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ABSTRACT In this paper, we propose a weighted Dempster–Shafer (DS) evidence theory-based fusion
algorithm to take advantages of state-of-the-art salient object detection methods. First, we define the mass
function value for each saliency detection method to be fused at the pixel level, based on which we further
calculate the similarity coefficient and similarity matrix. The credibility of each saliency detection method
will be computed by considering to what degree it is supported by other saliency detection methods. Second,
using the credibility of each image saliency detection method as the weight, we compute the weighted mass
function value of eachmethod and get a saliencymap. Third, we use the synthetic rules of DS evidence theory
to fuse the weighted mass function values and get the other saliency map. The final saliency map will be
obtained by fusing the aforementioned two saliency maps. Extensive experiments on three publicly available
benchmark datasets demonstrate the superiority of the proposed weighted DS evidence theory-based fusion
model against each individual saliency detection algorithm in terms of three evaluation metrics of precision-
recall rate, F-measure, and average absolute error. The saliency map after fusion utilizing weighted DS
evidence theory is closer to the ground-truth map.

INDEX TERMS Salient object detection, DS evidence theory, fusion algorithm, mass function, pixel level.

I. INTRODUCTION
Salient object detection, which aims to detect the most
important part of the input image, has become more and
more popular in the field of image processing [1]. It func-
tions as an important pre-processing step in many computer
vision tasks, such as content-aware video resizing [2], visual
tracking [3], [4], image segmentation [5]–[7], image/video
retrieval [8], [9], video summarization [10], [11], image cat-
egorization [12], to name a few.

Existing saliency detection methods can be generally
divided into two categories: top-down methods and bottom-
up methods. Top-down methods [13]–[20] are task-driven,
i.e., they are usually designed for a specific task. Specifically,
they learn various characteristics of the target in a super-
vised manner and apply the learned information to detect
the object. One main drawback is that they can not gener-
alize well from the specific task that is originally trained
for to another. In contrast, bottom-up methods [21]–[25] are
data-driven. These methods usually rely on low-level visual
cues such as colors, spatial distances, texture features and

so forth. Besides, they usually follow strong assumptions,
for example, the boundary priority [26], [27], which assume
that regions along the image boundary are highly possible
to be the background. Another typical assumption is center-
surround contrast principle [23], [28], [29]. Bottom-up meth-
ods are widely adopted as they are easy and fast to compute
saliency regions for subsequent image processing. However,
as they rely on low-level features and strong assumptions,
it is very likely to misclassify the salient object in noisy
backgrounds.

We note each existing state-of-the-art salient object detec-
tion algorithm has its own advantages and disadvantages,
which makes them unreliable in many situations. Therefore,
it is important to develop a more robust method, in order to
obtain more accurate saliency maps. In this paper, we exploit
the superiority in the fusion of the uncertain events of
Dempster-Shafer(DS) Evidence theory [30] and propose a
fusion based saliency detection algorithm to take advantages
of existing methods. Experiments demonstrate the effective-
ness of the proposed method.
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II. RELATED WORK
Recently, more andmore saliency detection fusion algorithms
have been applied to fuse different saliency maps in order
to get a saliency map which is closer to the ground-truth
map. And the fusion effect has been gradually optimized.
For example, Li et al. [31] first obtain two initial saliency
maps using dense sparse reconstruction method and then
utilize the Bayesian algorithm to fuse the two initial saliency
maps to get a more accurate saliency map. Mai et al. [32]
use a Conditional Random Field framework to fuse different
methods and achieve good results. Qin et al. [26] directly
take advantages of the results obtained by other saliency
detection algorithms and treat the results obtained by each
algorithm as a layer cellular automaton. They use a multi-
layer cellular automata to fuse a variety of saliency detection
algorithms which achieves good results. Inspired by above
ideas and considering extensive applications of DS Evidence
theory in the multi-source information fusion, we try to adopt
DS Evidence theory to fuse the results of several saliency
detection algorithms to get better results.

DS Evidence theory is originally based on the works of
Dempster which models the uncertainty by a probability
interval rather than a single probability value. The results
show its superiority in the fusion of uncertainty. DS Evi-
dence theory has been widely applied in the field of med-
ical diagnosis, target detection, military command and so
on. For example, Liu [33] applies DS Evidence theory to
vehicle target detection, in which they use DS Evidence
theory to integrate three characteristics of vehicles to detect
whether the corresponding area contains vehicles. However,
DS Evidence Theory has not been applied in the field of
saliency detection till today. We compare the results of mul-
tiple saliency detection algorithms to multiple features and
introduce weighted DS Evidence theory into the fusion of
several saliency detection algorithms.

In the classic DS Evidence theory, the fusion is based
on that all evidences have the same weight. However, for
some decision in reality, the credibility of each evidence is
different in most cases. So Murphy presented a modified
model [30] which still retain the synthetic rules of the classic
DS Evidence theory. As in the field of saliency detection,
different saliency detection algorithms perform differently at
different scenarios, and the credibility of the results obtained
by various saliency detection algorithms differs at different
pixel, so that the weighted DS Evidence theory is appropriate
for with the scenarios of saliency detection.

III. SALIENCY MAP FUSION BASED ON WEIGHTED DS
EVIDENCE THEORY
In this section, we will apply DS Evidence theory to image
saliency detection. We fuse the saliency maps obtained by
multiple saliency detection algorithms at the level of pixel(in
the following sections the operation is at the pixel level if
there is no special instruction) and produce a saliency map
which is closer to the ground-truth map.

The overall flow of the algorithm is as follows:

FIGURE 1. The flowchart of the algorithm.

A. INITIAL MASS FUNCTION
In this paper, we first define the corresponding recognition
framework of DS Evidence theory. For each pixel in the
image, we define the environment as2 = {FG,BG}which is
a collection of mutually exclusive and exhaustive elements.
It means that a pixel either belongs to foreground or back-
ground. Where FGmeans the pixel belongs to the foreground
and BG means the pixel belongs to the background. The
recognition framework contains 22 subsets, which define the
power sets. These subsets represent four cases that the pixel
is neither foreground nor background, the pixel is the fore-
ground, the pixel is the background, and the case that whether
the pixel is the foreground or the background is uncertain.
In this paper, the power set 22 is defined as

22 = {φ, {FG}, {BG}, {FG ∪ BG}} (1)

For the mass function, it satisfies:
m(φ) = 0∑
X∈22

m(X ) = 1 (2)

Where X represents a subset of the recognition framework
and m(X ) represents a Mass function of event X which indi-
cates the degree of trust for X in the evidence.

The Mass function at each pixel is defined as

mi(FG) = pi (3)
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mi(BG) = 1− pi (4)

mi(φ) = mi(FG ∪ BG) = 0 (5)

Where mi represents the Mass function corresponding to
the i-th saliency detection algorithm. FG indicates that the
pixel to be fused is the foreground and BG indicates that
the pixel is determined to be the background. φ indicates
that the corresponding pixel is neither foreground nor back-
ground and FG ∪ BG represents that whether the pixel is
foreground or background is uncertain. pi represents the
saliency value of the i-th saliency detection method at the
corresponding pixel.

B. GENERATION OF WEIGHTED MASS FUNCTION AND
INITIAL SALIENCY MAP
In the synthesis rules of former DS Evidence theory, the cal-
culation is usually performed based on the same weight of
each evidence. However in the process of saliency detection,
the saliency values of a certain pixel calculated by differ-
ent saliency detection algorithms tend to be different. And
sometimes the difference is very obvious. It can be said that
for a certain pixel, the reliability of the results obtained by
different saliency detection algorithms is disparate. So it is
more reasonable and effective to perform weighted synthesis
on evidences. We refer to the method proposed by Murphy
for the generation of a weighted Mass function.

1) SIMILARITY COEFFICIENT AND SIMILARITY MATRIX
At a certain pixel, we assume that the Mass functions of
the saliency detection algorithms i and j correspond to mi
and mj respectively. And we represent these two saliency
detection algorithms as evidences Ei and Ej. The similarity
coefficient dij between evidence Ei and Ej can be expressed
as:

dij =

∑
Ax∩By 6=φ

mi(Ax)mj(By)√
(
∑
m2
i (Ax))(

∑
m2
j (By))

(6)

Where the similarity coefficient dij (dij ∈ [0, 1]) is used
to describe the similarity between the results of the saliency
detection algorithms Ei and Ej. The larger the value of dij
is, the more similar the results of the two algorithms are.
When dij = 1, it indicates that the results of the saliency
detection algorithms Ej and Ej are completely consistent.
When dij = 0, it means that the saliency detection algorithms
Ei and Ej have the opposite conclusions. Here Ax and By are
the focal elements (The concept is stated in the appendix),
and the values of which can be BG or FG. When they take the
value of BG, it indicates that the saliency detection algorithm
determines the pixel as the background, while the value of FG
indicates that the saliency detection algorithm determines the
pixel as the foreground.

Assuming that the number of saliency detection algorithms
to be fused is n, we can give the similarity matrix between
saliency detection algorithms by Eq.7. The similaritymatrix S

is defined as

S =


1 d12 · · · d1n
d21 1 · · · d2n
...

...
. . .

...

dn1 dn2 · · · 1

 (7)

2) SUPPORT DEGREE AND CREDIBILITY
We add each row of the similarity matrix S to obtain the
support degree to the saliency detection algorithm Ei that
supported by other saliency object detection algorithms. It is
defined as

Sup(mi) =
n∑
j=1

dij (i, j = 1, 2, · · · , n) (8)

Where Sup(mi) indicates the support degree of the
saliency detection algorithm Ei which is supported by other
saliency detection algorithms. If the results obtained by
a saliency detection algorithm are similar to those obtained by
other saliency detection algorithms, we consider the degree of
their mutual support is higher, otherwise it is believed that the
degree of their mutual support is lower.

The credibility of the evidences can be obtained by normal-
izing the support degree of the evidence, and the credibility
can be defined as

Crd(mi) =
Sup(mi)
n∑
i=1

Sup(mi)
(9)

The credibility Crd(mi) reflects the degree of which the
results obtained by saliency detection algorithm Ei can be

trusted. Where
n∑
i=1

Crd(mi) = 1. The higher the support

degree of a saliency detection algorithm which is supported
by other saliency detection algorithms, the more credible
the result of the saliency detection algorithm is. Conversely,
the less reliable the result is.

3) WEIGHTED MASS FUNCTION VALUE
Taking the credibility of each saliency detection algorithm as
the weight, we use the method proposed byMurphy to weight
each saliency detection algorithm to get the weighted Mass
function. The weighted Mass functionmave(FG) is defined as

mave(FG) =
n∑
i=1

Crd(mi) · mi(FG) (10)

Where mi is the basic probability assignment (The con-
cept is stated in the appendix) of the i-th saliency detection
algorithm. And FG means that the i-th saliency detection
algorithm judge the pixel belongs to the foreground. Here
we take the weighted Mass function value as the saliency
value of the saliency map to get a preliminary composite
saliency map Sal1. This saliency map can effectively preserve
the foreground area. It is defined as

Sal1 = mave(FG) (11)
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C. SYNTHESIS RULES OF WEIGHTED MASS FUNCTION
The synthesis rule of Mass function in DS evidence theory is
as follows

m(X ) = m1 ⊕ m2 ⊕ · · · ⊕ mn(X )

=

∑
x1∩x2···∩xn=X

m1(x1)m2(x2) · · ·mn(xn)

k
(12)

k = 1−
∑

x1∩x2···∩xn=φ

m1(x1)m2(x2) · · ·mn(xn) (13)

In this paper, we use the DS synthesis rules to fuse the
weighted Mass functions obtained by n saliency detection
algorithms and synthesize the weighted Mass function for
n− 1 times to get the synthetic Mass function as follows

m(FG) =
(mave(FG))n

k
(14)

k = (mave(FG))n + (1− mave(FG))n (15)

D. GENERATION OF THE FINAL SALIENCY MAP
In this paper, we use the following formula to calculate the
confidence function Bel and likelihood function Pls after
fusing saliency detection algorithms. Concepts of Bel and Pls
are stated in the appendix.

Bel(FG) =
∑
X⊆FG

m(X ) = m(FG) (16)

Pls(FG) = 1−
∑
X⊆BG

m(X ) = m(FG) (17)

Where X ∈ 22. From Equation (16) and Equation (17),
we can get that at a certain pixel, the confidence function
value is the same as the likelihood function value after fusing
different algorithms using the DS evidence theory in this
paper. In this paper, we define the other saliency map Sal2
which highlights the foreground area as

Sal2 = Bel(FG) (18)

We fuse two saliency maps obtained from Equation (11)
and Equation (18), and then we can get the final saliency map
Sal. It is defined as

Sal = µ1 × Sal1 + µ2 × Sal2 (19)

whereµ1 andµ2 are weight values of synthesis. In this paper,
we empirically set µ1 = 0.35 and µ2 = 0.65 to highlights
the foreground area.

The main process of our proposed fusion algorithm is
summarized in Algorithm 1.

IV. EXPERIMENT
In this paper, we extensively present evaluation and analysis
of the proposed DS Evidence Theory saliency model against
the state-of-the-art methods on three standard salient object
databases with the labeled ground truth. Considering the
cases that natural images generally fall into, we introduce
the dataset ECSSD [34] which cantains 1000 semantically
meaningful but structurally complex images with pixel-level

Algorithm 1 Saliency Map Fusion Method Based on DS
Evidence Theory
Input: Several saliency maps of different image salient

object detection algorithms
Output: a fusion saliency map with the same size as input

images.
1: Define the recognition framework of DS evidence theory

with Eq.1.
2: Define the initial Mass function at each pixel with Eq.3,

Eq.4 and Eq.5.
3: Calculate similarity coefficient between different algo-

rithms with Eq.6.
4: Acquire the similar matrix S of saliency maps with Eq.7.
5: Acquire the degree being supported and the credibility of

different algorithms with Eq.8 and Eq.9.
6: Acquire weighted Mass function value mave(FG) and a

saliency map Sal1 with Eq.10 and Eq.11.
7: Use the DS synthesis rules to fuse the weighted Mass

function mave(FG) and get the synthetic Mass function
m(FG) with Eq.14 and Eq.15.

8: Calculate the confidence function Bel and likelihood
functionPls and get saliencymap Sal2 with Eq.16, Eq.17,
and Eq.18.

9: Fuse two saliency maps Sal1 and Sal2 to get the final
saliency map Sal with Eq.19.

saliency labeling and the dataset DUT-OMRON [35] which
are used to compare models on a large scale. We also intro-
duce the dataset MSRA10K [36] which is a descendant of the
MSRA dataset [37]. It contains 10000 annotated images that
covers all the 1000 images in the popular ASD dataset [38].

In this paper, We firstly fuse several state-of-the-art meth-
ods including BSCA [26], DSR [31], HS [35], wCO [39],
MR [35] andRCRR [40] to get a saliencymap of fusion. After
that we evaluate the saliency map of fusion with these state-
of-the-art methods. In the following experiments, we find that
on all the tested databases, our model can yield comparable
results when compared with the best baselines.

A. EVALUATION OF SALIENCY MAP MODELS
1) EXPERIMENTAL PARAMETERS AND
EVALUATION CRITERIA
Following most existing works, we use the precision-
recall(PR) curve, the F-measure and the mean absolute
error(MAE) to evaluate all algorithms. For a saliency map,
we can convert it to a binary maskM and compute Precision
and Recall by comparing M with ground-truth GT . The
specific implementation is to quantify the saliency map to
[0, 255], and then set a threshold for every five values. In a
saliency map, if the saliency value of a pixel is larger than the
threshold, it indicates that the pixel belongs to the foreground,
otherwise the pixel belongs to the background. On each
threshold, a pair of precision/recall scores are computed, and
are finally combined to form a precision-recall(PR) curve
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FIGURE 2. Visual comparison among different methods on DUT-OMRON(5168), MSRA10K(10000) and ECSSD(1000) databases. (a) Input.
(b) GT. (c) BSCA. (d) DSR. (e) HS. (f) wCO. (g) MR. (h) RCRR. (i) Ours.

to describe the model performance at different situations.
Precision and recall can be calculated by

precision =
|M ∩ GT |
|M |

, recall =
|M ∩ GT |
|GT |

(20)

Usually, neither precision nor recall can comprehensively
evaluate the quality of a saliency map. In this paper, we use
F-measure as the overall performance evaluation, according
to [28], the specific calculation method is:

Fβ =
(1+ β2)precision · recall
β2 · precision+ recall

(21)

If β2 is set to 1, then the result of the F-measure is the
harmonicmean of both the precision and the recall. If β2 > 1,

then the recall has a greater impact on the results of the
F-measure. If β2 < 1, then the precision has a greater impact
on the results of the F-measure. As suggested by many salient
object detection works(e.g., [21], [38], [41], [42]), we set β2

as 0.3 to raise more importance to the precision value.
We also introduce the mean absolute error (MAE) which

indicates the average difference between the saliency map
and the ground-truth at pixel level. The specific calculation
method is

MAE =
1
H

H∑
h=1

|S(h)− GT (h)| (22)

Where S is saliency map, GT is the ground-truth map,
H is the total number of pixels, and h denotes each pixel.
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FIGURE 3. Precision-Recall curve and F-measure curve of different algorithms. From top to bottom: ECSSD, MSRA10K, DUT-OMRON.
(a) Precision-Recall curve. (b) F-measure curve.
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FIGURE 4. Mean absolute error of different algorithms.(a) ECSSD. (b) MSRA10K. (c) DUT-OMRON.

FIGURE 5. Mean precision, recall and F-measure values of different algorithms. (a) ECSSD. (b) MSRA10K. (c) DUT-OMRON.

This measure indicates how similar a saliency map is to the
ground-truth map.

2) COMPARISON WITH EXISTING ALGORITHMS
In order to illustrate the universality of the algorithm to
the saliency detection, we makes a comparison between our
method and other six algorithms which are fused in three
published databases. These six methods are BSCA, DSR,
HS, wCO, MR and RCRR. Fig.2 shows some samples for
qualitative comparison to several classic approaches, from
which we can see that our saliency maps of fusion achieves
the best performance on these images. The test images of
the top three rows are selected from ECSSD(1000) database.
The center three rows are from MSRA10K(10000) database.
And images of the last three rows belong to the DUT-
OMRON(5168) database. It can be seen from the figure that
after being fused by our DS Evidence Theory, saliency maps
will be closer to ground-truth maps among all the candidates.
Our fusion method can perform very well, no matter there are
multiple objects in the image or the scrambled backgrounds
and heterogeneous foregrounds.

For quantitative evaluation, we plot the precision-recall
curves and F-measure curves in Fig.3, mean absolute error
bar in Fig.4 and mean precision, recall and F-measure values
bar in Fig.5 to compare our method with six state-of-the-art
approaches. As observed from Fig.3, our model gets the high-
est precision value in almost the whole recall interval [0, 1].

TABLE 1. Elapsed time of the proposed method on ECSSD, MSRA10K and
DUT-OMRON databases.

And the F-measure curves of our fusion algorithm in Fig.3
are fixed at high values which are insensitive to almost every
selective thresholds. In Fig.4, we can see that our approach
has the lowest mean absolute error compared to six state-
of-the-art approaches on different datasets. And our fusion
algorithm also performs well on mean precision, recall and
F-measure as observed from Fig.5. The result clearly demon-
strate that our method is effective in fusing salient object
detection methods.

3) RUNTIME ANALYSIS
The experiments are run on the single thread of an Intel Core
i5-2450MCPU of 2.50GHzwith 4 GBRAM and the code are
written in MATLAB. The time-consuming of fusing BSCA,
DSR, HS, wCO, MR and RCRR six algorithms using the
proposed method is shown in Table 1.

B. FAILURE CASES
Our model performs favorably against algorithms to be fused
with higher precision, recall and F-measure. And we also
have the lowest mean absolute error. However, as our DS
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FIGURE 6. Failure cases of saliency map models.

Evidence Theory fuses other state-of-the-art methods and
then get a saliency map. Our method depends on methods
being fused. The proposedmethod does not work well if more
than half of methods to be fused get wrong answers at one
pixel. On the other hand, the other saliency map models do
not perform well in such cases as shown in Fig.6.

V. CONCLUSION
In this paper, we study the fusion of multiple saliency detec-
tion algorithms in the field of image salient object detection.
For the first time, we introduce the DS Evidence theory into
the image salient object detection at the pixel level. We fuse
the results of multiple salient object detection algorithms
at the pixel level. We conduct a large number of experi-
ments on three public datasets DUT-OMRON, ECSSD and
MSRA10K. We compare saliency maps of the fusion with
maps of several algorithms that are fused. The experimental
results show that our fusion algorithm is better than algo-
rithms that are fused in the precision, recall, F-measure and
mean absolute error indicators. All of these fully prove the
effectiveness and robustness of our fusion algorithm. In the
future work, we will consider using DS Evidence theory to
fusemultiple saliency detection algorithms at the feature level
for better fusion effect.

APPENDIX
To further understand how we use DS evidence theory in the
saliency detection research area. We would like to give some
basic concepts of this paper including the recognition frame-
work, the mass function, the trust function, the likelihood
function and the law of synthesis of DS evidence theory.
Definition 1 (Recognition Framework): In DS evidence

theory, we use 2 to represent the environment, which is a
collection of mutually exclusive and exhaustive elements.
We use 2 = {θ1, θ2, · · · , θn} to represent the set of topics
of interest. In general, a set of size N consists of 2N subsets,
which define the power set, denoted as 22. All subsets of the
recognition framework are exhaustive and disjoint.

Definition 2 (Mass Function): In DS evidence theory,
the Mass function is defined as the basic probability assign-
ment (BPA). Each Mass function can be formally represented
as a function of the mapping of each element in the power
set to the interval [0, 1]. It is often referred to as the basic
probability assignment function (BPAF). It is defined as m :
22 → [0, 1]. Under normal circumstances, BPAF need to
meet the following two conditions:

(1) The Mass function of an empty set is defined as 0. It is
m(φ) = 0.
(2) The sum of the Mass functions for all subsets of the

power set 22 in 2 is 1. It is defined as
∑

X∈ 22
m(X ) = 1.

Any subset of power set 22 is called the focal element if
its Mass function value is greater than 0.
Definition 3 (Trust Function Bel(X ) and Likelihood Func-

tion Pls(X )): For any proposition set X , the trust function
Bel(X ) and the likelihood function Pls(X ) are defined as

Bel(X ) =
∑
Y⊆X

m(Y ) (23)

Pls(X ) = 1− Bel(X ) = 1−
∑
Y⊆X

m(Y ) (24)

where Bel(X ) is the total belief between a proposition
set and all its subsets. It is the smallest trust based on the
evidence. The likelihood (Pls) of a set X is defined as the
degree to which X is not opposed. It is the maximum trust
based on the evidence. [Bel(X ),Pls(X )] represents the evi-
dence interval of X .
Definition 4 (The Synthetic Rule of DS Evidence Theory):

Assuming that Bel1 and Bel2 are two trust functions on the
same discriminant frame 2, m1 and m2 are their correspond-
ing basic probability distribution functions respectively, then
the synthesis law of DS evidence theory can be expressed as

m(Z ) = m1(Z )⊕ m2(Z )

=

∑
Xi∩Yj=Z

m1(Xi)m2(Yj)

k
(25)
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k = 1−
∑

Xi∩Yj=φ

m1(xi)m2(Yj) (26)

where Xi(i = 1, 2, . . . ,m) and Yj(j = 1, 2, . . . , n) are focal
elements and Z ⊆ 2.
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