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ABSTRACT The accurate modeling of the charging characteristics of electric vehicles (EVs) is the basis
for the load forecasting, infrastructure planning, and orderly charging management. While, research based
on the measured charging data of EVs is seldom carried out, and the concrete modeling of the correlations
of various parameters is a gap in the knowledge. Aiming at this, we carried out an investigation based on
operational data, from August 2016 to August 2017, of an EV charging service company in Nanjing, China.
The time-energy characteristics of EV charging behavior can be described using the probability distributions
and correlations of three charging parameters, i.e., charging start time, charging duration, and charged
capacity. In this paper, we fitted the probability densities of these charging parameters using the kernel
estimation method and verified the correlations of time parameters of the charging behavior. Multiple copula
functions were used to model the correlation between the time and energy parameters of different types of
charging behaviors. On this basis, we also carried out stochastic simulation for the load curve of disordered
charging and analyzed the potential of the EV charging load participating in the orderly management and its
coordination with the output of power generation using renewable energy.

INDEX TERMS Electric vehicle, charging load, kernel density estimation, correlation, copula function.

I. INTRODUCTION
The transportation sector consumes more than a half of the
oil resources in the world and at the same time generates huge
amounts of greenhouse gases [1]. Transportation electrifica-
tion is an important way to reduce the dependence of human
society on fossil energy. If electric vehicles (EVs) driven by
clean, high-efficient electric energy with extensive sources
are popularized, the transportation sector can get reduce its
dependence on non-renewable energy resources and aim for
zero emissions on the customer side [2].

For this reason, various countries across the world are
actively prompting the development of EVs. In addition to
implementing a set of economic subsidy policies for the pro-
duction and marketing of EVs, governments of many coun-
tries also put the formulation of the timeline for prohibiting
sales of oil-fueled vehicles on their agenda [3], [4]. It is
foreseeable that an era of growth of EV numbers will be
ushered in.

The development of EVs will bring about a profound effect
on the planning and operation of the power system [5], [6].

To cope with the load growth resulting from the large-scale
EV charging, it is bound to expand the capacity of the power
system. The uncertain spatial and temporal distribution of
the disordered charging load of EVs will probably lead to
an increasingly large difference between the peak and valley
loads on power grid and waste of investment in power distri-
bution equipment. In addition, it makes the optimal control
of power grid more difficult and reduces the safety and eco-
nomic efficiency of the operation of the power grid. While,
EVs, as mobile energy storage, if their charging behavior
can be well-managed using a proper strategy and advanced
means of communication, it will present a broad applica-
tion prospect in peak load shifting, auxiliary service for
power systems, and cooperative consumption of new energy
sources [7], [8].

To achieve the integrative development of EVs and smart
grid and give full play to the potential of EVs as mobile
energy storage, the charging characteristics of EVs need to be
modeled accurately for load forecasting, charging equipment
planning, and design of orderly charging strategies.
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Estimating the probability distributions of EV charging
characteristic parameters including charging start time and
state of charge of batteries according to statistical data of oil-
fuelled vehicles and then simulating large-scale EV charging
through stochastic simulation is a commonly used method for
analyzing charging characteristics of EVs. By using statisti-
cal data about private cars, the temporal distribution of EV
charging loads was analyzed in previous studies [9], [10].
Based on the analysis of the parking demand characteris-
tics in different districts of some cities, other workers [11]
simulated the spatial and temporal distribution character-
istics of the large-scale EV charging behavior. Different
modes of traffic situations were obtained by analyzing the
historical traffic and meteorological data and the charging
behavior of EVs was classified by using the decision tree
algorithm [12]. A predictive model for EV charging behavior
was proposed [13], [14] based on the trip chain. By using
the model, one can simulate the travel behavior of users after
constructing trip chains according to different purposes of
vehicle travel and then calculate the charging demands in
different regions.

While analyzing the charging behavior of EVs using the
data of oil-fuelled vehicles, it is necessary to make a series
of assumptions as the driving characteristic parameters are
transformed to charging characteristic parameters. For exam-
ple, it must be assumed that the batteries of EVs are full of
electricity at the beginning of driving on each day [9], that the
charging demand is only related to daily mileage [15], and
that only several types of EVs run in the research area [16].
However, these assumptions probably limit the modeling
results to specific scenarios. It is worth noting that some
researchers believe that the charging characteristic parame-
ters of EVs are independent of each other [11]–[14], and the
assumption has been accepted by numerous studies. While in
the research, we provide evidence to the effect that the appli-
cation of the assumption leads to biased calculation results.

Presently, there are also some studies based on the
measured charging data of EVs. A temporal distribution
model of loads at a single charging station was established
in [17] using the historical data of a charging station in
Taiwan. In the literature [18], the forecasting method for EV
load was studied using the machine learning method based
on the EV charging data at the University of California,
Los Angeles (USA); however, the data used in the above
research were derived from single sources and therefore are
unable to reflect the difference in the charging behavior of
EVs in different regions.

The EV charging data used in the research came from an
EV charging service company in Nanjing, China. The com-
pany has built charging stations in various districts of the city
including the residential, working, and commercial districts,
as shown in Figure 1. Therefore, the data were derived from
wide sources and thereby are able to embody the charging
characteristics of EVs.

Although others [15], [19] also considered the correla-
tions of charging characteristic parameters of EVs, they fail

FIGURE 1. Distribution of charging stations of the EV charging service
company, Nanjing.

to reveal the full complexity and changeable correlations
of different charging characteristic parameters of EVs due
to the lack of support from measured data and the simple
correlation models established. In the research, we modeled
the probability distributions and the correlations of charg-
ing characteristic parameters of EVs based on the measured
charging data. The remainder of the paper is arranged as
follows: Section 2 introduces the data acquisition and pro-
cessing methods; Section 3 carries out kernel estimation for
the probability density functions of various parameters and
verifies the correlation between two parameters: the charging
start time and the charging duration; Section 4 classifies the
EV charging behavior in accordance with the temporal char-
acteristics; Section 5modeled the correlations of EV charging
parameters using the copula functions; Finally, we use the
charging characteristics of EVs to conduct the load fore-
casting and the evaluation of orderly charging potential, and
analyze the temporal distribution of EV charging loads and
the coordination with the output of power generation using
renewable energies.

II. DATA ACQUISITION AND PROCESSING
The data used in the research were derived from the plat-
form of an EV charging service company in Nanjing, China.
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FIGURE 2. Planar scatter plot for the distribution of raw data and the formation thereof.

The company has built many charging stations in different
districts to mainly provide service for EVs. By using the
intelligent charging piles at their stations, users can realize
self-service charging and payment [20].

After charging EVs using the equipment at the platform,
users will leave a record containing various charging informa-
tion in the background. At present, more than 10,000 charging
records from August 2016 to August 2017 are stored in the
platform. To analyze the EV charging characteristics, we
extracted four groups of data from these charging records,
i.e. charging start time TS , charging duration TC , charging
end time TE , and charged capacity EC . In the data extraction,
those outliers with the charged capacity EC of zero were
removed. As a single charging station had a small data-
set size in a single day and the data were highly random,
we clustered all of the valid charging data in the research
period to ascertain the regularity of the EV charging behavior
and analyze the overall distribution and the correlations of
various charging data. The distribution and formation process
of the raw data are shown in Figure 2.

Before proceeding any further, the following concepts need
to be explained:

¬ Owing to the construction of charging piles precedes the
development of EVs, when EVs are charged at the platform,
their charging behavior does not change due to the busyness
of the charging equipment. Therefore, the EVs show their
charging characteristics in natural state.

 The charging service company does not conduct
orderly management for the EV charging behavior at the

platform. The EVs are charged immediately after being
parked and disconnected with charging piles after finish-
ing charging before leaving the charging stations. As the
parking and charging time parameters of EVs are consistent,
we took the charging start time TS as the start time of parking
and the charging end time TE is the end time of parking.
It is worth noting that the charging duration TC refers to
the time period for which EVs are connected to the power
grid via charging piles, instead of the duration during which
electricity is unidirectional transmitted to the EVs. TS , TC ,
and TE have the following relationship:

TE = TS + TC (1)

® No personal information including user names in each
charging recorded is involved in the data extraction and analy-
sis and no individual charging behavior is traced, which averts
the possibility of infringing the privacy of users [18].

III. TEMPORAL CHARACTERISTICS OF EV CHARGING
BASED ON KERNEL DENSITY ESTIMATION
The temporal characteristics of EV charging are determined
by three parameters: charging start time TS , charging dura-
tion TC , and charging end time TE . According to the data
obtained in Section 2, we conducted kernel estimation for the
probability density functions of the three parameters at first
and verified the correlation between charging start time and
charging duration using relevant conclusions from probability
theory.
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A. KERNEL DENSITY ESTIMATION
While using the parameter estimation method to carry out
probability density fitting, the form of the probability density
function must be assumed. If the probability density function
used is not consistent with the actual conditions, the results
are likely to be erroneous. Driven by data, the non-parameter
estimation method does not need to assume subjectively the
form of the probability density function for data to be fitted.
At present, many non-parametric estimation methods, includ-
ing the kernel density estimation, have been developed and
gradually applied to various topics in economics and medical
science [21]. In the section, we adopted the kernel density
estimation method to fit the probability density functions of
the start time, duration, and end time of EV charging.

Suppose that X1,X2, . . . ,Xn are n samples observed; K (·)
is a given Borel measurable function on R; hn > 0 is a
constant related to n, and when n is infinite, hn tends to zero.

f̂K (x) =
1
nhn

n∑
i=1

K (
Xi − x
hn

) (2)

The above formula is the kernel density estimation of f (x),
K (·) is a kernel function and hn represents the window width.
To guarantee the reasonability of the estimation, the uni-

modal probability density function with zero as the center is
generally used as K (·). When K (·) satisfies the smoothness
condition, f̂K (x) as the function of x also has the same smooth-
ness. The commonly used kernel functions include uni-
form, Gaussian, and Epanechnikov kernels. In this research,
the Gaussian kernel was employed as the kernel function
of the probability density estimation [22], as expressed in
Formula (3).

K (u) =
1
√
2π

exp(−u2/2) (3)

Suppose that TSi, TCi, and TEi (i = 1, 2, . . . , n) represent
the charging start time, charging duration, and charging end
time of each record, then the kernel estimation for the proba-
bility density of the charging start time is

f̂KS (TS ) =
1

√
2πnhSn

n∑
i=1

exp

(
−

(
TSi − TS
hSn

)2
)

(4)

The kernel estimation for the probability density of the
charging duration can be expressed as

f̂KC (TC ) =
1

√
2πnhCn

n∑
i=1

exp

(
−

(
TCi − TC
hCn

)2
)

(5)

The kernel estimation for the probability density of the
charging end time is

f̂KE (TE ) =
1

√
2πnhEn

n∑
i=1

exp

(
−

(
TEi − TE
hEn

)2
)

(6)

In Formulae (4) to (6), hSn, hCn, and hEn are the window
widths of the kernel density estimation for the charging start
time charging duration, and charging end time, respectively.

B. SELECTION OF WINDOW WIDTH
The selection of window width hn has a significant effect
on kernel estimation. If hn is too small, the increasing ran-
domness makes the distribution estimation of the temporal
characteristic parameters of the EV charging behavior adopt
an irregular shape; while if hn is too large, its detailed char-
acteristics cannot be reflected.

The least squares cross-validation is an adaptive window
width selection method [23]. According to the kernel den-
sity estimation f̂K (x) in Formula (2), its integrated squared
error (ISE) with the true probability density can be expressed
as

ISE
(
f̂K
)
=

∫
∞

−∞

(
f̂K (x)− f (x)

)2
dx

=

∫
∞

−∞

f̂ 2K (x)dx− 2
∫
∞

−∞

f̂K (x)f (x)dx

+

∫
∞

−∞

f 2(x)dx (7)

The hn which makes the ISE minimum is adopted as the
optimal window width. The last term in Formula (7) does not
depend on f̂K (x), so the optimization of the window width is
equivalent to a minimization problem.

R
(
f̂K
)
=

∫
∞

−∞

f̂ 2K (x)dx− 2
∫
∞

−∞

f̂K (x)f (x)dx (8)

The least squares cross-validation follows the basic idea of
constructing an estimation of R(f̂K ) and obtaining the optimal
window width hn by minimizing the estimation.
In Formula (8),

∫
∞

−∞
f̂K (x)f (x)dx = E(f̂K (x)), so

n−1
n∑
i=1

f̂ (−i)K (Xi) is an unbiased estimation, in which

f̂ (−i)K (Xi) =
1

(n− 1)hn

∑
j 6=i

K
(
Xj − Xi
hn

)
(9)

By calculation

1
n

n∑
i=1

f̂ (−i)K (Xi) =
1

n(n− 1)hn

n∑
i=1

n∑
j=1

K
(
Xi − Xj
hn

)
−

K (0)
(n− 1)hn

(10)

The following can be derived:∫
∞

−∞

f̂ 2K (x)dx

=
1

n2h2n

n∑
i=1

n∑
j=1

∫
∞

−∞

K
(
Xi − x
hn

)
K
(
Xj − x
hn

)
dx

=
1

n2hn

n∑
i=1

n∑
j=1

∫
∞

−∞

K
(
Xi − Xj
hn

+ t
)
K (t) dt

@
1

n2hn

n∑
i=1

n∑
j=1

K∗
(
Xi − Xj
hn

)
(11)

Where K∗ (u) =
∫
∞

−∞
K (u+ t)K (t) dt .
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FIGURE 3. Change of the scaling functions with the window widths.

When n is large, it can be used to replace n-1 in For-
mula (10) and substituted into Formula (8) together with
Formula (11). In this way, a scaling function equivalent to
Formula (8) can be obtained:

M (hn) =
1

n2hn

n∑
i=1

n∑
j=1

K1

(
Xi − Xj
hn

)
+

2K (0)
nhn

(12)

Where K1 (u) = K∗ (u)− 2K (u).
When the Gaussian kernel function is taken asK (·), the fol-

lowing can be obtained by using integration by substitution:

K∗ (u) =
1

2
√
π
exp

(
−
u2

4

)
(13)

Then, the optimal bandwidth obtained through verification
using the least squares method is

hopt = argmin
h>0

M (h) (14)

It is verified [24] that, under the conditions that the den-
sity function and its one-dimensional marginal density are
bounded, the bandwidth selected using Formula (14) is
asymptotically optimal.

C. VERIFICATION OF THE CORRELATION BETWEEN THE
CHARGING START TIME AND THE
CHARGING DURATION
The results of kernel density estimation for the time param-
eters of EV charging behavior based on the measured data
are shown in Figure 4. In previous research on the modeling
of the EV charging behavior [11]–[14], it was assumed that
the charging time parameters are independent of each other
and the correlations between these parameters are not taken
into account in load forecasting. Based on the kernel density
estimation for the probability distributions of time parame-
ters, the section proves the existence of the correlations of the
time parameters of EV charging behavior using the relevant
conclusions from probability theory.

FIGURE 4. Kernel density estimations of the time parameters of EV
charging behavior.

When the random variable Z represents the sum of the
independent random variables X and Y , then

fZ (z) =
∫
+∞

−∞

fX (x) fY (z− x) dx (15)

That is, when two random variables are independent, the
probability density function of the sum of the two variables
can be obtained by the convolutions of each of the probability
density functions [25].

Suppose that the charging start time TS and the charging
duration TC are independent, the probability density function
of the charging end time can be expressed as follows accord-
ing to Formulae (1) and (15):

fE = fS ∗ fC (16)

The probability density function of the charging end time
can be calculated using the results of kernel density estima-
tions for the charging start time and the charging duration,
as shown in Figure 4. It is found that, the calculation result
based on the assumption that the time parameters are inde-
pendent of each other differs from the probability density
function of the charging end time. The calculation using
Formula (17) shows a relative error between the two results
of up to 55.59%.

εr =

∫
+∞

−∞

∣∣∣∣∣ f̂KS (tS ) ∗ f̂KC (tC )− f̂KE (tE )f̂KE (tE )

∣∣∣∣∣ dtE (17)

The above analysis shows that under the assumption that the
charging start time and the charging duration are indepen-
dent to each other, large deviation appears in the calculation
results. For this reason, it should not simply consider that the
time parameters are independent in the research on the EV
charging behavior. The following sections further analyze the
concrete forms of the different correlations of the parameters
and accurately model the charging behavior of EVs.
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IV. CLASSIFICATION OF EV CHARGING BEHAVIOUR
BASED ON TEMPORAL CHARACTERISTICS
The planar scatter plot for the distributions of charging start
time and the charging duration in Figure 2 shows that the EV
charging behaviors are clustered on the plane with TS and TC
as the coordinates. It can also be seen, from Section 3, that
the two parameters TS and TC are correlated. To analyze the
charging characteristics of EVs, the EV charging behavior is
classified according to the two parameters TS and TC using
the following procedure:

¬ If the charging start time TS of a charging record is
less than six, let TNEW

S = TS + 24 and other parameters
remain unchanged. It is considered that the charging before
dawn is the continuation of the charging in the day before,
so the charging start time is shifted backwards by 24h when
it is quantitatively analyzed with the charging behavior in that
day.

 The charging behavior when the sum of the charging
start time TS and the charging duration TC is less than 24 is
classified as one type. As this type of charging behavior is
ended on the same day starting the charging, it is called intra-
day EV charging.

® Another type of charging behavior is when the sum of
the charging start time TS and the charging duration TC is
greater than 24. This type of charging behavior is not ended
on the day starting the charging but lasts into the next day,
so it is called inter-day EV charging.

FIGURE 5. Classification results: EV charging behavior based on the
temporal characteristics.

The classification results are displayed in Figure 5. To fur-
ther explain the reasonableness of the above classification of
EV charging behavior, we calculated the coefficient of cor-
relation between the charging start time TS and the charging
duration TC .

Pearson correlation coefficient and Kendall rank correla-
tion coefficient both reflect the statistics of the correlation
of variables. The former is an index for measuring the linear
correlation of variables while the latter is able to effectively
measure the non-linear relationship of variables [26]. Given
a set of data {(x1i, x2i), i = 1, 2, . . . ,N} of a random vector
X = (X1,X2), the Pearson correlation coefficient ρ and
Kendall rank correlation coefficient τ of variables X1 and X2

can be calculated using Formulae (18) and (19), respectively.

ρ =

N∑
i=1

(x1i − x̄1)(x2i − x̄2)√
N∑
i=1

(x1i − x̄1)2

√
N∑
i=1

(x2i − x̄2)2

(18)

τ =

(
N
2

)−1∑
i<j

sign[(x1i − x1j)(x2i − x2j)] (19)

TABLE 1. Correlation coefficients between the charging start time and
charging duration.

The closer the absolute values of ρ and τ are to 1,
the stronger the correlation between variables. As shown
in Table 1, the coefficients of correlation between TS and TC
are both close to 0 when the EV charging behavior is not
classified. However, after the classification, the correlation
of the two parameters can be apparently shown through the
coefficients of correlation. It can be seen from Figure 5 and
Table 1 that after backward-shift of the charging behav-
ior before dawn, the charging start time and the charging
duration of the inter-day charging exhibit a favorable linear
correlation.

Although it has been proved in Section 3 that the time
parameters of charging behavior are not independent to each
other, the correlation of the parameters cannot be described
using statistics if the charging behavior is not classified. The
classification of charging behavior in the section lays a foun-
dation for modeling the correlation between the parameters.

V. TIME-ENERGY CHARACTERISTICS OF THE
MULTI-TYPE CHARGING BEHAVIOUR BASED
ON THE COPULA FUNCTION
The charging characteristics of EVs can be described using its
time and energy parameters. Sections 3 and 4 verify that the
time parameters of the charging behavior have correlations
and classify the EV charging behavior according to the tem-
poral characteristics, respectively. In the section, we applied
the copula method to carry out the modeling of the proba-
bility distributions and correlations of various parameters of
different types of EV charging behavior.

A. SUPERIORITY OF THE COPULA METHOD IN
ANALYSING THE DEPENDENCE STRUCTURE OF
CHARGING BEHAVIOUR PARAMETERS
Copula functions link the joint distribution function of vari-
ables with their marginal distribution functions and describe
the correlations of variables. Proposed by Sklar, they have
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been widely used for the non-parameter measurement for the
correlation of random variables [27].

Sklar’s theorem is the theoretical basis of the cop-
ula method: for marginal distribution functions F1(x1),
F2(x2), . . . ,FN (xN ), there exists a copula function
C satisfying:

F(x1, x2, · · · , xN ) = C(F1(x1),F2(x2), · · · ,FN (xN )) (20)

If F1(x1),F2(x2), . . . ,FN (xN ) are continuous, the copula
function C is uniquely determined and F(x1, x2, . . . , xN) is
the joint distribution function of the marginal distribution
functions F1(x1),F2(x2), . . . ,FN (xN ).
Analyzing the dependence structure of variables of EV

charging behavior using the copula method confers the fol-
lowing advantages:

¬ The form of the copula function is not limited by the
marginal distribution function, so the copula function and
the marginal distribution function can be considered, respec-
tively. While studying the distribution characteristics of the
parameters of EV charging, the distribution characteristics
of single parameters can be described using the method in
Section 3, while the dependence structure of parameters can
be expressed using the copula function. Compared with the
direction construction of the joint distribution function of
these parameters, the copula method is able depict the charg-
ing characteristics of EVs in a more subtle manner.

 Copula functions have various forms and their struc-
tures can be symmetric or asymmetric. They can illustrate
the upper-tail dependence, lower-tail dependence, or various
dependences for the mixture of the two. The various forms of
copula functions allow convenient description of the compli-
cated, changeable correlation between EV charging behavior
parameters.

® The copula function can be used for the stochastic
simulation of the distribution of multi-variant models, and
provide a basis for the practical application of the charging
characteristics of EVs in load forecasting, orderly charging,
and cooperative consumption of new energy sources.

B. SELECTION OF THE FORMS AND PARAMETERS
OF THE COPULA FUNCTIONS
In Section 4, the EV charging behavior is divided into two
types: intra- and inter-day charging. The parameters of each
type of the charging behavior show two typical correlations:
the first is the correlation between time parameters. Accord-
ing to Section 3, the charging start time TS and charging dura-
tion TC have prominent coupling characteristics. The second
is the correlation between the time and energy parameters.
The charged capacity EC is limited by the charging duration
TC , so they also present certain correlation. In accordance
with the two groups of correlations of the three parameters,
the time-energy characteristics of the EV charging can be
fully described.

Four typical copula functions are used to model the cor-
relation between the time and energy parameters of different
types of charging behaviors. The parameters of some copula

functions can be directly solved according to the coefficient
of correlation, while some need to be calculated using meth-
ods such as maximum likelihood estimation [28].

In the maximum likelihood estimation based on non-
parametric kernel density estimation, the marginal distri-
bution density of each variable is replaced with the dis-
tribution function solved using the nonparametric kernel
estimation.

F̂(x) =
∫ x

−∞

f̂K (t)dt (21)

The value of each variable f̂K (t) can be calculated using the
method proposed in Section 3, the value of the log-likelihood
function can be expressed as

L(ω) =
N∑
i=1

ln c(F̂x(xi), F̂y(yi);ω) (22)

Where, ω is the parameter to be estimated, c represents the
copula probability density function expected to be selected,
and F̂x(xi) and F̂y(yi) are the values of the probability distri-
bution functions of variables x and y at the i th observation
data point. Then, the estimated value of ω is:

ω̂ = argmaxL(ω) (23)

The following section introduces the potential copula func-
tions and the selection method for their parameters:

¬ Gaussian Copula function
Under two-dimensional condition, the distribution func-

tion and the density function of Gaussian copula can be
separately expressed by Formulae (24) and (25):

C(u, v; θ ) = 8θ (8−1(u),8−1(v)) (24)

c (u, v; θ) =
1

√
1− θ2

× exp

{
−
ζ 21 θ

2
− 2θζ1ζ2 + ζ 22 θ

2

2
(
1− θ2

) }
(25)

Where, θ is a parameter characterizing the correlation of
variables; u = F(x) and v = G(y) are themarginal cumulative
distribution functions of variables x and y, respectively;8θ is
a two-dimensional standard normal distribution function with
the correlation of coefficient being θ ; and 8−1 is the inverse
function of the one-dimensional standard normal distribution
function. ζ1 = 8−1(u) and ζ2 = 8−1(v) are standard normal
distribution variables.

The correlation parameter θ of the Gaussian copula can be
calculated using the Kendall rank correlation coefficient τ ,
and the two obey the following relationship:

θ = sin
(πτ

2

)
(26)

The two-dimensional Gaussian copula function has a
symmetric structure and is insensitive to the change of
the variables at the tail, so it is suitable for the charac-
terization of the relationship of two-dimensional random
variables with symmetric and asymptotically independent
tails.
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 The t copula function
Under two-dimensional condition, the distribution func-

tion and density function of the t Copula function can be
expressed using Formulae (27) and (28) [28]:

C(u, v; θ, k) = Tθ,k (T
−1
k (u),T−1k (v)) (27)

c(u, v; θ, k) =
tθ,k (T

−1
k (u),T−1k (v))

tk (T
−1
k (u))tk (T

−1
k (v))

(28)

Where, θ is a parameter for characterizing the correlation of
variables and its value is also calculated using Formula (26);
k represents the number of degrees of freedom of the t
distribution and its value can be determined using the maxi-
mum likelihood estimation after determining the value of θ ;
Tθ,k represents a two-dimensional t distribution function with
the correlation coefficient and the degree of freedom being θ
and k, respectively; and T−1k denotes the inverse function of
an one-dimensional t distribution function with the number
of degrees of freedom being k .

The two-dimensional t copula function has a symmetric
structure and thick tails, so it is applicable to depicting the
relationship between two-dimensional random variables with
symmetric, correlated tails.

® Gumbel copula function
The basic form of the two-dimensional Gumbel copula is

C(u, v) = exp{−[(− ln u)α + (− ln v)α]
1
α } (29)

It has a complicated form of the probability density func-
tion, as expressed by Formula (30).

c (u, v) =
(ln u ln v)α−1

uv
× exp{−[(− ln u)α + (− ln v)α]

1
α }

×[(− ln u)α + (− ln v)α]
1
α
−2

×{[(− ln u)α + (− ln v)α]
1
α + α − 1} (30)

For the parameter α ∈ [1,+∞), its value can be solved
using Formula (31) [29].

α =
1

1− τ
(31)

The Gumbel copula function has an asymmetric structure
and thick upper tail. It is suitable for depicting the relation-
ship between variables with strong upper-tail dependence and
lower-tail asymptotical independence.

¯ Clayton copula function
The basic form of the two-dimensional Clayton copula

function is

C(u, v) = (u−α + v−α − 1)−
1
α (32)

c(u, v) = (uv)−α−1(α + 1)(u−α + v−α − 1)−
1
α
−2 (33)

The parameter α ∈ (0,+∞) can be determined using the
maximum likelihood method and its log-likelihood function
can be deduced using Formulae (22) and (33) (see Appendix).

Showing an asymmetric structure, the Clayton copula
function has a thick lower tail. It is suitable for the
characterization of the relationship between variables with

strong lower-tail dependence and upper-tail asymptotic
independence.

For a pair of the variables to be studied, the Akaike infor-
mation criterion (AIC) based on likelihood function can be
used to select the copula model that most suitable for describ-
ing their correlation after determining the parameters for
modeling their correlation using different copula functions
according to the aforementioned method. When the marginal
distribution function of the random variables is expressed as
the nonparametric kernel density estimation, the AIC crite-
rion function is:

AICk = −2
N∑
i=1

ln c(F̂x(xi), F̂y(yi); θk )+ 2k (34)

Where k represents the number of parameters in the copula
function, and the copula model which minimizes AICk is
most suitable for describing the relationship between the
variables to be studied.

FIGURE 6. Selection of the form and parameters of the copula function.

In summary, the flow chart for selecting the parameters
and forms of the copula functions that describe relations of
different variables is illustrated in Figure 6.

C. SELECTION AND ANALYSIS OF THE
COPULA FUNCTIONS
By using the method described in Section 5.2, we analyzed
the correlations of the charging start time TS , charging dura-
tion TC , and the charged capacity EC of the intra- and inter-
day EV charging. The results are displayed in Table 2 and
Figure 7.

Owing to TS and TC being negatively correlated, there are
no Gumbel and Clayton copula functions for them. For the
intra-day EV charging, the AIC of the t copula function of
TS and TC is −1756.48, which is smaller than that of the
Gaussian copula function, so the t copula function with the
correlation coefficient and number of degrees of freedom
of −0.4982 and k = 6 is more suitable for describing the
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TABLE 2. Selection of the forms and parameters of copula functions.

FIGURE 7. Copula functions with different variables.

correlation between the two parameters. Similarly, it is also
reasonable to depict the relationship between TS and TC of
the inter-day EV charging using the t copula function with
the correlation coefficient and number of degrees of freedom
of −0.8092 and k = 4. The t copula function has thick
tails, which indicates that TS and TC present prominent tail-
dependence.Meanwhile, nomatter whether for intra- or inter-
day EV charging, when the charging starts early in a day,
the charging is likely to be sustained for a long time; while if
the charging starts later, the charging duration is also likely to
be short.We also find that the absolute value of the correlation
coefficient in the t copula function of TS and TC for inter-day
charging is closer to one, withmore apparent tail-dependence.
This is related to the concentrated end-times of inter-day
charging behavior.

The t copula function with the correlation coefficient
of 0.7793 and three degrees of freedom also presents

superiority in depicting the relation between the charging
duration TC and the charged capacity EC of the intra-day
EV charging. For intra-day EV charging, when the charging
duration is short, little quantity of electricity is charged due to
the limitation of the duration; while with the increase in the
charging duration, an EV has a larger probability of obtaining
more energy from the power grid.

As for the inter-day EV charging, it is more reasonable
to describe the relationship between the charging duration
TC and the charged capacity EC using the Clayton copula
function with lower-tail dependence and upper-tail asymp-
totic independence. This is mainly because inter-day EV
charging lasts for a longer time. Similarly, when the charging
duration is short, the charged capacity EC is also small due
to the aforementioned limitation; however, as the charging
duration reaches a certain time, the relationship between EC
and TC gradually weakens. This suggests that the overlong

VOLUME 6, 2018 24483



Z. Chen et al.: Analysis of the Charging Characteristics of EVs Based on Measured Data

charging duration does not mean that an EV needs to acquire
energy in a way that is positively correlated with TC , which
provides conditions for the orderly management of the charg-
ing of EVs.

VI. APPLICATION OF EV CHARGING CHARACTERISTICS
After modeling the EV charging characteristics, different
types of the charging behavior can be simulated according
to the probability distributions of each parameter and the
correlations of various parameters. On this basis, we analyzed
the influences of the EV charging load on the power grid and
its potential in orderly charging management and cooperative
consumption of new energy sources.

A. EV LOAD FORECASTING: INFLUENCE OF DISORDERED
CHARGING ON THE POWER GRID
Given the probability distributions for the charging start
time TS , the charging duration TC , and the charged capacity
EC , the correlations between TS and TC as well as between TC
and EC can be modeled using the copula functions proposed
in Section 5. Then, a set of random numbers capable of
describing the time-energy characteristics of EV charging can
be generated using the following method [30]:

¬ Three random numbers u, s, and t which are uniformly
distributed in the range [0, 1] are generated;

 Assume that cu(v) =
∂C(u,v)
∂u is the conditional distri-

bution function of copula function C , and that c(−1)u (v) is
its pseudo-inverse function. In addition, CSC is the copula
function between TS and TC , and CCE is the copula function
between TC and EC . Let v = c(−1)SC,u(s) and w = c(−1)CE,u(t),
then u, v, and w are the values of the marginal distribution
functions of the charging duration TC , charging start time TS ,
and charged capacity EC , respectively.

® FS , FC and FE are the marginal probability distribution
functions of TS , TC and EC , respectively. Let tS = F (−1)

S (v),
tS = F (−1)

S (v) and eC = F (−1)
C (u), then tS , tC and eC are a

group of random numbers following the distribution of, and
relationships between the charging characteristic parameters.

This method was adopted to conduct the stochastic sim-
ulation for the charging behavior of N EVs. The actual
power of the charging piles in the platform is in the range of
3 to 5 kW, so it was considered that the EVs were charged
with a constant power of 4 kW. According to the charging
start time TS and charged capacity EC of each EV, the charg-
ing load curves are obtained. Then, we attained the overall
charging load curve is obtained by superposing the charging
load curves of N EVs.

The load curves with different proportions of the intra- and
inter-day EV charging were computed (Figure 8). For ease of
comparison, the peak load was taken as the reference value
to carry out per unit calculations for the load data, through
which the following two conclusions were obtained:

¬ The spatial difference of the EV charging loads can be
reflected by the proportions of different charging behaviors.
If the intra-day EV charging accounts for a larger proportion,

FIGURE 8. Charging load curves of EVs and conventional daily load curves.

the charging load curve shows apparent characteristics of the
working district: users park their EVs for charging before
going to work, and then drive their EVs out of the charging
stations after work, so the charging load climbs the peak in the
time period of 9:00 to12:00 AM.When the inter-day charging
accounts for a larger proportion, the peak load occurs in the
time period of 20:00 to 22:00 PM. The load is heavy at
night, with obvious characteristics of a residential district,
and users charge their EVs for a long time after ending their
trip on that day. Under conditions that the intra- and inter-
day EV charging behaviors account for the same proportion,
the charging load curve has two peaks. This is similar to the
temporal distribution of EV charging loads in large areas,
such as, cities.

 The comparison between the EV charging load curve
and the conventional load curve reveals that the peak periods
of the two curves are superimposed and the former presents a
larger difference between the maximum and minimum loads.
When the EV charging load reaches 30% in the power distri-
bution network, its peak load will increase to 1.4 times that
of its original value. If the EV charging is not orderly and
guided under this condition, more waste of the investment is
likely to occur at the fixed facility, thus reducing the economic
efficiency of the operation of the power distribution network.

B. ORDERLY CHARGING POTENTIAL AND COORDINATION
WITH THE POWER GENERATION NETWORK USING
RENEWABLE ENERGY SOURCES
EVs, as mobile energy storage, are expected to play a role
in many aspects, including peak load shifting, cooperative
consumption of new energies, and provision of an auxiliary
service for the power system. In the research, we verified the
conditions for the orderly charging management of EVs by
using the EV charging model based on the measured data.

The potential of orderly charging of EVs can be evaluated
using the ratio R of the charging duration to the time period
in which the electric energy is unidirectionally transmitted
from the power grid to the EVs. The ratio R is called the
charging time flexibility of an EV. The larger the value of R,
the smaller the ratio of the time period in which the electric
energy is unidirectionally transmitted from the power grid to
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TABLE 3. Charging time flexibility of EVs.

the EVs to the total time in which EVs are connected with the
power grid. On that condition, the EVs can be more flexibly
charged.

As shown in Table 3, the value of R for intra-day EV
charging is usually greater than two, while that for inter-
day EV charging is usually greater than three. The result
indicates that, the time in which the electricity is transmitted
from the power grid to the EVs accounts for only a small
proportion of the time in which the EVs are connected to
the power grid. Therefore, the temporal distribution of EV
charging operations presents favorable flexibility. By taking
reasonable incentive and guidance measures, we are able to
avoid EV charging during peak hours, reduce the investment
in charging facilities, and provide a peak load shifting service
for the power grid.

FIGURE 9. Curves of the EV charging load and the power generation
output using renewable energy sources.

Figure 9 shows the comparison of the EV charging load
curves with the typical daily output curves of photovoltaic
and wind power generation: the intra-day EV charging load
is similar to the typical output curve of a photovoltaic power
generation system [31]. The Kendall rank correlation coef-
ficient was 0.79 between the time series of the two curves.
The time series of the inter-day EV charging load curve and
the typical output curve of the wind power generation [32]
presented a Kendall rank correlation coefficient of 0.44. This
indicates that different types of EV charging behavior are
coordinated with the output of the power generation using
renewable energy sources. Therefore, if coordination can
be made best by designing a reasonable scheduling policy,
EVs can play their part in consuming power generated using
renewable energy sources, reducing the configuration capac-
ity of energy storage, and improving the rate of utilization
of renewable energy. In this way, EVs can become more
environmentally-friendly.

VII. CONCLUSION
We studied actual operational data pertaining to an EV charg-
ing service company in Nanjing, China. The following con-
clusions may be drawn:

¬ The one-dimensional probability distribution of charg-
ing parameters was fitted using the kernel density estimation
method. On this basis, we verified that the time parameters
of EV charging presented a strong correlation using the con-
volution formula. If the correlation were ignored, large errors
would occur in the calculation.

 EV charging was divided into two types: intra- and inter-
day EV charging according to whether the charging ended
on the same day on which it started, or not. The results
reveal that the correlations between the charging start time
TS , charging duration TC , and charged capacity EC cannot
be described using statistics if the charging behavior is not
classified. In other words, the classification of the charging
behavior is the basis for the quantitative modeling of the
correlations between the parameters. In addition, the overall
difference in EV charging characteristics in different districts
can be revealed in accordance with the different proportions
of the two charging behaviors.

® We analyzed the correlations of two groups of param-
eters, charging start time TS and charging duration TC ,
as well as charging duration TC and charged capacity EC
based on copula functions and the fitting results of the one-
dimensional probability density of the charging parameters.
Then, the forms and parameters of the copula functions were
selected using the correlation coefficients and the maximum
likelihood method. The results demonstrated that the TS and
TC of intra- and inter-day EV charging behaviors are nega-
tively correlated, accompanying the strong tail-dependence
observed. TC and EC , for intra-day EV charging, are pos-
itively correlated, together with a strong tail-dependence.
Inter-day EV charging has a strong lower-tail dependence and
is asymptotically independent of the upper tail: this means
that the relationship between charged capacity EC and charg-
ing duration TC weakens when TC is large.

¯ EV charging characteristics can be described in accor-
dance with the probability distributions and the correlations
of the charging start time TS , charging duration TC , and
charged capacity EC . One could also carry out extensive
research on the load forecasting of EV charging and the
optimization of the charging schedule. Through stochastic
simulation, we simulated the load curve under conditions of
disordered charging and verified the potential benefits of,
and ability to, charge EVs in an ordered manner. Meanwhile,
we also analyzed the potential of EVs in the orderly manage-
ment of charging and its coordination with the output of a
power generation network using renewable energy sources.

APPENDIX
Log-likelihood functions of each copula function

Gaussian Copula

L (θ) = T × ln
1

√
1− θ2

−

θ2
T∑
i=1

(
ζ 21i + ζ

2
2i

)
− 2θ

T∑
i=1
ζ1iζ2i

2
(
1− θ2

)
VOLUME 6, 2018 24485



Z. Chen et al.: Analysis of the Charging Characteristics of EVs Based on Measured Data

t Copula

L(k) =
T∑
i=1

tθ,k (T
−1
k (ui),T

−1
k (vi))−

T∑
i=1

tk (T
−1
k (ui))

−

T∑
i=1

tk (T
−1
k (vi))

Gumbel Copula

L(α) =
T∑
i=1

((α − 1) ln(ln ui ln vi)− ln ui − ln vi)

−

T∑
i=1

[(− ln ui)α + (− ln vi)α]
1
α

+ (
1
α
− 2)

T∑
i=1

[(− ln ui)α + (− ln vi)α]

+

T∑
i=1

{[(− ln ui)α + (− ln vi)α]
1
α + α − 1}

Clayton Copula

L(α) = α
N∑
i=1

ln uivi + T ln(α + 1)

− (
1
α
+ 2)

T∑
i=1

ln(uαi + v
α
i − u

α
i v
α
i )
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