meanwhile, the terminal
constraint error is the other approximate error during terminal
frame K , written as

e2c,k = P(Sk )− ŴT
c,K θc(ŜK ), (18)

Based on gradient descent, the update law for the NNweights
of the finite-horizon utility is expressed as

Ŵc,k+1 = Ŵc,k − αc
θ̄c(Sk )ec,k

1+ θ̄Tc (Sk )θ̄c(Sk )
, (19)

where θ̄c(Sk ) = 1θc(Sk ) − θc(ŜK ) with θ̄cm ≤ ||θ̄c(Sk )|| ≤
θ̄cM , and αc is a tuning parameter with 0 < αc < 1.

3) NN-AIDED APPROXIMATION OF OPTIMAL INCENTIVES
The optimal incentives paid by the source in Eq. (5) have the
NN-based representation, expressed as

u∗(Sk ) =WT
I θI (Sk )+ εI ,k , (20)

where WI ∈ RL×N are the NN weights of the optimal
incentives, θI (Sk ) ∈ RL×1 are the NN activation functions
of the optimal incentives with ||θI (Sk )|| ≤ θIM , εI ,k ∈ RL×1

are the NN approximation errors of the optimal incentives.
By using an NN, the optimal incentives are approximated as

û(Sk ) = ŴT
I ,kθI (Sk ), (21)

where ŴI ,k ∈ RL×N are the estimated values of the NN
weightsWI during frame k .

Under the NN-aided approximations of the node-
selfishness dynamics and finite-horizon utility, the approx-
imated optimal incentives û(Sk ) applied by Eq. (21) may
be different from the other approximated optimal incentive
of Eq. (5) û∗(Sk ) obtained by maximizing the approximated
finite-horizon utility of Eq. (16). The NN-aided approxima-
tion errors of the optimal incentives ũ∗(Sk ) are defined as the
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FIGURE 3. Flowchart of the online NN-aided approximation scheme.

corresponding difference value between û(Sk ) and û∗(Sk ),
expressed as

ũ∗(Sk ) = ŴT
I ,kθI (Sk )−

1
2
Q−1ĜT (Sk )

∂(ŴT
c,kθc(Sk+1))

∂Sk+1
,

(22)

with Ĝ(Sk ) being the estimated value of the incen-
tive gain G(Sk ). Furthermore, based on gradient descent,
the update law for the NN weights of the optimal incentive
is expressed as

ŴI ,k+1 = ŴI ,k − αI
θI (Sk )ũ∗(Sk )T

1+ θI (Sk )T θI (Sk )
, (23)

where αI (0 < αI < 1) is a positive tuning parameter.

4) FLOWCHART OF ONLINE NN-AIDED
APPROXIMATION SCHEME
We describe the flowchart of the ONAS for optimally deliver-
ing media streams, as shown in Fig. 3. Initially, the network
controller sets S0 = 0 and Ws,0 = 0, and the source sets
u0 = 0, Wc,0 = 0, and WI ,0 = 0. At the beginning of each
frame k (k ∈ {1, · · · ,K }), the network controller estimates
the RNs’ current and future NSI by using Eq. (13) and update
the NN weights by using Eq. (14). And then, the source
estimates its finite-horizon utility by using Eq. (16) and
updates the NN weights by using Eq. (19). Finally, the source
estimates the optimal incentives by using Eq. (21) and updates
the NN weights by using Eq. (23). These optimal incentives
will be provided by the network controller to stimulate the
RNs’ forwarding behaviors in terms of the sources’ demands.
Not until frame k = K , the network controller continually
estimates the RNs’ NSI, and the source continually estimates

its finite-horizon utility and optimal incentives for effectively
delivering media streams.

C. CONVERGENCE OF ONLINE NN-AIDED
APPROXIMATION SCHEME
By using the Lyapunov technique in control theory [23],
sufficient conditions for the NN tuning parameters αs, αc
and αI are derived to ensure the convergence results of this
scheme, which is demonstrated by Theorem 1.
Theorem 1 (Boundedness for ONAS): For the ONAS,

if several positive constants αs, αc, αI satisfy 0 < αs <
1
2 ,

0 < αc <
θ̄2cm

4(1+θ2cM )
and 0 < αI <

3
7 , the RNs’ DeNSs Sk ,

the NN identification error ek , weight estimation errors W̃s,k ,
W̃c,k and W̃T

I ,kθI (Sk ) are all uniformly ultimately bounded,

given by ||ek || ≤
√

εTM
1−α2s

, ||W̃s,k || ≤ min
{√

2εTM
82

min
, 4
√

εTM
84

min

}
,

||W̃c,k || ≤ min
{√

εTM
54
, 4
√
εTM
55

}
, ||Sk || ≤

√
2G2

M (1+θ2IM )εTM
α2c (1−2φ∗)

,

and ||W̃I ,kθI (Sk )|| ≤

√
2(θ2IM+1)εTM
αI (3−7αI )

with 54 = αc(
θ̄2cm

1+θ2cM
−

4αc),55 = αc(
θ̄2cm

1+θ2cM
− 3αc)(1− αc(

2θ̄2cm
1+θ2cM

− 3αc)) and εTM
being an error in Eq. (43).

Proof: Refer to Appendix A.
The results of Theorem 1 show the convergence of the

ONAS. This scheme effectively tracks the node-selfishness
dynamics, the finite-horizon utility and the optimal incen-
tives, and finally achieves the optimal media stream delivery
under the unknown node-selfishness dynamics.

V. SIMULATION RESULTS
In this section, simulation results are provided to demonstrate
the effectiveness of the ONAS for delivering media streams
under the unknown node-selfishness dynamics.

A. PARAMETER SETTING
In our simulated SeWN scenario, there are two completely
independent RNs, marked by ‘RNOne’ and ‘RNTwo’, which
are cascaded between one source-destination pair. Due to the
effects of the RN’s resource consumption and its received
incentive on its forwarding behavior, e.g., their linear rela-
tionships of [10] and [24], we set the node-selfishness dynam-

ics of these two RNs with f(S) =
[
0.8s1 + 0.2
0.6s2 + 0.4

]
andG(S) =[

−0.5 0
0 − 0.2

]
. Meanwhile, themedia streams of the source

have to be completely delivered during 100milliseconds, thus
we set the terminal frame K = 100. While delivering these
media streams, these node-selfishness dynamics and their
initial DeNSs are unknown to the source, thus we set their
initial DeNSs as S0 = [0.5 0.5]T . For the sake of simple
analysis, we set the correlation matrix of the incentives as
Q = Iwith I ∈ R2×2 being an identity matrix, thus the finite-
horizon utility V (Sk ) =

∏2
i=1(1 − si,K ) +

∑K
j=k (

∏2
i=1(1 −

si,k )− π
∑2

i=1(u(si,k ))
2) with the discount factor π = 0.01.
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FIGURE 4. The DeNS variations of two RNs under the ONAS and the
SNAC, and the corresponding differences between NN and SNAC.

For the ONAS, the corresponding activation functions
are constructed from the expansion of the even polynomial∑M/2
β=1(

∑2
i=1 si,k )

2β with M being the order of approxima-
tion [25], resulting in 7 neurons and the normalized time-to-
go (K − k)/K . And the corresponding tuning parameters are
designed as αs = 0.4, αc = 0.1, and αI = 0.01. When the
node-selfishness dynamics of these RNs are known, it is easy
to determine the finite-horizon utility and incentives by using
the single network adaptive critics (SNAC) of [26]. Never-
theless, since the source does not know the node-selfishness
dynamics of these RNs, we employ the ONAS for estimat-
ing their DeNSs, the finite-horizon utility, and the optimal
incentives. From the following simulated results, we show the
effectively estimating performance of this scheme.

B. ONLINE NN-AIDED APPROXIMATION SCHEME
Fig. 4 shows the DeNS variations of these two RNs under
the ONAS and the SNAC, and also depicts the RNs’ cor-
responding difference values between them. The DeNSs of
these two RNs gradually vary with time elapsion and finally
tend to zeros, whichmeans that the incentives from the source
gradually enforce the RNs’ altruistic behaviors of forwarding
media streams. Nevertheless, during the first half of K time
frames, the DeNSs of these RNs obtained by using the ONAS
is larger than that by using the SNAC, owing to the bias of the
estimated node-selfishness dynamics of these RNs. During
the second half of K time frames, the RNs’ DeNSs under
the ONAS are approximately equal to that under the SNAC,
whichmeans that theONAS has traced the RNs’DeNSs to the
SNAC. Meanwhile, the differences under these two methods
are distinctly shown in the bottom subfigure of Fig. 4.

Fig. 5 depicts the variations of the finite-horizon utilities of
delivering media streams under these two schemes, and their
corresponding differences. The utility of delivering media
streams gradually change with time and finally tend to a
certain value, approximately equal to 1, which means that the
source has optimal path reliability and minimum incentive
cost for delivering media streams. Nevertheless, since there
exist the biases of the estimated node-selfishness dynamics
of these RNs and the estimated utility, the delivery utility
obtained by using the ONAS is smaller than that by using

FIGURE 5. The utilities of delivering media streams under the ONAS and
the SNAC, their corresponding difference.

FIGURE 6. The variations of the optimal incentives under the ONAS and
the SNAC, and their corresponding differences.

FIGURE 7. The Bellman error and terminal constraint error for estimating
the finite-horizon utility.

the SNAC during the first half of K time frames. During
the second half of K time frames, the delivery utility under
the ONAS is approximately equal to that under the SNAC.
The corresponding differences under these two schemes are
also shown in the bottom subfigure of Fig. 5.

Likewise, Fig. 6 shows the incentive variations of these
two RNs under the ONAS and the SNAC, and their corre-
sponding differences. Since the source’s incentives gradually
and steadily control the RNs’ altruistic behaviors of forward-
ing media streams, the incentives of these two RNs vary
with time elapsion and finally tend to a value. Meanwhile,
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FIGURE 8. The weighting value of NNs under the ONAS and the SNAC.

there exist some differences between the incentives of these
RNs obtained by using the ONAS and that by using the
SNAC, which are also shown in the bottom subfigure of
Fig. 6.

For analyzing the stability of the ONAS, Figs. 7 and 8 show
the errors of estimating the utility and the NN weighting val-
ues between the ONAS and the SNAC. In Fig. 7, the Bellman
error of Eq. (17) tends to 0with time elapsion and the terminal
constraint error of Eq. (18) is controlled in a little range. With
the decreasing of the sum of these two errors, the estimated
utility by using NNs gradually converges to the maximum
utility. Meanwhile, owing to the large neuron number for
three NNs, the Frobenius norm of the NN weighting values
are shown in Fig. 8. We clearly observe from these three
subfigures that their actual NN weights converge to three
certain values.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we have investigated the media stream
delivery through one path in SeWNs with the unknown
node-selfishness dynamics. The node-selfishness dynam-
ics have been designed to formulate the dynamics of the
RN’s DeNS with respect to its own resources and the
received incentives. Under the unknown node-selfishness
dynamics, the ONAS has been conceived to identify
the dynamic node-selfishness model and also to approxi-
mate the finite-horizon utility and the optimal incentives.
The convergence of the ONAS achieves with Lyapunov
techniques.

For the future works, our interesting points are as follows.
On the one hand, although we mainly focus on the effect
of the node-selfishness on the media stream delivery in this
paper, the delivery utility can be extend by introducing more
impact factors, e.g., wireless channel model and the real time
constraints of media streams. On the other hand, the node-
selfishness dynamic proposed in this paper is just a linear and
simple control model. How to extend this model for adapt-
ing to some complex scenarios, e.g., heterogenous networks
where selfish nodes possess different characters on impact
factors.

APPENDIX
A. PROOF OF THEOREM 1
For analyzing the convergence of the ONAS, we should
analyze the convergence of updating the NN weights of
estimating the node-selfishness dynamics, the finite-horizon
utility and the optimal incentives. Firstly, we set the weight
estimation error of the NN-aided identification as W̃s,k =

Ws − Ŵs,k , and obtain

W̃s,k+12s(Sk )U (Sk ) = αsW̃s,k2s(Sk−1)U (Sk−1)

+αsε̄s,k−1 − ε̄s,k . (24)

Secondly, for analyzing the error dynamics, the NNweight
error of the finite-horizon utility is expressed as W̃c,k =Wc−

Ŵc,k . From Eq. (3), we have

P(Sk )− C(u(Sk ))+ V (Sk+1)− V (Sk )

= P(Sk )− C(u(Sk ))+WT
c θc(Sk+1)

+ εc,k+1 −WT
c θc(Sk )− εc,k

= P(Sk )− C(u(Sk ))+WT
c1θc(Sk )+1εc,k = 0, (25)

where 1εc,k = εc,k+1 −−εc,k . By substituting Eq. (25) into
Eq. (17), we have

e1c,k = −W
T
c1θc(Sk )−1εc,k + ŴT

c,k1θc(Sk )

= −W̃T
c1θc(Sk )−1εc,k (26)

From Eq. (18), the terminal constraint error is written as

e2c,k = WT
c θc(SK )+ εc,K − ŴT

c,kθc(ŜK )

= W̃T
c,kθc(ŜK )+WT

c,k θ̃c(SK )+ εc,K (27)

where θ̃c(SK ) = θc(SK ) − θc(ŜK ). And then, by substituting
Eqs. (26) and (27), we have

ec,k = −W̃T
c,k θ̄c(Sk )+WT

c,k θ̃c(SK )+ ε̃c,k , (28)

where ε̃c,k = εc,K−1εc,k . Substituting Eq. (28) into Eq. (19)
yields

W̃c,k+1 = W̃c,k − αc
θ̄c(Sk )θ̄Tc (Sk )W̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

+αc
θ̄c(Sk )(θ̃Tc (SK )Wc,k + ε̃c,k )

1+ θ̄Tc (Sk )θ̄c(Sk )
, (29)

which will be used to the boundedness of the
ONAS.

Finally, for the NN-aided approximation of the optimal
incentive, the corresponding NN weight error is expressed as
W̃I ,k = WI − ŴI ,k . According to Eqs. (5), (20) and (22),
it yields

ũ∗(Sk ) = −W̃T
I ,kθI (Sk )−

1
2
Q−1ĜT

k (Sk )
∂(ŴT

c,kθc(Sk+1))

∂Sk+1

−εI ,k +
1
2
Q−1GT (Sk )

∂(WT
c θc(Sk+1))
∂Sk+1

. (30)
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By substituting Eq. (30) into Eq. (23), the estimated
NN weight error of the optimal incentive is formulated
as

W̃I ,k+1 = WI − ŴI ,k+1

= W̃I ,k + αI
θI (Sk )ũ(Sk )T

1+ θI (Sk )T θI (Sk )

= W̃I ,k − αI
θI (Sk )

1+ θI (Sk )T θI (Sk )

×

[
1
2
Q−1ĜT

k (Sk )Ŵ
T
c,k∇θc(Sk+1)+ W̃T

I ,kθI (Sk )

+ εI ,k −
1
2
Q−1GT (Sk )WT

c ∇θc(Sk+1)
]T

(31)

with ∇θc(Sk+1) =
∂θc(Sk+1)
∂Sk+1

.
For the convergence of the ONAS, we employ the Lya-

punov technique in control theory [23] to provide the suffi-
cient conditions of the NN tuning parameters. Consider the
Lyapunov function candidate

L =
α2I3

2G2
M (1+ θ2IM )

Ls + Lc +3LI + LA + LB + LC ,

(32)

where Ls = eTk ek + 8
2
mintr(W̃

T
s,kW̃s,k ) + ||W̃T

s,k2s(Sk−1)
U (Sk−1)||2, Lc = W̃T

c,kW̃c,k , LI = tr{W̃T
I ,kW̃I ,k}, LA =

STk Sk , LB = (W̃T
c,kW̃c,k )2, LC = 82

mintr(W̃
T
s,kW̃s,k )2,

3 = min{ α2c
2αI51

,
82

min
4αI52θ

2
M
,
αc(θ2m−3αc(1+θ

2
M ))

αI (1+θ2M )
,

84
min

2αI53θ
2
M
}

with 51 = max{ (GM∇θcMQ)
2(8+9αI )

2 ,
3α2I (GM∇θcMQ)

2

(6αI+16)
},

52 = max{ (WcM∇θcMQ)2(8+αI )
2 ,

3α2I (WcM∇θcMQ)2

2(3αI+8)
} and 53 =

3(∇θcMQ)2(3+8αI )
8 . And then, the terms in Eq. (32) will be

analyzed individually.
Firstly, the first-order difference of Ls is given by

1Ls = eTk+1ek+1 − eTk ek +8
2
min

×

[
tr(W̃T

s,k+1W̃s,k+1)− tr(W̃T
s,kW̃s,k )

]
+ ||W̃T

s,k+12s(Sk )U (Sk )||2

− ||W̃T
s,k2s(Sk−1)U (Sk−1)||2 (33)

and using Cauchy-Schwartz inequality together with
Eqs. (14) and (24) yields

1Ls≤−(1−α2s )||ek ||
2
−82

min||W̃
T
s,k ||

2
+4||αsε̄s,k+1 − ε̄k ||2

−(1− 4α2s )||W̃
T
s,k+12s(Sk )U (Sk )||2. (34)

We set 4||αsε̄s,k+1 − ε̄s,k || ≤ 1ε̄sM with 1ε̄sM being a
constant, which is guaranteed by the bound of ε̄s,k .

Secondly, the first-order difference of Lc is given by

1Lc = W̃T
c,k+1W̃c,k+1 − W̃T

c,kW̃c,k . (35)

And then, substituting Eq. (19) into Eq. (35) yields

1Lc =

(
W̃c,k − αc

θ̄c(Sk )θ̄Tc (Sk )W̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

+αc
θ̄c(Sk )(θ̃Tc (SK )Wc + ε̃c,k )

1+ θ̄Tc (Sk )θ̄c(Sk )

)T

×

(
W̃c,k − αc

θ̄c(Sk )θ̄Tc (Sk )W̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

+αc
θ̄c(Sk )(θ̃Tc (SK )Wc + ε̃c,k )

1+ θ̄Tc (Sk )θ̄c(Sk )

)
− W̃T

c,kW̃c,k

= −2αc

(
θ̄Tc (Sk )θ̄c(Sk )W̃

T
c,kW̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

−
θ̄Tc (Sk )(θ̃

T
c (SK )Wc + ε̃c,k )T W̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

)

+α2c

∥∥∥∥∥θ̄c(Sk)θ̄Tc (Sk)W̃c,k

1+θ̄Tc (Sk)θ̄c(Sk)
−
θ̄c(Sk)(θ̃Tc (SK)Wc+ε̃c,k )

1+ θ̄Tc (Sk )θ̄c(Sk)

∥∥∥∥∥
2

.

By using Cauchy-Schwartz inequality, we further obtain

1Lc ≤ −2αc
θ̄Tc (Sk )θ̄c(Sk )

1+ θ̄Tc (Sk )θ̄c(Sk )
||W̃c,k ||

2

+ 2αc
θ̄Tc (Sk )(θ̃

T
c (SK )Wc + ε̃c,k )T W̃c,k

1+ θ̄Tc (Sk )θ̄c(Sk )

+ 2α2c

∥∥∥θ̄c(Sk )θ̄Tc (Sk )W̃c,k

∥∥∥2(
1+ θ̄Tc (Sk )θ̄c(Sk )

)2
+ 2α2c

∥∥∥θ̄c(Sk )(θ̃Tc (SK )Wc + ε̃c,k )
∥∥∥2(

1+ θ̄Tc (Sk )θ̄c(Sk )
)2 . (36)

Recall that the time span of interest is finite and θ̄c(Sk ) is a
smooth function, then it is bounded by 0 < θ̄cm ≤ ||θ̄c,k || <

3θcM . Then, by separating the term θ̄c(Sk )(θ̃Tc (SK )Wc+ ε̃c,k )
with ||θ̃Tc (SK )|| ≤ 2θcM , ||Wc|| ≤ WcM and ||ε̃c,k || ≤ 3εcM
together with θ̄Tc (Sk )θ̄c(Sk )

1+θ̄Tc (Sk )θ̄c(Sk )
≤ 1, we obtain

1Lc ≤ −2αc
θ̄2cm

1+ 9θ2cM
||W̃c,k ||

2

+α2c ||W̃c,k ||
2
+ 8αc

θ2cMW
2
cM

1+ θ̄2cm
+ 18ε2cM

+ 2α2c ||W̃c,k ||
2
+ 2α2c (8θ

2
cMW

2
cM + 18ε2cM )

= −αc

(
2θ̄2cm

1+ θ2cM
− 3αc

)
||W̃c,k ||

2
+ ε̄2cM , (37)

where ε̄2cM = αc(1+ 2αc)(8θ2cMW
2
cM + 18αcε2cM )+ 18ε2cM .

Thirdly, the first-order difference of 1LI is expressed as

1LI = tr{W̃T
I ,k+1W̃I ,k+1} − tr{W̃T

I ,kW̃I ,k}. (38)

By substituting Eq. (31) into Eq. (38), the upper bound of1LI
yields

1LI ≤ −
αI (3− 3αI )

2(θ2IM + 1)
||W̃T

I ,kθI (Sk )||
2

+
αI

2
(GM∇θcMQ)2(8+ 9αI )||W̃c,k ||

2
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+
αI

2
(WcM∇θcMQ)2(8+ αI )||G̃k ||

2

+
3αI
8

(∇θcMQ)2(8+ 3αI )||W̃c,k ||
4

+
3αI (GM∇θcMQ)2

2(8+ 3αI )
||W̃c,k ||

2

+
3αI (GM∇θcMQ)2

2(8+ 3αI )
α2IW

2
cM ||G̃k ||

2

+ ε̃2I1M + ε̃
2
I2M + ε̃

2
I3M + ε̃

2
I4M

≤ −
αI (3− 3αI )

2(θ2IM + 1)
||W̃T

I ,kθI (Sk )||
2
+ 2αI51||W̃c,k ||

2

+ 2αI52||G̃k ||
2
+ αI53||W̃c,k ||

4
+ αI53||G̃k ||

4

+ ε̃2I1M + ε̃
2
I2M + ε̃

2
I3M + ε̃

2
I4M , (39)

where ε̃2I1M =
8αI (1+αI )3

(1+θ2Im)ε̃
2
IM
, ε̃2I2M =

2α3I ε̃
2
IM

(1+θ2Im)(8+9αI )
, ε̃2I3M =

2α3I ε̃
2
IM

(1+θ2Im)(8+αI )
and ε̃2I4M =

6α3I ε̃IM
4(1+θ2Im)(8+3αI )

+
3α3IWcMGM∇θcMQ
4(1+θ2Im)(8+3αI )

.

According to the dynamic DeNS in Eq. (7), we obtain
||f(Sk )+G(Sk )u∗(Sk )||2 ≤ φ∗||Sk ||2 with 0 ≤ φ∗ ≤ 1/2 is a
constant. The first-order difference 1LA can be expressed as

1LA = STk+1Sk+1 − STk Sk
= ||f(Sk )+G(Sk )û(Sk )||2 − ||Sk ||2

≤ 2||f(Sk )+G(Sk )u∗(Sk )||2 − ||Sk ||2

+ 2||G(Sk )u∗(Sk )−G(Sk )û(Sk )||2

≤ −(1− 2φ∗)||Sk ||2 + 4G2
M ||W̃I ,kθI (Sk )||2 + 4εI ,M .

(40)

Furthermore, by using Eq. (40), we have

1LB = (W̃T
c,k+1W̃c,k+1)2 − (W̃T

c,kW̃c,k )2

≤

((
2− αc

(
2θ̄2cm

1+ θ2cM
− 3αc

))
||W̃c,k ||

2
+ ε̄2cM

)

×

(
−αc

(
2θ̄2cm

1+ θ2cM
− 3αc

)
||W̃c,k ||

2
+ ε̄2cM

)

≤−αc

(
2θ̄2cm

1+θ2cM
−αc

)(
3
2
−αc

(
2θ̄2cm

1+θ2cM
−αc

))
||W̃c,k ||

2

+

 3

αc

(
2θ̄2cm
1+θ2cM

− αc

)
 ε̄2cM . (41)

Recalling the NN weights estimation error dynamics (24)
and applying Cauchy-Swartz inequality, we have

1LC = (82
mintr(W̃

T
s,k+1W̃s,k+1))2 − (82

mintr(W̃
T
s,kW̃s,k ))2

+||W̃T
s,k+12s(Sk )U (Sk )||4

− ||W̃T
s,k2s(Sk−1)U (Sk−1)||4

≤ −84
min||W̃s,k ||

4

− (1− 16α4s )||W̃
T
s,k2s(Sk−1)U (Sk−1)||4 +1ε̄2sM

≤ −84
min||W̃s,k ||

4
+1ε̄2sM . (42)

Finally, by using all the terms of Eq. (32), we get the upper
bound of 1L as

1L =
α2I3

2G2
M (1+ θ2IM )

1Ls +1Lc +31LI

+1LA +1LB +1LC

≤ −
α2c (1− 2φ∗)

2G2
M (1+ θ2IM )

||Sk ||2

− (1− α2s )||ek ||
2
−

1
2
82

min||W̃
T
s,k ||

2

−54||W̃c,k ||
2
−
αI (3− 7αI )

2(θ2IM + 1)
||W̃T

I ,kθI (Sk )||
2

−55||W̃c,k ||
4
+84

min||W̃s,k ||
4
+ εTM , (43)

where 54 = αc(
θ̄2cm

1+θ2cM
− 4αc), 55 = αc(

θ̄2cm
1+θ2cM

− 3αc)(1 −

αc(
2θ̄2cm
1+θ2cM

−3αc)) and εTM = 3
22

min
1ε̄2sM+

3
22

min
ε̄4cM+3(ε̃

2
I1M
+

ε̃2I2M+ ε̃
2
I3M
+ ε̃2I4M )+

1ε̄2sM+ε̄
2
cM+2α

2
I ε

2
IM

1+θ2IM
. Therefore,1L is less

than zero when the following inequalities hold

||ek || >
√

εTM

1− α2s
= Be (44)

or

||W̃s,k || > min

{√
2εTM
82

min

, 4

√
εTM

84
min

}
= Bs (45)

or

||W̃c,k || > min
{√

εTM

54
, 4

√
εTM

55

}
= Bc (46)

or

||Sk || >

√
2G2

M (1+ θ2IM )εTM
α2c (1− 2φ∗)

= BA (47)

or

||W̃I ,kθI (Sk )|| >

√
2(θ2IM + 1)εTM
αI (3− 7αI )

= BI . (48)

Meanwhile, for guaranteeing that the parameters Be, Bs, Bc,
BA and BI are positive, we obtain the ranges of αs, αc and αI .

REFERENCES
[1] Y. Xiao and H. Li, ‘‘Voice and video transmissions with global data param-

eter control for the IEEE 802.11e enhance distributed channel access,’’
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 11, pp. 1041–1053,
Nov. 2004.

[2] N. Zhou, H. Wu, and A. A. Abouzeid, ‘‘The impact of traffic patterns on
the overhead of reactive routing protocols,’’ IEEE J. Sel. Areas Commun.,
vol. 23, no. 3, pp. 547–560, Mar. 2005.

[3] Y. Chen, B. Zhang, Y. Liu, and W. Zhu, ‘‘Measurement and modeling of
video watching time in a large-scale Internet video-on-demand system,’’
IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2087–2098, Dec. 2013.

[4] N.-S. Vo, T. Q. Duong, H.-J. Zepernick, and M. Fiedler, ‘‘A cross-layer
optimized scheme and its application in mobile multimedia networks with
QoS provision,’’ IEEE Syst. J., vol. 10, no. 2, pp. 817–830, Jun. 2016.

[5] V. Joseph, S. Borst, and M. I. Reiman, ‘‘Optimal rate allocation for video
streaming in wireless networks with user dynamics,’’ IEEE/ACM Trans.
Netw., vol. 24, no. 2, pp. 820–835, Apr. 2016.

VOLUME 6, 2018 31769



J. Li et al.: NN Aided Dynamic Control for Delivering Media Streams in SeWN

[6] M. Zhao, X. Gong, J. Liang, W. Wang, X. Que, and S. Cheng, ‘‘QoE-
driven cross-layer optimization for wireless dynamic adaptive streaming
of scalable videos over HTTP,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 25, no. 3, pp. 451–465, Mar. 2015.

[7] Y. Xu, Y. Zhou, and D.-M. Chiu, ‘‘Analytical QoE models for bit-rate
switching in dynamic adaptive streaming systems,’’ IEEE Trans. Mobile
Comput., vol. 13, no. 12, pp. 2734–2748, Dec. 2014.

[8] Z. Ding and K. K. Leung, ‘‘Cross-layer routing using cooperative transmis-
sion in vehicular ad-hoc networks,’’ IEEE J. Sel. Areas Commun., vol. 29,
no. 3, pp. 571–581, Mar. 2011.

[9] M. Egan, P. L. Yeoh, M. Elkashlan, and I. B. Collings, ‘‘A new cross-
layer user scheduler for wireless multimedia relay networks,’’ IEEE Trans.
Wireless Commun., vol. 12, no. 1, pp. 301–311, Jan. 2013.

[10] E. Ataie and A. Movaghar, ‘‘Performance evaluation of mobile
ad hoc networks in the presence of energy-based selfishness,’’ in
Proc. 3rd Int. Conf. Broadband Commun., Netw., Syst., Oct. 2006,
pp. 1–6.

[11] F. Xing and W. Wang, ‘‘On the survivability of wireless ad hoc networks
with node misbehaviors and failures,’’ IEEE Trans. Dependable Secure
Comput., vol. 7, no. 3, pp. 284–299, Jul. 2010.

[12] J. Konorski and S. Szott, ‘‘Credibility of threats to jam anonymous traffic
remapping attacks in ad hocWLANs,’’ IEEE Commun. Lett., vol. 21, no. 3,
pp. 624–627, Mar. 2017.

[13] K. Wang, L. Yuan, T. Mizayaki, Y. Sun, and S. Guo, ‘‘Antieavesdropping
with selfish jamming in wireless networks: A Bertrand game approach,’’
IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6268–6279, Jul. 2017.

[14] R. Kaushik and J. Singhai, ‘‘Enhanced node cooperation technique for
outwitting selfish nodes in an ad hoc network,’’ IET Netw., vol. 4, no. 2,
pp. 148–157, Mar. 2015.

[15] J. Li, Q. Yang, P. Gong, and K. S. Kwak, ‘‘End-to-end multiservice
delivery in selfish wireless networks under distributed node-selfishness
management,’’ IEEE Trans. Commun., vol. 64, no. 3, pp. 1132–1142,
Mar. 2016.

[16] Z. Yang, H. Tian, S. Fan, and G. Chen, ‘‘Dynamic incentive design in con-
tent dissemination process through D2D communication,’’ IEEE Commun.
Lett., vol. 21, no. 8, pp. 1799–1802, Aug. 2017.

[17] J. Li, Q. Yang, and K. S. Kwak, ‘‘Neural-network based optimal dynamic
control of delivering packets in selfish wireless networks,’’ IEEE Commun.
Lett., vol. 19, no. 12, pp. 2246–2249, Dec. 2015.

[18] A. E. Zonouz, L. Xing, V. M. Vokkarane, and Y. L. Sun, ‘‘Reliability-
oriented single-path routing protocols in wireless sensor networks,’’ IEEE
Sensors J., vol. 14, no. 11, pp. 4059–4068, Nov. 2014.

[19] K. Zhu, D. Niyato, P. Wang, and Z. Han, ‘‘Dynamic spectrum leasing
and service selection in spectrum secondary market of cognitive radio
networks,’’ IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1136–1145,
Mar. 2012.

[20] Q. Zhao, H. Xu, and S. Jagannathan, ‘‘Neural network-based finite-
horizon optimal control of uncertain affine nonlinear discrete-time
systems,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3,
pp. 486–499, Mar. 2015.

[21] H. Xu, Q. Zhao, and S. Jagannathan, ‘‘Finite-horizon near-optimal output
feedback neural network control of quantized nonlinear discrete-time sys-
temswith input constraint,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 8, pp. 1776–1788, Aug. 2015.

[22] J. Sarangapani, Neural Network Control of Nonlinear Discrete-Time Sys-
tems. Boca Raton, FL, USA: CRC Press, 2006.

[23] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, ‘‘Dynamic surface
control for a class of nonlinear systems,’’ IEEE Trans. Autom. Control,
vol. 45, no. 10, pp. 1893–1899, Oct. 2000.

[24] D. Niyato and E. Hossain, ‘‘Competitive pricing in heterogeneous wireless
access networks: Issues and approaches,’’ IEEE Netw., vol. 22, no. 6,
pp. 4–11, Nov. 2008.

[25] T. Dierks and S. Jagannathan, ‘‘Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7,
pp. 1118–1129, Jul. 2012.

[26] A. Heydari and S. N. Balakrishnan, ‘‘Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157,
Jan. 2013.

[27] J. Li, Q. Yang, and K. S. Kwak, ‘‘stimulating multi-service forwarding
under node-selfishness information in selfish wireless networks,’’ IEICE
Trans. Commun., vol. E99B, no. 7, pp. 1426–1434, 2016.

JINGLEI LI received the B.S. degree in electronic
information engineering from The PLA Informa-
tion Engineering University in 2008 and the M.S.
and Ph.D. degrees in communication and informa-
tion systems from Xidian University in 2011 and
2016, respectively. He is currently with Xidian
University. His research interests include wire-
less network connectivity and node-selfishness
management.

XINBO GAO (M’02–SM’07) received the B.Eng.,
M.Sc., and Ph.D. degrees in signal and information
processing from Xidian University, Xi’an, China,
in 1994, 1997, and 1999, respectively. He was a
Research Fellow with the Department of Com-
puter Science, Shizuoka University, Shizuoka,
Japan, from 1997 to 1998. From 2000 to 2001,
he was a Post-Doctoral Research Fellow with
the Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong.

Since 2001, he has been with the School of Electronic Engineering, Xidian
University. He is currently a Professor of pattern recognition and intelligent
systems and the Director of the State Key Laboratory of Integrated Ser-
vices Networks, Xidian University. He has authored five books and around
150 technical articles in refereed journals and proceedings, including the
IEEE TRANSACTIONSON IMAGE PROCESSING, the IEEE TRANSACTIONSONCIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY, the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS, the IEEE TRANSACTIONS ON SYSTEMS, MAN

AND CYBERNETICS, and Pattern Recognition in his areas of expertise. His cur-
rent research interests include computational intelligence, machine learning,
computer vision, pattern recognition, and wireless communications.

QINGHAI YANG (M’08) received the B.S. degree
in communication engineering from the Shandong
University of Technology, China, in 1998, theM.S.
degree in information and communication systems
from Xidian University, China, in 2001, and Ph.D.
degree in communication engineering from Inha
University, South Korea, in 2007 with university-
president award. From 2007 to 2008, he was a
Research Fellow with UWB-ITRC, South Korea.
Since 2008, he has been with Xidian University,

China. His current research interest lies in the fields of autonomic commu-
nication, content delivery networks, and LTE-A techniques.

WEN GAO received the B.S. degree in electronic
information engineering from the Henan Univer-
sity of Technology in 2011 and the Ph.D. degree
in cryptography from Xidian University in 2017.
She is currently with the Shaanxi University of
Science and Technology. Her research interests
include lattice-based cryptography and quantum
computation and quantum attack.

31770 VOLUME 6, 2018



J. Li et al.: NN Aided Dynamic Control for Delivering Media Streams in SeWN

KYUNG SUP KWAK (M’81) received the B.S.
degree from Inha University, Inchon, South Korea,
in 1977, the M.S. degree from the University of
Southern California in 1981, and the Ph.D. degree
from the University of California at San Diego
in 1988, under the Inha University Fellowship and
the Korea Electric Association Abroad Scholar-
ship Grants. From 1988 to 1989, he was a Member
of Technical Staff at Hughes Network Systems,
San Diego, CA, USA. From 1989 to 1990, he was

with the IBM Network Analysis Center, Research Triangle Park, NC, USA.
Since 1990, he has been with the School of Information and Communication,
Inha University, as a Professor. He had been the Chairman of the School of
Electrical and Computer Engineering from 1999 to 2000 and the Dean of
the Graduate School of Information Technology and Telecommunications,
Inha University, from 2001 to 2002. He is currently the Director of the

Advanced IT Research Center, Inha University, the UWBWireless Commu-
nications Research Center, and the Key Government IT Research Center,
South Korea. Since 1994, he had been serving as a member of Board of
Directors. From 2000 to 2002, he had been the Vice President for the Korean
Institute of Communication Sciences (KICS). He has been the KISC’s Pres-
ident in 2006. In 1993, he received Engineering College Young Investigator
Achievement Award from Inha University, and a Distinguished Service
Medal from the Institute of Electronics Engineers of Korea. In 1996 and
1999, he received Distinguished Service Medals from the KICS. He was a
recipient of the Inha University Engineering Paper Award and the LG Paper
Award in 1998, and Motorola Paper Award in 2000. His research interests
include multiple access communication systems, mobile communication
systems, UWB radio systems and ad-hoc networks, and high-performance
wireless Internet. He is a member of IEICE, KICS, and KIEE.

VOLUME 6, 2018 31771


	INTRODUCTION
	SYSTEM MODEL
	NETWORK MODEL
	RN's NSI
	SOURCE's UTILITY OF DELIVERING MEDIA STREAMS

	PROBLEM FORMULATION OF OPTIMAL MEDIA STREAM DELIVERY
	ONLINE NN-AIDED APPROXIMATION SCHEME UNDER UNKNOWN NODE-SELFISHNESS DYNAMICS
	NODE-SELFISHNESS DYNAMICS
	ONLINE NN-AIDED APPROXIMATION SCHEME
	NN-AIDED IDENTIFICATION OF NODE-SELFISHNESS DYNAMICS
	NN-AIDED APPROXIMATION OF FINITE-HORIZON UTILITY
	NN-AIDED APPROXIMATION OF OPTIMAL INCENTIVES
	FLOWCHART OF ONLINE NN-AIDED APPROXIMATION SCHEME

	CONVERGENCE OF ONLINE NN-AIDED APPROXIMATION SCHEME

	SIMULATION RESULTS
	PARAMETER SETTING
	ONLINE NN-AIDED APPROXIMATION SCHEME

	CONCLUSIONS AND FUTURE WORKS
	PROOF OF THEOREM 1

	REFERENCES
	Biographies
	JINGLEI LI
	XINBO GAO
	QINGHAI YANG
	WEN GAO
	KYUNG SUP KWAK
	Advanced


