
Received April 6, 2018, accepted May 9, 2018, date of publication May 14, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2836192

Dynamic Obstacles Rejection for
3D Map Simultaneous Updating
WENJUN SHI 1,2,3, (Student Member, IEEE), JIAMAO LI1,3, (Member, IEEE),
YANQING LIU 1,2,3, (Student Member, IEEE), DONGCHEN ZHU1,2, (Student Member, IEEE),
DONGDONG YANG3, AND XIAOLIN ZHANG1,3
1Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Shanghai Eyevolution Technology Company Ltd., Shanghai 200050, China

Corresponding author: Jiamao Li (jmli@mail.sim.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61671014, in part by the Shanghai
Committee of Science and Technology, China, under Grant 16JC1420503, and in part by the National Natural Science
Foundation of China under Grant 61601448.

ABSTRACT We present a simple yet highly efficient method to eliminate spurious trails of dynamic objects
for 3-D point cloud map updating. First, we extract the view overlaps based on view frustum filter. Then,
we obtain spurious trails via bidirectional searching of view overlaps using a KD tree. Finally, in terms
of the situation where moving objects occlude part of background due to the limits of the RGB-D camera,
we design a ray tracing principle-based filter to supplement the missing background in the whole point cloud
map. Our method can be integrated into any SLAM or 3-D reconstruction systems with RGB-D data input,
and it is suitable for both static and dynamic environments. We validate our approach in real-world scenes
of our laboratory office using a Kinect system for robot obstacles avoidance and navigation. Moreover,
experiments on the KITTI odometry benchmark illustrate that the proposed approach is highly efficient for
dynamic spurious trails rejection and 3-D map updating.

INDEX TERMS View frustum culling, 3D map updating, dynamic, spurious trails, ray tracing, obstacles
avoidance, navigation.

I. INTRODUCTION
The success of Simultaneous Localization and Mapping
(SLAM) has significantly improved the autonomous robot
navigation techniques. In many applications, robots need to
perceive the world through mapping 3D structure of the envi-
ronment. However, most 3D mapping approaches are based
on the assumption of static environments, while in many
applications the environments where the robots carry out
their tasks are usually dynamic. The ability that robots detect
the dynamic objects automatically and update the 3D map
simultaneously like the human is crucial for navigation.

For this reason, many approaches attempt to refine
3D reconstruction process in dynamic scenes, while most of
them mainly focus on the accuracy of camera poses. The
main consideration is to extract moving objects from dynamic
scenes and eliminate them in the process of reconstruction.
These approaches can be categorized into two classes. Some
methods directly regard the moving objects as outliers and
remove them. The most popular technique is to implement
RANSAC regression to filter out dynamic objects [1], [2].

These methods are robust to noise and large scale complex
scenes. Meanwhile, correct transformations can be obtained
in real-time. However, the RANSAC may not work when the
environment contains more dynamic points than the static
background points. Furthermore, the dynamic objects would
not be rejected clearly because these methods are usually
based on feature points. In other words, the side-effect is that
3Dmaps still contain spurious trails when there exist dynamic
objects in the scene.

Other methods mainly utilize inter-frame information to
compute extra motion information or estimate background
model, which is further implemented to discriminate moving
object and static background. Some of them try to extract
moving objects in the 2D images [3]–[6], while some others
are based on 3D point cloud [7]–[9]. The work of [4] com-
bined dense moving object segmentation with dense SLAM,
where it proposed to utilize dense optical flow to improve the
dense segmentation of dynamic objects. The dynamic points
can be further removed from the energy function. Some latest
works [5], [6] proposed to use the boundaries of dynamic

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

37715

https://orcid.org/0000-0003-2882-2981
https://orcid.org/0000-0001-6396-9802


W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

objects to help segment the dense dynamic points and
reduce the influence of dynamic objects by motion removal.
Reference [3] considered to extract moving objects based on
the estimation of the background model, which is represented
by the nonparametric model from depth scenes. However, due
to its dependence on background modeling algorithm, it is
difficult and time-consuming to estimate a robust background
model from complex scenes in real world. Other works
focused on detection of dynamic objects in 3D space, inspired
by the scene flow and 3D vector field, for example [7], [9].
Reference [7] extended a motion segmentation method based
on sparse subspace clustering to distinguish between static
scene parts and multiple moving objects. Reference [9]
proposed to extract moving objects based on 3D normal
vectors which declared good performance. But we highly
suspect the real-time performance because it covers excessive
computations. These methods are more robust in dynamic
environments, but both of them rely on the computations of
some extra information which hinder their real-time applica-
bility. Thus they are not suitable for obstacle avoidance and
navigation.

In this paper, we propose a simple yet highly efficient
3D map updating method which is built upon the
well established algorithms for camera pose estimation.
Unlike [10] and [11] which updated the 3D map through
long-term static scene reconstruction, our method ensures a
correct representation of any object whether static or dynamic
from the robots’ viewer at present moment. Besides,
[10], [11] need statistical probability of reconstruction maps
of the dynamic scene at different moments. For instance,
they may need to scan the environment in the morning and
evening respectively, which is hard to achieve remarkable
performance in robots navigation.

More recently, [12] shares the same goal of proposed
method, but experiments show that the method in [12] is only
suitable for rotating LIDAR system. We further notice that
the real-time performance and reconstruction accuracy of this
method strongly depend on the resolution of OctoMap [13].
And no experiments in [12] support a common case where
the camera and object move together. In contrast, our method
is suitable for all RGB-D data including RGB-D images from
depth camera and stereo camera. Moreover, our method is
directly based on 3D point cloud map in any resolution and
promise the real-time performance in large even complicated
scenes. The key contributions of our work are as follows:
• We design a real-time method based on view frustum
culling filter to discriminate between spurious trails and
objects.

• In terms of the situation where moving objects occlude
some background due to the limits of the RGB-D cam-
era, we design a ray tracing principle based filter to sup-
plement the missing background in the whole 3D point
cloud map.

• We provide a generalized 3D map updating method
which can be integrated into any SLAM or reconstruc-
tion systems easily and validate it is suitable for both

static and dynamic environments in robot navigation and
3D reconstruction.

The paper is organized as follows. In Section II we formu-
late the problem, introducing some notations too. Section III
describes our method based on view frustum culling filter
and its optimization through the ray tracing. In Section IV
we present the experiments we have done in different envi-
ronments and discuss the results. Finally, in Section V we
conclude the paper and give our future research direction.

II. PROBLEM STATEMENT
Frame-to-frame accumulation is the most basic and widely
usedmethod in 3D point cloudmapping. At the moment t−1,
we obtain a whole point cloud map of all old frames
F(1) ∼ F(t−1) asM (t−1). At the moment t , we get another
point cloud frame of the scene as F(t). After the estimation of
the transformation T (t) from F(t) to the whole mapM (t−1),
we can use this formula

M (t) = M (t − 1)+ T (t) ∗ F(t) (1)

to get the current whole point cloud map M (t). Step by step
like this, we can reconstruct the whole scene where the envi-
ronment keeps static. However, in real world, most environ-
ments are usually dynamic. From the view of mobile robots,
the simplest case is that the sensor is static while there exist
several moving objects in the scene. But in real applications a
more common case is that the sensor and objects are generally
all on the move, where the velocities and moving directions
of them are usually different as shown in Fig. 1(a). According
to equation (1), if the scene contains dynamic objects whether
the sensor is static or not, there will exist some spurious
trails of the dynamic objects which we don’t need in the
whole map M (t) as Fig. 1(b) displayed. Our task is to detect
and remove these trails also called ‘‘ghosts’’ from the map.
We use a simplified model to simulate this problem as shown
in Fig. 2, including four subfigures (a)∼(d). Although in
practical applications the cameras have both translations and
rotations, here for convenience of illustration, we assume that
the camera only has a translational motion in Fig. 2. In fact,
the principle of implementation is the same. Subfigure (a)
in Fig. 2 shows the 2D-plane model ofM (t−1), where green
parts represent the moving object at time t − 1. In contrast,
subfigure (b) shows the 2D-plane model of F(t), where green
parts represent the moving object at time t . And subfigure (c)
illustrates mapping result just from equation (1),
while (d) is the result we expect. Through comparisons
between the points of (c) and (d), it can be easily con-
cluded that our goal is to extract and remove the green trails
under the blue backgrounds in M (t − 1). It is observed
that the blue backgrounds in subfigure (a) and (b) corre-
spond to the view overlap between M (t − 1) and F(t),
which are defined as Mover and Fover respectively in coun-
terparts. Furthermore, points in blue backgrounds can be
classified into three classes. Those which belong to both
Fover and Mover are static background points, while those
which belong to Fover but don’t belong to Mover are

37716 VOLUME 6, 2018



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

FIGURE 1. Schematic view of the existing problem for traditional frame-to-frame accumulation under dynamic scene: (a) shows four RGB
frames captured from a moving Kinect at time t − 3, t − 2, t − 1, t under the scene containing a moving person; (b) is the reconstructed
3D map of the scene, using GICP [14] to get the camera pose of each frame and mapping the scene by equation(1). (c) is the scene’s
3D map without spurious trails, adding our method before equation(1).

FIGURE 2. Diagrammatic sketch simulates the registration of the M(t − 1) and F (t). (a) represents the M(t − 1) with a historical
spurious trail; (b) represents F (t) with a real dynamic object at current moment; (c) simulates the 3D map result reconstructed
of (a) and (b) which is an example of result shown in Fig. 1(b); (d) is the result that we expect.

real moving object points. And points we want to
remove are those which belong to Mover but don’t belong
to Fover , i.e., spurious trails.

Considering the problem is oriented towards the robot
applications of autonomous obstacles avoidance and nav-
igation, we hope to keep the real-time performance
in 3D mapping. Thus we discard plans where extra infor-
mation such as optical flow or edges is used to extract
dynamic objects. Instead, we determine to achieve the
extraction and removal of spurious trails directly in non-
order point cloud data without computing any other extra
information.

III. PROPOSED METHOD
Based on analyses in Section II, we propose a simple yet
effective map updating algorithm for both static and dynamic
environments. The basic processes are as follows. Firstly,
we implement a novel filtering technique to extract view
overlap points mentioned before. Then a bidirectional search
algorithm is utilized to extract spurious trails of moving
objects. Finally, with regard to the possible background
deficiency problem in some situations, we leverage the
ray tracing principle to supplement the background, which
leads to more reliable results. Details are presented in this
section.

A. EXTRACT VIEW OVERLAPS BY FRUSTUM CULLING
Considering the imagery features of the RGB-D camera and
the characteristics of the point cloud structure, we apply a
view frustum culling filter to get the view overlap between
historical 3D point cloud map modelM (t−1) and the current
point cloud frame F(t). To our best knowledge, we firstly
introduce the view frustum culling filter to point cloud view
overlap extraction. We implement it in three steps:

STEP 1
We utilize existing robust SLAM or 3D reconstruction sys-
tems like RTABMAP [15] and StereoScan [16] to estimate
the accurate transformation T (t) for each frame between the
camera coordinate system and the world coordinate system.
Because we assume that the camera coordinate system of
the first frame coincides with the world coordinate system,
the coordinate system of 3D mapM (t−1) coincides with the
world coordinate system. And then we can obtain the cam-
era pose Pt (x, y, z, roll, pitch, yaw) of F(t) in the coordinate
system of M (t − 1) as well as the world coordinate system
through the transformation.

STEP 2
We compute the horizontal and vertical fields of view for
the camera in degrees Hfov,Vfov according to the camera

VOLUME 6, 2018 37717



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

internal parameters fx , fy and the size of images width, height
as follows:

Hfov = 2 arctan(
width
2fx

) (2)

Vfov = 2 arctan(
height
2fy

) (3)

Moreover, we set the near plane Znear = 0.8 and the far plane
Zfar = 4.0 considering the imagery features of the depth cam-
era in Kinect [17]. Then we set the Pt (x, y, z, roll, pitch, yaw)
obtained from Step1 as the camera pose at time t and use
Hfov,Vfov to estimate a frustum-shaped [18] field of view
in the 3D space for this camera pose, as shown in Fig. 3.
We construct the view frustum using six intersecting infinite
planes and figure out the plane equation for each one of
those six planes Up,Down,Left,Right,Near,Far . Detailed
implementations can be found in [19] and [20].

FIGURE 3. The geometry diagrammatic sketch of the field of view for the
camera solid. α and θ are the horizontal and vertical field of view for the
camera; the pink frustum field between the near plane and the far plane
is the view frustum.

STEP 3
We put coordinate of each point of M (t − 1) and T (t) ∗ F(t)
into the six plane equations from Step2 and judge whether
the point should be in view frustum or not. Then the
view overlaps Mover and Fover can be obtained as shown
in Fig. 4 (c) and (d).

B. EXTRACT AND REMOVE HISTORICAL SPURIOUS TRAILS
In this subsection, we mainly aim to extract historical spu-
rious trails of moving objects in the view overlap M (t − 1).
After carrying out the procedures of Subsection A we obtain
both Mover and Fover . Recall the definitions in Section II,
if the point in Mover doesn’t exist in Fover , it belongs to
spurious trails. Thus here we need to check the points ofMover
to identify whether they exist in Fover or not. In practice,
we build a KD tree for the point cloud Fover . Then we set
each point of Mover as a search point, and search its nearest
neighbor point in Fover , where the nearest distance between
them can also be obtained. More precisely, the point should

belong to the static background if its nearest neighbor dis-
tance is smaller than the resolution of the point cloud Fover .
Otherwise the point should belong to the spurious trails. Then
we remove these trails in M (t − 1) and obtain Mleft (t − 1).
Finally, we accumulateMleft (t − 1) and F(t) by equation (1),
which theoretically leads to result shown in Fig. 4 (a).

FIGURE 4. (a) shows the result reconstructed of two frames from Fig. 1(a)
via proposed method without the PRTF presented in Subsection C of
Section III, where some static backgrounds dotted in yellow lines are lost.
(b) shows the result using PRTF to retrieve most missing backgrounds.
(c) and (d) expound the geometrical principle of the PRTF: the green lines
encircle view frustum overlaps of the two frames, where (c) represents
the overlap from M(t − 1) and (d) is the overlap from F (t); the red and
yellow dotted lines in (c) and (d) represent the ‘‘spurious trails’’ detected
by procedures of Subsection A and B — the yellow lines indicate the real
spurious trails while the red lines indicate part of static backgrounds; the
blue lines encircle a cylinder field based on ray tracing.

We can obtain good results just via procedures of Subsec-
tion A and B in real time, and the historical spurious trails
can be well removed as shown in Fig. 4 (a). In practical
SLAM system, the small amount of deficient backgrounds
considered in Subsection C will be partially supplemented
in 3D map in the future because of the movement of the
camera. Therefore, it has no adverse effects on robot obstacle
avoidance and autonomous navigation.

C. SUPPLEMENT BACKGROUNDS BASED ON PROJECTION
RAY TRACING FILTER (PRTF)
However, in some 3D reconstruction applications, moving
objects might occlude some backgrounds in frame F(t)
because of the limits of the RGB-D camera. These occluded
background points exist in Mover but disappear in Fover ,
which also satisfy the judging condition of spurious trails
points. Thus they will be removed as trails shown in Fig. 4 (a),
which further leads to the deficiency of small amount of
backgrounds. Here for the completeness of proposed method
and for some reconstruction results which required strict

37718 VOLUME 6, 2018



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

Algorithm 1 Proposed Spurious Trails Rejection Algorithm
Input: N RGB-D frames; Flag: use PRTF (1) or not (0)
Output: updated 3D point cloud mapM (t)
1: for i-th RGB-D frame do
2: Transform the frame to point cloud F(t)
3: if i = 1 then
4: T = I4 (identity matrix with dim = 4); Camera pose Pt = T ; M (t) = F(t)
5: else
6: Obtain accurate transformation T (t) between F(t − 1) and F(t) via GICP
7: T = T ∗ T (t); New camera pose Pt = T
8: View overlapMover = functionFrustumCulling(Pt ,M (t − 1))
9: View overlap Fover = functionFrustumCulling(Pt ,F(t) ∗ T )
10: Construct KD tree for Fover
11: for each point inMover do
12: Search the nearest point in KD tree and obtain nearest distance d
13: if d > R (R is the resolution of point cloud ) then
14: Set the point to ‘‘spurious trails’’
15: if Flag == 1 then
16: Connect the point to camera center O (x, y, z) from Pt to get a line segment
17: Count the point where the distance from it to the line segment is smaller than R/2 and obtain m
18: if the number m < 2 then Set the point to ‘‘spurious trails’’
19: else The point doesn’t belong to ‘‘spurious trails’’
20: end if
21: end if
22: else The point doesn’t belong to ‘‘spurious trails’’
23: end if
24: end for
25: Eliminate ‘‘spurious trails’’ fromM (t − 1) and obtainMleft (t − 1)
26: M (t) = Mleft (t − 1)+ F(t) ∗ T
27: end if
28: F(t − 1) = F(t) ∗ T ; M (t − 1) = M (t)
29: Output updated 3D point cloud mapM (t)
30: end for

precision, we design a filter named ‘‘Projection Ray Trac-
ing Filter’’ (PRTF) to solve this problem. PRTF is partially
inspired by [12] which is based on ray tracing principle.
As the Fig. 4 (c) and (d) shown, the red and yellow dotted lines
represent the ‘‘spurious trails’’ points detected by procedures
of Subsection A and B, which exist in Mover but disappear
in Fover . Apparently, the yellow dotted lines indicate the real
spurious trails and the red dotted lines indicate part of static
backgrounds. For each point Pi in the dotted field, we use a
straight line to connect it to the camera position point inFover .
Then, we make a cylinder using this line as axle wire and half
the resolution of the point cloud as its radius, as blue field
shown in Fig. 4 (d). If there are no other points in this cylinder
region in Fover , Pi should belong to the static background and
we can put it back to the whole point cloud map. Otherwise,
Pi should be a part of the spurious trails. The final result using
PRTF is shown in Fig. 4 (b), where the missing background
is supplemented.

The specific implementation and details of our whole
approach refer to the Algorithm 1. From Algorithm 1 we

can see that the parameter R is crucial for the proposed
algorithm. We process all point clouds by VoxelGrid sam-
pling at a fixed resolution R throughout the whole course
of the experiments. Actually, the parameter R is set based
on the scene size and the resolution of original point cloud
in mapping process. And it is independent of the moving
velocities of objects. Based on this setting wemake following
discussions. If the object moves fast, the spurious trails of it
can be easily eliminated. If an object moves slowly enough,
we can barely distinguish between its current state and its
historical state. Concretely, the distance which the object
moves between two adjacent key frames is less than the
resolution of point cloud. It will not be regarded as historical
spurious trails nor be eliminated at current moment. But its
movement will be definitely accumulated over time. There-
fore, the distance which the object moves between some key
frame in the future and current key frame must be larger than
the point cloud resolution. As a result, the historical spurious
trails will be eliminated and updated to a new state at that
time.

VOLUME 6, 2018 37719



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

TABLE 1. The parameters and different setups for all experiments.

IV. RESULTS
Due to the fact that most methods for the dynamic scene
reconstruction focused on the accurate solution of the camera
trajectory, there is no benchmark with static background truth
for dynamic scene mapping. Although we can evaluate our
method in a simulated environment like [12], we decide to
experiment directly in real environments leading to a richer
set of scenes. In subsection A, we implement experiments in
the scene of local corner reconstruction to show the details
of dynamic spurious trails elimination. We also analyze the
computational efficiency of proposed method to illustrate its
real-time performance.

Ourmethod can be easily ported to any of these SLAM sys-
tems because it is implemented before themapping process of
each frame. In details, we utilize our algorithmwhich is pack-
aged into a function to process point cloudsF(t) andM (t−1).
In this process our algorithm can eliminate the historical
spurious trails in M (t − 1) by comparing with F(t). After
that, point cloud map M (t) without trails can be obtained
by equation (1), which is suitable for robot navigation.
In subsection B, we choose two state-of-the-art open source
SLAM systems for experiments to prove this point. One is for
indoor dynamic scenes and the other is for outdoor scenes of
KITTI odometry dataset [21].

In order to make it clearer for readers to understand which
configurations/parameters/methods are used for each experi-
ment, we list them all in the Table 1.

A. EXPERIMENTS OF LOCAL SCENE RECONSTRUCTION:
SHOWING MORE DETAILS
To further show the details of dynamic spurious trails elim-
ination, we test our method in the local scene, such as a
corner of room, reconstruction containing moving objects.
The point cloud resolution is controlled to 0.02m through
VoxelGrid [22] sampling, so the parameter of PRTF is cho-
sen as half resolution R/2 according to the principle of our
algorithm. The parameters of the view frustum are calculated
according to equation (2) and (3). More paramenters can be
found in Table 1 column ‘‘A. 1) & 2)’’. We first handle a

Kinect to scan one corner of our lab office, and simultane-
ously somemoving objects are arranged tomove optionally in
the corner with motions. More precisely, in current situation
the camera and objects are all on the move where the moving
velocities and directions are different. Then we compute the
camera pose of each frame using GICP method [14], [22] and
reconstruct the scene 3D map by equation (1).

1) EXPERIMENTS WITH SINGLE MOVING OBJECT
In this subsection we display reconstruction results in the
local corner scene with only one moving object. The scan
images of local corner are shown in Fig. 1 (a), and the
reconstruction results directly based on equation (1) are
shown in Fig. 1 (b). To prove the efficiency of our method,
we implement it to eliminate historical spurious trails first
and then reconstruct the 3D map using equation (1) as shown
in Fig. 1 (c). It is observed that when there exists one moving
object in the scene, our method can accurately eliminate spu-
rious trails generated from traditional reconstruction process,
which might mislead the passable decisions of mobile robots.

2) EXPERIMENTS WITH MULTIPLE MOVING OBJECTS
In this subsection, we aim to test proposed method in the
scene with multiple moving objects. As the four images
in Fig. 4 (a) displayed, we arrange for three persons to move
optionally in the corner including motions like translation,
rotation, and occlusion. We reconstruct the scene 3D map
by equation (1) without using any moving objects rejection
methods, as shown in Fig. 5(b).

In addition, we take advantage of the efficient estimation of
scene flow proposed in [8] to eliminate moving objects from
an RGB-D sequence. This method can be chosen because it
is the only one that realizes real-time computation of extra
motion information, i.e., scene flow, for dynamic objects.
We leverage the efficient solution from [8] to compute the
scene flow of each old point cloud frame and obtain the
mask of moving objects based on geometric clustering. Then,
the mask is used for elimination of moving objects in each old
point cloud frame. Finally, these old frames are implemented

37720 VOLUME 6, 2018



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

FIGURE 5. 3D reconstruction results of the scene containing multiple
moving objects. (a) shows the scan images of the dynamic scene.
(b) shows the oblique front view of 3D map via [14] without using any
moving objects rejection methods. (c) represents the mapping result
of [14] using [8] to eliminate moving objects first. In contrast,
(d) corresponds to the result after removal of spurious trails
via proposed method.

for scene 3D reconstruction. Note that registration method is
still GICP [14], [22] while the difference is that here the point
cloud frames no longer contain moving objects. The result is
shown in Fig. 5 (c). Due to the restrictions of clustering, this
method is not stable which indicates in some frames moving
objects cannot be eliminated completely especially around
boundaries of them. As shown in Fig. 5 (c), there are still
several spurious trails around edges of moving objects. These
trails are fragmentary and sparse which seem negligible in
the figure but might disturb the normal robot navigation
process. In contrast, the image in Fig. 5 (d) corresponds to
result after removal of spurious trails for each former frame
using proposed method. There are no fragmentary and sparse
boundary trails that existed in (c). It can be concluded that
our method works well under dynamic scenes with multiple
moving objects.

Meanwhile, we compare the run time between [8] and
proposed method in the elimination process of spurious
trails, which is shown in Table 2. It is observed that

TABLE 2. The comparison of computational efficiency between proposed
method and [8] called Fast-SF here. (Evaluated at half resolution of the
RGB-D sequence shown in Fig. 5 (a) where the image size is 640 × 480
and one core of the Intel Core i7-5820K CPU, 3.30GHz×12).

proposed method without using background supplement sat-
isfies real-time requirement. In details, [8] takes about 50ms
on average to compute scene flow for each down-sampled
point cloud frame containing about 58,000 points. Then it
takes at least 10ms to obtain the point cloud without moving
objects by the binary mask. Thus [8] needs at least 60ms
to process one frame, which is hard to fit some SLAM sys-
tems with high frame rate. On the contrary, our experimental
statistics discover that proposed method promises less than
10ms for processing each frame F(t) when the mapM (t − 1)
contains less than 350,000 points, which keeps the real-
time performance in robot navigation tasks. Besides, pro-
posed method attempts to eliminate points in the existed map
M (t−1) which are different from the scene under the robot’s
current view F(t), also called spurious trails. Therefore it is
also suitable for updating 3Dmap under semi-static situations
such as amoved chair. However, methods like [7] and [8] only
compute scene flow with adjacent frames thus they cannot
update non-real-time changes of semi-static objects such as
a moved chair, which burdens the normal robot navigation
process.

B. GLOBAL SCENE MAPPING: SHOWING THE FUNCTION
OF THE ALGORITHM IN SLAM SYSTEM
To demonstrate the practicability of our method for 3D map
simultaneous updating, we integrate it into several typical
SLAM systems. We will prove the effectiveness, real-time
performance and robustness of our method through 3D map-
ping process in following indoor and outdoor environments.

1) INDOOR ENVIRONMENT: EXPERIMENTS
IN LAB ENVIRONMENT
We further embed proposed method in RTABMAP [15]
system and reconstruct 3D map for our lab office and
hallway existing highly moving objects on TurtleBot robot
platform [23], [24]. In test process, we implement the wheel
odometry information as supplementation to ensure the accu-
racy of each key frame camera pose under dynamic scenes.
This platform was chosen not only because of its representa-
tiveness, but also because of the robustness of its localization
algorithm in dynamic scenes with a large number of moving
objects. And considering that the area of the scene in this
experiment is about dozens of square meters, we make the
point cloud resolution is 0.05m. More paramenters and setup
can be found in Table 1 column ‘‘B. 1)’’.

Fig. 6(a) and Fig. 7(a) show the reconstructed 3D maps
of our lab office and hallway with dynamic objects via the
system in [15] respectively. Obviously, there exist plenty
of spurious trails in the maps when the TurtleBot robot
moves. This problem directly leads the robot to do wrong
decisions, i.e., it will decide on stopping even the mov-
ing object has gone away because it considers the spuri-
ous trails as obstacles in the front. In contrast, proposed
method can realize the simultaneous 3D map updating and
the robot could perceive the current scene synchronously,
which leads to better navigation. For comparison, we present

VOLUME 6, 2018 37721



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

FIGURE 6. The 3D reconstruction results of our lab office. (a) is the result via the system in [15]
and there exist plenty of spurious trails encircled by yellow lines. (b) is the final result using the
system in [15] added our approach, where spurious trails in yellow circles are eliminated
completely.

FIGURE 7. The 3D reconstruction results of hallway. (a) is the result via the system in [15] and
there exist plenty of spurious trails encircled by yellow lines. (b) is the final result using the
system in [15] with our approach, where spurious trails in yellow circles are eliminated
completely.

the final result via RTABMAP added our approach as shown
in Fig. 6(b) and Fig. 7(b).

2) OUTDOOR ENVIRONMENT: EXPERIMENTS ON KITTI
ODOMETRY DATASET
In this subsection, we test our method on outdoor dynamic
scenes. The KITTI Odometry benchmark [25] contains stereo
sequences recorded from a car in urban and highway environ-
ments. The stereo sensor has a ∼54cm baseline and works
at 10Hz. We select three representative sequences 02, 05
and 07 with moving objects from this challenging real-world
benchmark to further prove the validity of our algorithm for
RGB-D data even from a stereo sensor.

In the existing open source stereo SLAM systems,
we selected Stereoscan [16] which has good localization
and reconstruction results in practical tests. Because outdoor

scenes cover a large area with size about a few hundred
square meters, we control the point cloud resolution to 0.1 m
for the real-time performance of the mapping algorithm.
And the view frustum’s far plane parameter Zfar is different
with that in previous experiments. More details are shown
in Table 1 column ‘‘B. 2)’’.

Firstly, we use the LIBELAS stereo matching [26] to get
the disparity map for each stereo frame (including two images
captured from left and right cameras ) and turn it into depth
map as the ‘‘D’’ of RGB-D data. Then, we utilize the system
Stereoscan proposed in [16] to obtain global poses of the
stereo sequences. Finally, we reconstruct the whole scene
in dense 3D point cloud map with both global poses and
RGB-D frames. For comparison, we display part of
3D map of sequence 02 which contains some moving objects
in Fig. 8(a). After processing via proposed method, we obtain

37722 VOLUME 6, 2018



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

FIGURE 8. Sample results of the scene 3D reconstruction of the KITTI odometry datasets where numerous moving objects
exist. (a) shows the result obtained by [16], and the zoom-in regions show the immense ‘‘ghosts’’ effects from the moving
objects. (b) is our result which accurately removes all ‘‘ghosts’’ and performs better.

results as shown in Fig. 8 (b) where the spurious trails are
removed completely. It can be easily concluded that proposed
method has outstanding performance on removing spurious
trails and updating 3D map for dynamic environments.

If the estimation of camera position and pose in
SLAM system is inaccurate, the view frustum obtained
by proposed method cannot overlap with the real frustum
completely and the final overlap area can be inaccurate.
Therefore, proposed method may falsely eliminate part of
background and remain some dynamic spurious trails. How-
ever, proposed method is in terms of point cloud mapping
which can process each key frame in real-time. Although the
localization failure of one key frame leads to the deviations
when eliminating spurious trails in mapping, our method can
update the whole map in time and modify original errors with
the subsequent accurate relocation and global optimization in
SLAM system.

V. CONCLUSION AND PERSPECTIVES
We have presented a 3D point cloud map updating approach
for RGB-D data which is generated from a depth camera or a
stereo camera. Unlike other methods, our approach based on
view frustum culling filter and ray tracing principle focuses
only on 3Dmap updating without caring about the estimation
of camera poses. As a result, it can remove dynamic spurious
trails in real-time in standard CPUs and update 3D maps
simultaneously. Furthermore, it can be integrated into any
SLAM or reconstruction systems easily and it is suitable
for both static and dynamic environments in robot naviga-
tion or 3D reconstruction. The comparison to other dynamic
objects rejection methods in real environments containing
multiplemoving objects shows very competitive performance
of proposed approach. Experiments both in real lab office and
on KITTI dataset illustrate that how the proposed approach
for dynamic spurious trails rejection enhances both robots
navigation and scene 3D reconstruction.

Our work in progress will mainly focus on the optimization
and GPU acceleration of proposed PRTF. Further work will
include extending the current research to trajectory tracking
of moving objects, action and intention analysis based on
moving information.

REFERENCES
[1] D.-H. Kim, S.-B. Han, and J.-H. Kim, Visual Odometry Algorithm Using

an RGB-D Sensor and IMU in a Highly Dynamic Environment. Springer,
2015.

[2] T. S. Leung, ‘‘Visual navigation aid for the blind in dynamic environ-
ments,’’ in Proc. Comput. Vision Pattern Recognit. Workshops, 2014,
pp. 579–586.

[3] D. H. Kim and J. H. Kim, ‘‘Effective background model-based RGB-D
dense visual odometry in a dynamic environment,’’ IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1565–1573, Dec. 2016.

[4] Y.Wang and S. Huang, ‘‘Towards dense moving object segmentation based
robust dense RGB-D slam in dynamic scenarios,’’ in Proc. (ICARCV),
Dec. 2014, pp. 1841–1846.

[5] Y. Sun, M. Liu, and M. Q.-H. Meng, ‘‘Improving RGB-D slam in dynamic
environments: A motion removal approach,’’ Robot. Auton. Syst., vol. 89,
pp. 110–122, MAr. 2017.

[6] S. Li and D. Lee, ‘‘RGB-D SLAM in dynamic environments using static
point weighting,’’ IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2263–2270,
Oct. 2017.

[7] D. Kochanov, A. Ošep, J. Stückler, and B. Leibe, ‘‘Scene flow propagation
for semantic mapping and object discovery in dynamic street scenes,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 1785–1792.

[8] M. Jaimez, C. Kerl, J. Gonzalez-Jimenez, and D. Cremers, ‘‘Fast odometry
and scene flow from RGB-D cameras based on geometric clustering,’’ in
Proc. IEEE Int. Conf. Robot. Automat., May 2017, pp. 3992–3999.

[9] C. Jiang, P. D. Paudel, Y. Fougerolle, D. Fofi, and C. Demonceaux, ‘‘Static
and dynamic objects analysis as a 3D vector field,’’ in Proc. Int. Conf. 3D
Vis., 2017.

[10] M. Fehr et al., ‘‘TSDF-based change detection for consistent long-term
dense reconstruction and dynamic object discovery,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2017, pp. 5237–5244.

[11] F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart, ‘‘Long-term
3D map maintenance in dynamic environments,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2014, pp. 3712–3719.

[12] F. Ferri, M. Gianni, M. Menna, and F. Pirri, ‘‘Dynamic obstacles detection
and 3D map updating,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2015, pp. 5694–5699.

VOLUME 6, 2018 37723



W. Shi et al.: Dynamic Obstacles Rejection for 3-D Map Simultaneous Updating

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
‘‘OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,’’ Auton. Robot., vol. 34, no. 3, pp. 189–206, 2013.

[14] A. V. Segal, D. Haehnel, and S. Thrun, ‘‘Generalized-ICP,’’ Robot. Sci.,
Syst., vol. 2, no. 4, p. 435, Jun. 2009.

[15] M. Labbe and F. Michaud, ‘‘Online global loop closure detection for large-
scale multi-session graph-based slam,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2014, pp. 2661–2666.

[16] A. Geiger, J. Ziegler, and C. Stiller, ‘‘Stereoscan: Dense 3D reconstruction
in real-time,’’ in Proc. Intell. Vehicles Symp., 2011, pp. 963–968.

[17] (2017). Kinect for Xbox One. Accessed: Dec. 7, 2017. [Online]. Available:
https://www.xbox.com/en-US/xbox-one/accessories/kinect

[18] U. Assarsson and T. Moller, ‘‘Optimized view frustum culling algorithms
for bounding boxes,’’ J. Graph. Tools, vol. 5, no. 1, pp. 9–22, 2000.

[19] J. Antonio and F. Ramires. (2017). OpenGL Lighthouse 3D—View Frus-
tum Culling Tutorial. Accessed: Dec. 4, 2017. [Online]. Available:
http://www.turtlebot.com/

[20] D. S. Kora. (2000). Efficient View Frustum Culling. [Online]. Available:
http://old.cescg.org/CESCG-2002/DSykoraJJelinek/

[21] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2012, pp. 3354–3361.

[22] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai, China, May 2011,
pp. 1–4.

[23] (2017). TurtleBot. Accessed: Dec. 4, 2017. [Online]. Available:
http://www.turtlebot.com/

[24] (2017). The Robot Operating System (ROS). Accessed: Dec. 4, 2017.
[Online]. Available: http://www.ros.org/

[25] F. Delorme, S. Slempkes, G. Alibert, B. Rose, and J. Brandon, ‘‘Butt-
jointed DBR laser with 15 nm tunability grown in three MOVPE steps,’’
Electron. Lett., vol. 31, no. 15, pp. 1244–1245, Jul. 1995.

[26] A. Geiger, M. Roser, and R. Urtasun, ‘‘Efficient large-scale stereo match-
ing,’’ in Proc. Asian Conf. Comput. Vis., 2010, pp. 25–38.

WENJUN SHI received the B.S. degree from
the Nanjing University of Aeronautics and
Astronautics, China, in 2015. She is currently
pursuing the Ph.D. degree in information and
communication engineering with the Shanghai
Institute of Microsystem and Information Tech-
nology, Chinese Academy of Sciences, Shanghai,
China. She is also an Intern Student with Shanghai
Eyevolution TechnologyCompany Ltd., Shanghai.
Her current research includes 3-D reconstruction,
3-D scene understanding, and visual odometry.

JIAMAO LI received the Ph.D. degree from the
Tokyo Institute of Technology, Japan, in 2012.
He is currently an Associate Professor with the
Shanghai Institute of Microsystem and Informa-
tion Technology, Chinese Academy of Sciences,
China. His current research interests include com-
puter vision, machine vision, 3-D micro-imaging,
and artificial intelligence.

YANQING LIU received the B.E. degree in Inter-
net of Things engineering from Shandong Univer-
sity, Shandong, China, in 2014. He is currently
pursuing the Ph.D. degree in communication and
information systems with the Shanghai Insti-
tute of Microsystem and Information Technology,
Chinese Academy of Sciences, and the University
of Chinese Academy of Sciences. His research
interests include robot vision, visual odometry,
visual simultaneous localization and mapping,
and robotics.

DONGCHEN ZHU received the B.S. degree from
Wuhan University, China, in 2013. She is currently
pursuing the Ph.D. degree in information and com-
munication engineering with the Shanghai Insti-
tute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai, China.

Her current research includes computer vision,
stereo vision, 3-D reconstruction, and artificial
intelligence.

DONGDONG YANG received the M.Sc. degree
from the Shanghai Institute of Microsystem and
Information Technology, Chinese Academy of
Sciences, China, in 2017.

He is currently with Shanghai Eyevolution
Technology Company Ltd., Shanghai, China. His
research interests include computer vision, and
mobile robots planning and navigation.

XIAOLIN ZHANG received the Ph.D. degree from
Yokohama National University in 1995. He was a
Professor with the Tokyo Institute of Technology,
Japan, from 2012 to 2013.

He is currently a Professor with the Shanghai
Institute of Microsystem and Information Tech-
nology, Chinese Academy of Sciences, China. His
research interests include bionics, brain science,
computer vision, and artificial intelligence.

37724 VOLUME 6, 2018


	INTRODUCTION
	PROBLEM STATEMENT
	PROPOSED METHOD
	EXTRACT VIEW OVERLAPS BY FRUSTUM CULLING
	EXTRACT AND REMOVE HISTORICAL SPURIOUS TRAILS
	SUPPLEMENT BACKGROUNDS BASED ON PROJECTION RAY TRACING FILTER (PRTF)

	RESULTS
	EXPERIMENTS OF LOCAL SCENE RECONSTRUCTION: SHOWING MORE DETAILS
	EXPERIMENTS WITH SINGLE MOVING OBJECT
	EXPERIMENTS WITH MULTIPLE MOVING OBJECTS

	GLOBAL SCENE MAPPING: SHOWING THE FUNCTION OF THE ALGORITHM IN SLAM SYSTEM
	INDOOR ENVIRONMENT: EXPERIMENTS IN LAB ENVIRONMENT
	OUTDOOR ENVIRONMENT: EXPERIMENTS ON KITTI ODOMETRY DATASET


	CONCLUSION AND PERSPECTIVES
	REFERENCES
	Biographies
	WENJUN SHI
	JIAMAO LI
	YANQING LIU
	DONGCHEN ZHU
	DONGDONG YANG
	XIAOLIN ZHANG


