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ABSTRACT This paper formulates the models of systems of nonlinearly and diffusively coupled mem-
ristive neural networks (CMNNs) with time-varying delays and then investigates its dynamic behaviors.
Particularly, a simple yet a generic sufficient condition for quasi-synchronization of drive-response CMNNs
is derived based on the Lyapunov functional methods and matrix theories. The main result shows that quasi-
synchronization of such CMNNs is guaranteed by suitably designing thememsitive mechanism, the coupling
matrix, and the pinning control strategy. In addition, some applicable corollaries derived from the main
result are drawn by considering other circumstances, such as the linearly coupling functions, the adjustable
coupling strengths, the number of controlled nodes, and so on. Finally, some numerical simulations are
presented to demonstrate the effectiveness of the results.

INDEX TERMS Quasi-synchronization, memristive neural network, nonlinear coupling, pinning control.

I. INTRODUCTION
Since memristor was first raised by Chua [1] in 1971, it has
provoked considerable attention from scientists and engineers
in various scientific fields [2]–[4]. As a new circuit element
with memory and resistance properties, it has many implica-
tions in different areas, such as information storage, logical
operation, neural networks studies, etc. Particularly, in terms
of its applications in neural networks, memristor takes the
place of conventional resistor as a connection between two
neurons, so that the neural networks can enhance the ability of
computation and information capacity. It is reported that the
emergence of memristor provides an entirely new approach to
simulate synaptic function, which could be used to fabricate
brain-like neural network computers in the future [2], [5], [6].

In recent years, the studies on the collective behaviors of
memristor-based neural networks have appealed to tremen-
dous researchers, and many theoretical achievements on such
analysis have been obtained, such as synchronization and
consensus of the neural networks. For instance, Pershin and
Di Ventra [6] have demonstrated experimentally the for-
mation of associative memory in a simple neural network
composed of three electronic neurons connected by twomem-
ristors. Wu et al. [7] probed into the exponential synchroniza-
tion of memristor-based recurrent neural networks with time

delays by a delay-dependent feedback controller. Afterwards,
many further efforts have been devoted into the investigations
of the dynamic analysis for memristive neural networks, amid
which there are many results on different kinds of synchro-
nization of two memsitive neural networks [3], [8]–[12], and
some works have dealt with such issues between higher-
dimensionally coupled systems consisting of these neural
networks [13]–[16].

In neuroscience, synchronization of CMNNs has impor-
tant relationship with pattern recognition, secure commu-
nication, the self-organization behaviors in the brain, and
so on. Therefore, the research on these coupled systems,
such as drive-response systems, is of significance. However,
among those works that investigated the synchronization of
the drive-response CMNNs, many of them have lost sight
of the fact that some parameters between the two networks
are not always identical due to the memristive mechanism
and the differences between the initial conditions of different
CMNNs. In this case, the drive-response CMNNs signify two
heterogenous dynamic networks with mismatch parameters,
yet some works just regarded them as homogeneous ones.
Therefore, it is in great demand to give a comprehensive
analysis of such systems, which provokes a motivation of this
paper.
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Generally speaking, neural networks can not realize syn-
chronization spontaneously. To reaching synchronization,
some control strategies are supposed to be applied in these
neural networks. At present, many different kinds of con-
trol strategies have emerged successively in studying the
synchronization and stability of networks, such as adaptive
control [9], pinning control [17], [18], impulsive control [19],
intermittent control [20], [21], distributed control [22], [23]
and other newly emerged control approaches such as [24].
Since the configuration of the CMNNs is more massive and
complicated, it is more difficult and expensive to apply con-
trollers to all of the nodes,. One effective solution is to design
a pinning control strategy, which means that only a fraction
of nodes will be guided in the response networks. Therefore,
in this paper a pinning control method will be applied, which
is more economical and pragmatic.

Since the CMNNs can be considered as ones with mis-
matched parameters and the pinning control strategy is
used in this paper, to the best of our knowledge, it may
lead to possible destruction of synchronization. Fortunately,
synchronization with an error level, referred to as quasi-
synchronization can be realized. Up to now, there has
been scarce literature dealing with this issue of CMNNs.
However, many efforts have been taken into the inquiry
of quasi-synchronization of heterogenous dynamic net-
works [25]–[28], which provide some assistance for us to
analyze such issue of CMNNs.

Based on the aforementioned analysis, this paper aims to
discuss the quasi-synchronization of the CMNNs with time-
varying delays via pinning parts of the nodes. To tackle the
difficulties in realizing the objective, some efforts have been
made. First, the memsitive neural networks are expanded into
the higher-dimensional ones, denoted as CMNNs, in which
case the analysis of the characteristics of both the mem-
ristors and the neural networks becomes more difficult.
Second, since the CMNNs are state-dependent, they are
transferred into traditional neural networks with mismatch
parameters. Third, with the consideration of both the non-
linear coupling and time-varying delays in our models at
the meantime, this paper applies some differential inequal-
ity techniques and matrix theories and introduces a type of
Lyapunov function and pinning algorithm to realize the quasi-
synchronization. After that, some sufficiently useful criteria
are derived.

The rest of this paper is organized as follows. In Section 2,
the model of CMNNs is described, and then some preliminar-
ies and pinning strategy are provided. In Section 3, the main
results of quasi-synchronization are derived with some dis-
cussions. Moreover, some corollaries are then expanded from
the main result. Section 4 presents some numerical simula-
tions to demonstrate the results. Finally, the conclusion is
drawn in section 5.
Notations: Some notations will be used in the following

paper: R denotes the set of real numbers; Rn denotes the the
n−dimensional real number space; 1n presents the n×1 real
vectors consisting of 1s; ‖ ·‖2 denotes the standard 2-norm of

a vector or matrix; | · | means the absolute value of each
element of a vector or matrix, i.e. |A| = (|aij|)n×n. For any
vector x ∈ Rn, sign(x) means diag{sign(x1), sign(x2), . . . ,
sign(xn)}.

II. MODEL DESCRIPTION AND PRELIMINARIES
In this section, some preliminaries and concepts will be
introduced, and then models of drive-response CMNNs will
be formulated. Firstly, consider a class of isolate memristive
neural networks with time delays, which can be described as
(1) and has been analyzed in [3], [8]–[12].

ẋι(t) = −dι(xι(t))xι(t)+
n∑
κ=1

aικ (xκ (t))fκ (xκ (t))

+

n∑
κ=1

bικ (xκ (t))fκ (xκ (t − τι(t)))+ sι,

ι = 1, 2, . . . , n, (1)

where xι(t) ∈ R is the voltage of the capacitor Ci for the ι− th
system. τι(t) is the time-varying delay. fκ (xκ (t)) and fκ (xκ (t−
τ (t))) are the active functions of xκ (t) with and without time-
varying delay respectively. sι is the external input or bias.
dι(xι(t)) > 0 describes reset rate, and aικ (xι(t)) and bικ (xι(t))
describe the non-delayed and delayed memristive synaptic
connection between neurons respectively, and they can be
derived as following according to properties of memristor and
the current-voltage characteristic.

dι(xι(t)) =
1
Cι

[ N∑
κ=1

(
1
Rf ικ
+

1
Rgικ

)+Wι(xι(t))
]

=

{
d́ι, |xι(t)| ≤ Tι,
d̀ι, |xι(t)| > Tι,

aικ (xι(t)) =
Waικ (xκ (t))

Cι
sgnικ =

{
áικ , |xι(t)| ≤ Tι,
àικ , |xι(t)| > Tι,

bικ (xι(t)) =
Wbικ (xκ (t))

Cι
sgnικ =

{
b́ικ , |xι(t)| ≤ Tι,
b̀ικ , |xι(t)| > Tι,

signικ =

{
1, ι 6= κ,

−1, ι = κ,
sι =

Iι
Cι
,

where Rf ικ and Rgικ are the resistors between xι(t) and
feedback functions with and without time delay respectively.
Wι(x(t)) denotes the memductance of the memristor parallel
to the capacitor Cι. Waικ and Wbικ are the memductances of
the memritors between the xι(t) and the feedback functions
with and without time delays respectively. The positive con-
stant Tι is switching jump, and the constants d́ι, d̀ι, áικ , àικ ,
b́ικ , b̀ικ , ι, κ = 1, 2, . . . , n satisfy d́ι 6= d̀ι, áικ 6= àικ and
b́ικ 6= b̀ικ .

Next, regarding a memristive neural network as a node,
a dynamic system can be constructed by consisting of N
nonlinearly and diffusively coupled time-varying delayed
neural networks. In that way, a configuration of the coupled
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memristive neural networks can be formulated as following.

ẋi(t) = −Di(xi(t))xi(t)+ Ai(xi(t))f (xi(t))

+Bi(xi(t))f (xi(t − τ (t)))+ si

+ c1
N∑
j=1

gijg(xj(t))+ c2
N∑
j=1

ḡijg(xj(t − τ (t))), (2)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the
state vector of the ith memristive time-varying delayed
neural networks. The external input or bias vector is
si = (si1, si2, . . . , siN )T . The active function vec-
tors are f (xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T

and f (xi(t − τ (t))) = (f1(xi1(t − τ (t))), f2(xi2(t −
τ (t))),. . ., fn(xin(t − τ (t))))T . The nonlinear coupling func-
tions have the form that g(xi(t)) = (g1(xi1(t)), g2(xi2(t)),
. . . , gn(xin(t)))T , g(xi(t − τ (t))) = (g1(xi1(t − τ (t))),
g2(xi2(t−τ (t))),. . ., gn(xin(t−τ (t))))T . The reset rate matrices
are Di(xi(t)) = diag{di1(xi1(t)), . . . , din(xin(t))} ∈ Rn×n.
Ai(xi(t)) = (aijk (xij(t)))n×n and Bi(xi(t)) = (bijk (xij(t)))n×n are
the inner coupled matrices, and

dik (xik (t)) =

{
d́ik , |xik (t)| ≤ Tik ,
d́ik , |xik (t)| > Tik ,

(3)

aihk (xik (t)) =

{
áihk , |xik (t)| ≤ Tik ,
àihk , |xik (t)| > Tik ,

(4)

bihk (xik (t)) =

{
b́ihk , |xik (t)| ≤ Tik ,
b̀ihk , |xik (t)| > Tik .

(5)

Denote D́i=diag{d́i1,. . ., d́in}, D̀i=diag{d̀i1, . . . , d̀in}, Ái =
(áihk )n×n, Ài = (àihk )n×n, B́i = (b́ihk )n×n, B̀i = (b̀ihk )n×n. Tij >
0 are the switching jumps, and Ti = (Ti1,Ti2, . . . ,Tin)T .
The constants d́ij, d̀ij, áiij, à

i
ij, b́

i
ij, b̀

i
ij, i, j = 1, 2, . . . , n satisfy

d́ij 6= d̀ij, áiij 6= àiij and b́iij 6= b̀iij. c1 and c2 are the
external coupled strengths with and without time delayed.
The external coupled matrices G = (gij)N×N ∈ RN×N and
Ḡ = (ḡij)N×N ∈ RN×N describe the coupled configurations
of the dynamic systems. What’s more, assume that G =
(gij)n×n and Ḡ = (ḡij)N×N are diffusive matrices, which
means gij = gji, gij ≥ 0, ḡij = gji, ḡij ≥ 0 for i 6= j
and gii = −

∑N
j=1,j 6=i gij, ḡii = −

∑N
j=1,j 6=i ḡij. Therefore,∑N

j=1 gij = 0,
∑N

j=1 ḡij = 0 for i = 1, 2, . . . ,N . Moreover,
the rank(G) = N − 1, and the eigenvalues of G satisfy
that 0 = λ1(G) < λ2(G) ≤ λ3(G) ≤ . . . ≤ λN (G).
1 = (1, 1, . . . , 1)T ∈ RN is the right eigenvector of the
eigenvalue 0 of G, i.e. G · 1 = 0. The initial conditions of
(2) are xi(t) = φi(t) ∈ C([−τ, 0],Rn), i = 1, 2, . . . ,N .

Throughout this paper, there are some assumptions needed
as follows.

(H1) Assume that there exist positive constants li, i =
1, . . . , n, such that for any x, y ∈ R, x 6= y, it holds that

0 ≤
fi(x)− fi(y)
x − y

≤ li.

(H2) Assume that there exist positive constants Mι, such
that for any x ∈ R, i = 1, . . . , n, it holds that

|fi(x)| ≤ mi.

(H3) [29] Assume that g(·) : R→ R belongs to the accept-
able nonlinear coupling function class, which is denoted as
g ∈ NCF(α, β). That is, there exist two nonnegative scalars
α and β, such that g(ω)−αω satisfies the following Lipschitz
conditions:

|g(ω1)− g(ω2)− α(ω1 − ω2)| 6 β|ω1 − ω2|.

holds for any ω1, ω2 ∈ R.
(H4) Assume that 0 < τi(t) ≤ τ, τ̇i(t) ≤ θ < 1, where θ

and τ are constants.
Suppose the response memristive neural networks with

control strategy can be described as

ẏi(t) = −Di(yi(t))yi(t)+ Ai(yi(t))f (yi(t))

+Bi(yi(t))f (yi(t − τ (t)))+ si + Ui(t)

+ c1
N∑
j=1

gijg(yj(t))+ c2
N∑
j=1

ḡijg(yj(t − τ (t))), (6)

where Di(yi(t)),Ai(yi(t)),Bi(yi(t)) are defined similarly to
(34) (4) and (5) respectively. Ui(t) is the controller applied
in (6). Out of consideration for economical and pragmatic
implementation, only parts of the nodes are controlled. With-
out loss of generality, let the nodes i1, i2, . . . , il be selected
as the pinned nodes, and the pinning strategy is designed as
follows.

Ui(t) =

{
−c1ui(t)ei(t), i = 1, 2, . . . , l,
0, i = l + 1, . . . ,N ,

(7)

where ui(t) is the time-invariant feedback gains, and denote
U (t) = {u1(t), . . . , ul(t), 0, . . . , 0}.
Generally speaking, the initial conditions of the response

memristive neural networks are not the same as those of the
drive neural networks, and in this paper they are denoted by
yi(t) = ψ(t) ∈ C([−τ, 0],Rn), i = 1, 2, . . . ,N .
From the above description and analysis, it can be seen that

CMNNs are different from traditional neural networks, since
the dynamic functions of the CMNNs are state-dependent
while those of traditional ones are time-dependent. To realize
the quasi-synchronization of drive and response memristive
neural networks with time-varying delays in (2) and (6), this
paper transfers the CMNNs to a traditional neural networks
with uncertain and mismatch parameters. First of all, some
definitions and lemmas are given, whichwill be used through-
out the paper.
Definition 1: The drive memeistive dynamic networks (2)

and response memeistive dynamic networks(6) are said to
exponentially realize quasi-synchronization with an error
bound ε > 0 if there exists a compact set E and positive
constants M and β, such that

N∑
i=1

||yi(t)− xi(t)|| ≤ M exp−βt +ε, t > 0,
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and

E =
{ N∑
i=1

(yi(t)− xi(t))

∈ Rn
∣∣∣ N∑
i=1

‖yi(t)− xi(t)‖ ≤ ε
}
, as t →∞.

Definition 2 (Filippov Regularization [30]): The Flippov
set-valued map of f (x) at x ∈ Rn is defined as follows:

F(x) =
⋂
δ>0

⋂
µ(�)

co[f (B(x, δ) \�)],

where B(x, δ) = y : ‖y− x‖ ≤ δ, and µ(�) is Lebesgue
measure of set �, co[E] is the closure of the convex hull of
the set E .
Lemma 1 [31]: If W (t) ≥ 0, t ∈ (−∞,+∞),

D+W (t)≤γ (t)+ α(t)W (t)+ β(t) sup
t−τ (t)≤s≤t

W (s), t > t0,

where D+W (t) = limh→0+ (W (t + h)−W (t))/h, and γ (t) ≥
0, α(t) ≤ 0, β(t) ≥ 0 are continuous functions and τ (t) > 0.
If there exists δ such that

α(t)+ β(t) ≤ −δ < 0, t ≥ t0.

Then we have

W (t) ≤
γ ∗

δ
+ sup
−∞≤s≤t0

W (s)e−µ
∗

(t − t0),

where γ ∗ = sup
t0≤t<∞

γ (t) and µ∗ = inf
t≥t0
{µ(t) : µ(t)+ α(t)+

β(t)eµ(t)τ (t) = 0}.
Based on the theory of differential inclusion and definition

2, it can be derived that

ẋi(t) ∈ −co[D́i, D̀i]xi(t)+ co[Ái, Ài]f (xi(t))
+ co[B́i, B̀i]f (xi(t − τ (t)))+ si

+ c1
N∑
j=1

gijg(xj(t))+ c2
N∑
j=1

ḡijg(xj(t − τ (t))). (8)

Definite function matrix 3ιi = diag{λιi1(t), . . . , λ
ι
in(t)},

where ι = 1, 2, . . . , 6. and λιij(t) ∈ co[0, 1], then xi(t) can
be written as

ẋi(t) = −
(
D́i3i1(t)+ D̀i(1−3i1(t))

)
xi(t)

+
(
Ái3i2(t)+ Ài(1−3i2(t))

)
f (xi(t))

+
(
B́i3i3(t)+ B̀i(1−3i3(t))

)
f (xi(t − τ (t)))+ si

+ c1
N∑
j=1

gijg(xj(t))+ c2
N∑
j=1

ḡijg(xj(t − τ (t))). (9)

With the same analysis, the response memristive dynamic
networks can be derived as

ẏi(t) = −
(
D́i3i4(t)+ D̀i(1−3i4(t))

)
yi(t)+

(
Ái3i5(t)

+ Ài(1−3i5(t))
)
f (yi(t))+

(
B́i3i6(t)

+ B̀i(1−3i6(t))
)
f (yi(t − τ (t)))+ si

+ c1
N∑
j=1

gijg(yj(t))+ c2
N∑
j=1

ḡijg(yj(t − τ (t))). (10)

To realize the quasi-synchronization between the response
memristive neural networks (2) and drive memristive neural
networks (6), a control strategy is applied in the response
neural networks.

Denote ei(t) = yi(t) − xi(t) as the synchronization error
under the drive system (1) and the response system (3), then
ei(t) = (ei1(t), ei2(t), . . . , ein(t))T and the error system can
be represented as

ėi(t) = −
(
D́i3i4(t)+ D̀i(1−3i4(t))

)
yi(t)

−
(
D́i3i1(t)+ D̀i(1−3i1(t))

)
xi(t)

+ Âi(t)f̃ (ei(t))+ B̂i(t)f̃ (ei(t − τ (t)))

+Ui(t)+1Âi(t)f (x(t))+1B̂i(t)f (xi(t−τ (t)))

+ c1
N∑
j=1

gijg̃(ej(t))+ c2
N∑
j=1

ḡijg̃(ej(t − τ (t))), (11)

where f̃ (ej(t)) = f (xj(t)) − f (yj(t)), g̃(ej(t)) = g(xj(t)) −
g(yj(t)), Âi(t) = Ái3i5(t) + Ài(1 − 3i5(t)),1Â(t) =
(3i5(t) − 3i2(t))(Ái − Ài), B̂i(t) = B́i3i6(t) + B̀i(1 −
3i6(t)),1B̂(t) = (3i6(t) − 3i3(t))(B́i − B̀i). Denotes
D̂i = diag

{
min{d́i1, d̀i1}, . . . ,min{d́in, d̀in}

}
, D̄i(t) = (|d́ij −

d̀ij|)n×n, Ti = (Ti1,Ti2, . . . ,Tin)T . Obviously, there exist
positive constants µ(A), µ(B), ρ(A), and ρ(B), such that
‖Âi(t)‖22 ≤ µ(A), ‖B̂i(t)‖22 ≤ µ(B), ‖1Âi(t)‖2 ≤

ρ(A), ‖1B̂i(t)‖2 ≤ ρ(B).
Remark 1: Since the initial conditions of the CMNNs

(1) and (2) are always different, according to the memris-
tive mechanism, the measurable functions 3iι(t) for node
i cannot be guaranteed to be identical, which means when
aihk (xik ) = áihk , the value of aihk (yik ) may be áihk or àihk .
In this case, the CMNNs can be considered as a traditional
neural networks with mismatch parameters, which many
other works always make a mistake on. Therefore, with the
pinning strategy applied in this paper, the two CMNNs can
eventually realize quasi-synchronization rather than complete
synchronization.

III. MAIN RESULT
In this part, the exponentially quasi-synchronization of the
drive system and the response system will be studied.
By using Lyapunov-Krasovkii functions and matrix analysis
techniques, some sufficient conditions will be derived and the
main results are presented as follows.

In what follows, let L = diag{l1, l2, . . . , ln},Mi = miIn,
U (t)= diag{u1(t), . . . , ul(t), 0, . . . , 0}, D̄i =(|d́ij − d̀ij|)n×n,
D̂i=diag

{
min{d́i1, d̀i1}, . . . ,min{d́in, d̀in}

}
.

Theorem 1: Suppose that H (1) − H (4) hold. Using the
control strategy designed as (7), the trajectory of the error
system (11) converges exponentially to the set

E =
{
ei ∈ Rn, i = 1, . . . ,N

∣∣∣ N∑
i=1

‖ei‖ ≤
1

δpmin

N∑
i=1

ω2
i

}
,

where ωi = ‖D̄iTi +
(
ρ(A) + ρ(B)

)
Mi‖2 , that is, the drive

memristive dynamic network (2) is said to be exponentially
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quasi-synchronized with the response dynamic network (6)
if there exist a positive constant δ and a nonsingular matrix
P = diag{p1, . . . , pn}, such that

c1αG−c1U (t)+c1GTG+2c2GTG

+
(
λ̄i + c2α2 + (c1+c2)β2

)
In ≤ −δIn < 0, (12)

where λ̄i = λmax
{
− D̂iP−1 + 3P + (µ(A) + µ(B))L2P−1

}
,

for i = 1, 2, . . . ,N .
Proof: Construct the Lyapunov function

V (t) =
1
2

N∑
i=1

eTi (t)Pei(t).

Differentiating V (t) along the solution of the error system
(11), it yields that

V̇ (t) ≤
N∑
i=1

eTi (t)P
(
−
(
D́i3i4(t)+ D̀i(1−3i4(t))

)
yi(t)

+
(
D́i3i1(t)+D̀i(1−3i1(t))

)
xi(t)+Âi(t)f̃ (ei(t))

+ B̂i(t)f̃ (ei(t−τ (t)))+ Ui(t)

+1Âi(t)f (xi(t))+1B̂i(t)f (xi(t−τ (t)))
)

+ c1
N∑
i=1

N∑
j=1

gijeTi (t)Pg̃(ej(t))

+ c2
N∑
i=1

N∑
j=1

ḡijeTi (t)Pg̃(ej(t − τ (t)))

≤

N∑
i=1

eTi (t)P
(
−D̂iei(t)+sgn(eTi (t))D̄iTi

+ Âi(t)f̃ (ei(t))+ B̂i(t)f̃ (ei(t−τ (t)))+Ui(t)

+1Âi(t)f (xi(t))+1B̂i(t)f (xi(t−τ (t)))
)

+ c1
N∑
i=1

N∑
j=1

gijeTi (t)Pg̃(ej(t))

+ c2
N∑
i=1

N∑
j=1

ḡijeTi (t)Pg̃(ej(t − τ (t))), (13)

in which one derives from Lemma 1 and Assumption H (2)
that

N∑
i=1

eTi (t)P
(
1Âi(t)fi(xi(t))+1B̂i(t)fi(xi(t−τ (t)))

+ sgn(eTi (t))D̄iTi
)

≤

N∑
i=1

|eTi (t)|P
[
D̄iTi +

(
|1Âi(t)+1B̂i(t)|

)
Mi

]
≤

N∑
i=1

eTi (t)P
TPei(t)+

N∑
i=1

ω2
i .

(14)

By using Assumption H (3), it can be obtained that

c1
N∑
i=1

N∑
j=1

eTi (t)P0gijg̃(ej(t))−
N∑
i=1

eTi PUi(t)

= c1
N∑
i=1

N∑
j=1

eTi (t)Pgijg̃(ej(t))− c1
l∑
i=1

eTi Pui(t)ei(t)

≤ c1
N∑
i=1

N∑
j=1

eTi (t)Pgij(αej(t)+ g̃(ej(t))− αej(t))

− c1
l∑
i=1

eTi Pui(t)ei(t)

= c1
n∑

k=1

pk ẽk (t)(αG− U (t))ẽk (t)

+ c1
n∑

k=1

pk ẽk (t)G(g̃(ẽk (t))− αẽk (t))

≤ c1
n∑

k=1

pk ẽTk (t)(αG− U (t)+ GTG+ β2In)ẽk (t), (15)

and

N∑
i=1

N∑
j=1

eTi (t)Pḡijg̃(ej(t − τ (t)))

= α

N∑
i=1

N∑
j=1

eTi (t)Pḡijej(t − τ (t)

+

N∑
i=1

N∑
j=1

eTi (t)Pḡijg̃(ej(t − τ (t)))− αej(t − τ (t)))

= α

n∑
k=1

pk ẽTk (t)Ḡẽk (t − τ (t))

+

n∑
k=1

pk ẽTk (t)Ḡg̃(ẽk (t − τ (t)))− αẽk (t − τ (t)))

≤

n∑
k=1

pk ẽTk (t)(α
2In + ḠT Ḡ)ẽk (t)

+

n∑
k=1

pk ẽTk (t − τ (t))(Ḡ
T Ḡ+ β2In)ẽk (t − τ (t)). (16)

It follows from H (1) that

N∑
i=1

eTi (t)PÂi(t)f̃ (ei(t))+
N∑
i=1

eTi (t)PB̂i(t)f̃ (ei(t − τ (t)))

≤

N∑
i=1

eTi (t)P
TPei(t)+ u(A)

N∑
i=1

f T (ei(t))f (ei(t))

+

N∑
i=1

eTi (t)P
TPei(t)

VOLUME 6, 2018 26275



J. Feng et al.: Quasi-Synchronization of Coupled Nonlinear Memristive Neural Networks

+ u(B)
N∑
i=1

f T (ei(t − τ (t)))f (ei(t − τ (t)))

≤

N∑
i=1

eTi (t)(2P
TP+ µ(A)L2)ei(t)

+

N∑
i=1

eTi (t − τ (t)))µ(B)L
2ei(t − τ (t)). (17)

Substituting inequalities (14)(15)(16)(17) into (13), one
can derive that

V̇ (t) ≤
N∑
i=1

eTi (t)
(
− D̂i + 3PTP+ µ(A)L2

)
ei(t)

+

N∑
i=1

eTi (t − τ (t)))µ(B)L
2ei(t − τ (t))+

N∑
i=1

ω2
i

+

n∑
k=1

pk ẽTk (t)
[
c1αG− c1U (t)+ c1GTG+ c2ḠT Ḡ

+ (c1β2 + c2α2)In
]
ẽk (t)

+

n∑
k=1

pk ẽTk (t−τ (t))(c2Ḡ
T Ḡ+c2β2In)ẽk (t−τ (t))

≤

n∑
k=1

pk ẽTk (t)
[
c1αG̃− c1U (t)+ c1GTG+ c2ḠT Ḡ

+ λ̄In
]
ẽk (t)+

n∑
k=1

pk ẽTk (t − τ (t))
[
c2ḠT Ḡ

+
(
c2β2 + µ(B)

l2k
pk

)
In
]
ẽk (t − τ (t))+

N∑
i=1

ω2
i

≤ −a(t)V (t)+ b(t)V (t − τ (t))+
N∑
i=1

ω2
i . (18)

where a(t) = λmax
{
c1αG − c1U (t) + c1GTG + c2ḠT Ḡ

}
+

max{λ̄i}, b(t) = λmax
{
c2ḠT Ḡ+ µ(B)L2P−1

}
+ c2β2.

Combining (12) and Lemma 3, the inequality implies that

V (t) ≤ sup
−∞≤s≤t0

V (s)e−µ(t−t0) +
1
δ

N∑
i=1

ω2
i , (19)

where µ = inf
t≥t0
{µ(t) : µ(t)− a(t)+ b(t)eµ(t)τ (t) = 0}.

Consequently, it can be obtained that

N∑
i=1

‖ei(t)‖2 ≤
1

pmin
sup

−∞≤s≤t0
e−µ(t−t0)

+
1

δpmin

N∑
i=1

ω2
i , t ≥ t0,

from which it can be concluded that the error system con-
verges exponentially to the set E, where

E =
{
ei ∈ Rn, i = 1, . . . ,N

∣∣∣ N∑
i=1

‖ei‖ ≤
1

δpmin

N∑
i=1

ω2
i

}
,

which implies that the drive CMNNs (1) and the response
CMNNs (2) eventually achieve quasi-synchronization with
an error level 1

δpmin

∑N
i=1 ω

2
i . The proof is

completed. �
To make the Theorem 1 more applicable, some corollaries

are derived.
Remark 2: From Theorem 1 and Corollary 1, one can see

that the properties of the nonlinear coupling functions gi(·)
have a great impact on the error level. The smaller the β is,
the less nonlinear the gi(t) will be, and the easier and faster
the error level will be achieved, and vise versa. Now let us
take an extreme example, i.e., suppose g(·) ∈ NCF(α, 0), and
then (2) and (6) become linearly coupled systems.

ẋi(t) = −Di(xi(t))xi(t)+ Ai(xi(t))f (xi(t))

+Bi(xi(t))f (xi(t − τ (t)))+ si

+ c1
N∑
j=1

gijxj(t)+ c2
N∑
j=1

ḡijxj(t − τ (t)). (20)

ẏi(t) = −Di(yi(t))yi(t)+ Ai(yi(t))f (yi(t))

+Bi(yi(t))f (yi(t − τ (t)))+ si + ui(t)

+ c1
N∑
j=1

gijyj(t)+ c2
N∑
j=1

ḡijyj(t − τ (t)). (21)

ėi(t) = −
(
D́i3i4(t)+ D̀i(1−3i4(t))

)
yi(t)

−
(
D́i3i1(t)+ D̀i(1−3i1(t))

)
xi(t)

+ Âi(t)f̃ (ei(t))+ B̂i(t)f̃ (ei(t − τ (t)))

+Ui(t)+1Âi(t)f (x(t))+1B̂i(t)f (xi(t−τ (t)))

+ c1
N∑
j=1

gij0ej(t)+ c2
N∑
j=1

ḡij0ej(t − τ (t)). (22)

Corollary 1: Suppose that g(·) ∈ NCF(α, 0), using the
control strategy designed as (7), the trajectory of the error
system (22) converges exponentially to the set

E =
{
ei ∈ Rn, i = 1, . . . ,N

∣∣∣ N∑
i=1

‖ei‖ ≤
1

δ̆pmin

N∑
i=1

ω2
i

}
,

that is, the drive memristive dynamic network (20) is said
to be exponentially quasi-synchronized with the response
dynamic network (21) if there exist positive constants δ̆
and a nonsingular matrix P = diag{p1, . . . , pn}, such
that

c1(G−U (t))+c2ḠT Ḡ+ λ̄In ≤ −δ̆In < 0,

where λ̄i = λmax
{
− D̂iP−1 + 3P + (µ(A) + µ(B))L2P−1

}
,

for i = 1, 2, . . . ,N .
Remark 3: In the above models, the coupling strengths are

constants. However, the networks structure will not always
stay the same in practice. Therefore, an adaptive adjustment
can be added to the coupling strengths in the drive and
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response memristive neural networks described in (23) and
(24). In this case, a more concise condition will be obtained.

ẋi(t) = −Di(xi(t))xi(t)+ Ai(xi(t))f (xi(t))

+Bi(xi(t))f (xi(t − τ (t)))+ si

+ c1(t)
N∑
j=1

gijg(xj(t))+c2(t)
N∑
j=1

ḡijg(xj(t−τ (t))).

(23)

ẏi(t) = −Di(yi(t))yi(t)+ Ai(yi(t))f (yi(t))

+Bi(yi(t))f (yi(t − τ (t)))+ si + ui(t)

+ c1(t)
N∑
j=1

gijg(yj(t))+c2(t)
N∑
j=1

ḡijg(yj(t−τ (t))).

(24)

ėi(t) = −
(
D́i3i4(t)+ D̀i(1−3i4(t))

)
yi(t)

−
(
D́i3i1(t)+ D̀i(1−3i1(t))

)
xi(t)

+ Âi(t)f̃ (ei(t))+ B̂i(t)f̃ (ei(t − τ (t)))

+Ui(t)+1Âi(t)f (x(t))+1B̂i(t)f (xi(t−τ (t)))

+ c1(t)
N∑
j=1

gijg̃(ej(t))+c2(t)
N∑
j=1

ḡijg̃(ej(t−τ (t))).

(25)

where c1(t) = γ c(t), c2(t) = 1
γ
c(t), and the derivative of c(t)

is designed as ċ(t) =
∑N

i=1 ei(t)
T ei(t).

Corollary 2: Suppose that H (1) − H (4) hold. Using the
control strategy designed as (7), the trajectory of the error
system (25) converges exponentially to the set

E =
{
ei ∈ Rn, i = 1, . . . ,N

∣∣∣ N∑
i=1

‖ei‖ ≤
1

δ̄pmin

N∑
i=1

ω2
i

}
,

that is, the drive memristive dynamic network (23) is said
to be exponentially quasi-synchronized with the response
dynamic network (24) if there exist positive constants δ̄ and
γ , such that

γ 2(αG̃−c1U (t)+ β2In
)
+ 2GTG+ (α2 + β2)In

≤ −δ̄In < 0. (26)

Proof: Construct Lyapunov function

V (t)=
1
2

N∑
i=1

eTi (t)Pei(t).

With the same analysis as Theorem 1, it can be obtained
that

V̇ (t) ≤
N∑
i=1

eTi (t)P
(
− D̂iei(t)+ sgn(eTi (t))D̄iTi

+Âi(t)f (ei(t))+1B̂i(t)f (ei(t − τ (t)))+ ui(t)

+1Âi(t)f (xi(t))+1B̂i(t)f (xi(t − τ (t)))
)

+γ c(t)
N∑
i=1

N∑
j=1

gijeTi (t)Pg̃(ej(t))

+
1
γ
c(t)

N∑
i=1

N∑
j=1

ḡijeTi (t)Pg̃(ej(t − τ (t)))

≤

N∑
i=1

eTi (t)
(
− D̂i + 3PTP+ µ(A)L2

)
ei(t)

+

N∑
i=1

eTi (t − τ (t))µ(B)L
2ei(t − τ (t))+

N∑
i=1

ω2
i

+
1
γ
c(t)

n∑
k=1

pk ẽTk (t)
[
γ 2(αG− U (t)+ GTG+ β2In

)
+α2In + ḠT Ḡ

]
ẽk (t)

+
1
γ
c(t)

n∑
k=1

pk ẽTk (t − τ (t))(Ḡ
T Ḡ+ β2In)ẽk (t−τ (t))

≤

n∑
k=1

pk ẽTk (t)
[
c(t)γ

(
αG̃− U (t)+ GTG+ β2In

)
+
1
γ
c(t)(α2In + ḠT Ḡ)

+λmax
(
− D̂iP−1 + 3P+ µ(A)L2P−1

)
In
]
ẽk (t)

+

n∑
k=1

pk ẽTk (t − τ (t))
[ 1
γ
c(t)(ḠT Ḡ+ β2In)

+µ(B)
l2k
pk
In
]
ẽk (t − τ (t))+

N∑
i=1

ω2
i

≤ −ā(t)V (t)+ b̄(t)V (t − τ (t))+
N∑
i=1

ω2
i , (27)

where ā(t) = −λmax

[
c(t)γ

(
αG̃ − U (t) + GTG + β2In

)
+

1
γ
c(t)(α2In+ ḠT Ḡ)+λmax

(
− D̂iP−1+3P+µ(A)L2P−1

)
In
]
,

b̄(t) = λmax

[
1
γ
c(t)(ḠT Ḡ+ β2In)+µ(B)

l2k
pk
In
]
, then −ā(t)+

b̄(t) = 1
γ
c(t)

[
γ 2λmax

(
αG − U (t) + GTG

)
+ γ 2β2 +

2λmax
(
ḠT Ḡ

)
+ α2 + β2

]
+ λ̄. where λ̄ = λmax

{
+D̂iP−1+

3P+ (µ(A)+ µ(B))L2P−1
}
, for i = 1, 2, . . . ,N .

Since ċ(t) is nonnegative, that is, c(t) is monotone
nondecreasing, then the value of c(t) will either be
bounded or monotone nondecreasing to infinite.
Case 1: There exists a t∗ > 0, such that c(t∗) > c∗, where

c∗ > 0 is a scalar and satisfying

c∗ > γ (δ̄ − λ̄i)
[
γ 2λmax

(
αG− U (t)+ GTG+

2
γ 2 Ḡ

T Ḡ
)

+γ 2β2 + λmax
(
ḠT Ḡ

)
+ α2 + β2

]−1
.

Then according to (26), it can be easily obtained that

−ā(t)+ b̄(t) < 0.

where µ = inf
t≥t0
{µ(t) : µ(t)− ā(t)+ b̄(t)eµ(t)τ (t) = 0}.
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With the similar analysis with Theorem 1, it can derive that
the error system (25) will converge exponentially to the set

E =
{
ei ∈ Rn, i = 1, . . . ,N

∣∣∣ N∑
i=1

‖ei‖ ≤
1

δ̄pmin

N∑
i=1

ω2
i

}
.

Case 2: For all t > t∗, c(t) < c∗. In this case, one has∫
+∞

t0

N∑
i=1

eTi (t)ei(t)dt <∞.

Obviously,
∑N

i=1 e
T
i (t)ei(t)dt → 0, t →∞.

In conclusion, the error system (25) will converge expo-
nentially to the set E . The proof is completed. �
Remark 4: It is clear that it is the memristive mecha-

nism that attributes to the mismatch system matrices. Using
pinning strategies and the above mathematical methods,
the effects of mismatch system matrices can not be elimi-
nated, that is, the memristive neural networks are only able
to achieve quasi-synchronization due to mismatch system
matrices. From the analysis process in the above main results,
it is easy to find that the larger the couple strengths and
pinning control strength are, the smaller the error level is.
In addition, if more nodes in the neural networks are con-
trolled, it will offer more advantages in condensing the error
level. However, according to the mathematical analysis of
the properties of the memristive neural network systems and
Lyaponuv functions, it can be found that it is impossible
the synchronize the drive-response systems with such kind
of pinning strategies since the synaptic connection matrices
A(xi(t)) and B(xi(t)) are not coupled. Nevertheless, if all the
nodes can be controlled, then applying the control strategy
shown in (28), the memristive neural systems (2) and (8) can
realize exponential synchronization.
Corollary 3: Suppose that H (1) − H (4) hold. With the

control strategy design as following,

Ui(t) = −ui(t)ei(t)− sgn(ei(t))ηi(t), (28)

where η̇i(t) = |ei(t)|, i = 1, 2, . . . ,N , the drive memristive
dynamic network (2) is said to be globally exponentially
synchronized with the response dynamic network (6) if there
exist a positive constant β and the next conditions are satis-
fied:

c1αG− c1U (t)+ c1GTG+ c2ḠT Ḡ+ (c1β2 + c2α2)In

+
eσ τ
pmin

Q+ λ̄In ≤ 0, (29)

where λ̄ = λmax
{
− D̂iP−1 + 3P+ (µ(A)+ µ(B))L2P−1

}
.

Proof: Construct Lyapunov function

V (t) =
1
2

N∑
i=1

eTi (t)Pei(t)

+
1
2

N∑
i=1

(ηi − ηi(t))T (ηi − ηi(t)),

where ηi = ‖
(
ρ(A)+ ρ(B)

)
Mi + D̄iTi‖2.

Differentiating V1(t) and V2(t) along the solution of the
error system (III), it yieds that

V̇1(t) ≤
N∑
i=1

eTi (t)Pei(t)+
N∑
i=1

eTi (t)Pėi(t)

−

N∑
i=1

(ηi − ηi(t))T η̇i(t)

≤

N∑
i=1

eTi (t)P
[
D̂iei(t)+ sgn(eTi (t))D̄iTi

+ Âi(t)f̃ (ei(t))+ B̂i(t)f̃ (ei(t − τ (t)))

+1Âi(t)f (xi(t))+1B̂i(t)f (xi(t − τ (t)))

+ ui(t)ei(t)− sgn(ei(t))ηi(t)
]

+ c1
N∑
i=1

N∑
j=1

gijeTi (t)Pg̃(ej(t))

+ c2
N∑
i=1

N∑
j=1

ḡijeTi (t)Pg̃(ej(t − τ (t)))

−

N∑
i=1

(ηi − η(t))T |ei(t)|

≤

N∑
i=1

eTi (t)(σ In − D̂iP+ 2PTP+ µ(A)L2)ei(t)

+

N∑
i=1

eTi (t − τ (t))µ(B)L
2ei(t − τ (t))

+

N∑
i=1

|ei(t)|T
[
P
(
|1Âi(t)+1B̂i(t)|

)
Mi

+PD̄iTi − ηi
]

+

n∑
k=1

pk ẽTk (t)
[
c1αG− c1U (t)+ c1GTG+ c2ḠT Ḡ

+ (c1β2 + c2α2)In
]
ẽk (t)

+

n∑
k=1

pk ẽTk (t − τ (t))(c2Ḡ
T Ḡ+ c2β2In)ẽk (t−τ (t)).

(30)

Since ηi = ‖
(
ρ(A)+ ρ(B)

)
Mi + D̄iTi‖2, one has

V̇ (t) ≤
n∑

k=1

pk ẽTk (t)
[
c1αG̃− c1U (t)+ c1GTG

+ c2ḠT Ḡ+ λ̄In
]
ẽk (t)+

n∑
k=1

pk ẽTk (t − τ (t))

×
[
c2ḠT Ḡ+

(
c2β2 + µ(B)

l2k
pk

)
In
]
ẽk (t − τ (t))

≤ −a(t)V (t)+ b(t)V (t − τ (t)). (31)
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Using Lemma 3 the condition (29), it can be obtained

V (t) ≤ sup
−∞≤s≤t0

V (s)e−µ(t−t0), (32)

where µ = inf
t≥t0
{µ(t) : µ(t)− a(t)+ b(t)eµ(t)τ (t) = 0}.

Therefore, V̇ (t) ≤ 0, which means that V (t) ≤ V (0) for all
t ≥ 0. What’s more, it can be easily obtained that eβt

∑N
i=1 ‖

ei(t) ‖2≤ V (t), and

V (0) =
N∑
i=1

eTi (0)ei(0)

+

N∑
i=1

(ηi − ηi(0))T (ηi − ηi(0))

+

N∑
i=1

∫ 0

−τ (0)
eσ (s+τ (0))qieTi (s)ei(s)ds

≤

N∑
i=1

‖ei(0)‖2

+qmax

N∑
i=1

∫ 0

0−τ (0)
eσ (s+τ (0))eTi (s)ei(s)ds

≤

N∑
i=1

[
1+ σ−1qmax(eστ (0) − 1)

]
sup

τ (0)≤ϑ≤0
‖ei(ϑ)‖2.

(33)

Therefore,

eσ t
N∑
i=1

‖ ei(t) ‖2≤ V (t)

≤

N∑
i=1

[
1+ σ−1qmax(eστ (0) − 1)

]
sup

τ (0)≤ϑ≤0
‖ei(ϑ)‖2

and
N∑
i=1

‖ei(t)‖2 ≤
N∑
i=1

ω sup
τ (0)≤ϑ≤0

‖ei(ϑ)‖e−σ t , t ≥ 0

where ω = 1+σ−1qmax(eστ (0)−1). The proof is completed.
�

IV. NUMERICAL EXAMPLES
Example 1: In this section, an numerical example to demon-
strate the main result of theorem 1 will be given. Consider
CMNNSwith 5 nodes and the follows parameters: c1 = c2 =
1, si = 0, τ (t) = et/(1+ et )

Di(t) =
[
di1(t) 0
0 di2(t)

]
, Ai(t) =

[
ai11(t) ai12(t)
ai21(t) ai22(t)

]
Bi(t) =

[
bi11(t) bi12(t)
bi21(t) bi22(t)

]
For node i, we assume that

di1(t)) =

{
0.1, |xi1(t)| ≤ 1.5,
0.2, |xi1(t)| > 1.5,

di2(t)) =

{
0.1, |xi2(t)| ≤ 1.5,
0.2, |xi2(t)| > 1.5,

ai11(t) =

{
2, |xi1(t)| ≤ 1.5,
−1.5, |xi1(t)| > 1.5,

ai12(t) =

{
−1, |xi1(t)| ≤ 1.5,
−2, |xi1(t)| > 1.5,

ai21(t) =

{
3.1, |xi2(t)| ≤ 1.5,
−1.4, |xi2(t)| > 1.5,

ai22(t) =

{
−2.3, |xi2(t)| ≤ 1.5,
3.2, |xi2(t)| > 1.5,

bi11(t) =

{
−2.2, |xi1(t)| ≤ 1.5,
−1.5, |xi1(t)| > 1.5,

bi12(t) =

{
−1.4, |xi1(t)| ≤ 1.5,
−2.3, |xi1(t)| > 1.5,

bi21(t) =

{
−2, |xi2(t)| ≤ 1.5,
−4, |xi2(t)| > 1.5,

bi22(t) =

{
−3.3, |xi2(t)| ≤ 1.5,
2.7, |xi2(t)| > 1.5,

G = Ḡ =


−3.62 1.56 0.35 0.98 0.73
1.56 −4.28 1.12 0.92 0.68
0.35 1.12 −2.57 0.70 0.40
0.98 0.92 0.70 −4.16 1.56
0.73 0.68 0.40 1.56 −3.37


The active functions and coupling function are fk (t) = tanh(t)
and gk (t) = sin(t) + t/10, k = 1, 2. The initial functions of
the active and response memristive neural networks are

x1(t) = 5 ∗ [sin(t/4); cos(t/4)];

x2(t) = 5 ∗ [sin(t/4+ 1); cos(t/4+ 1)];

x3(t) = 5 ∗ [sin(t/4.5+ 2); cos(t/3+ 2)];

x4(t) = 5 ∗ [2 ∗ sin(t/5+ 3); cos(t/5+ 3)];

x5(t) = 5 ∗ [sin(t/3+ 4); cos(t/3+ 4)];

y1(t) = 5 ∗ [cos(t/4+ 5); cos(t/4+ 1)];

y2(t) = 5 ∗ [2 ∗ cos(t/4+ 8); sin(t/3+ 1)];

y3(t) = 5 ∗ [cos(t/4.5+ 2); cos(t/5+ 2)];

y4(t) = 5 ∗ [cos(t/5); cos(t/4+ 3)];

y5(t) = 5 ∗ [sin(t/3+ 5); sin(t/3+ 4)];

from which one can calculate the norms: µ(A) =

3.9266, µ(B) = 4.8296, Suppose that the assumptions
(H1) − (H4) are satisfied with l1 = l2 = 1, α = 0.1, β =
1, τ = 1. Choose u1 = 15, ui = 0, i = 2, . . . , 5, it is obtained
that the the drive and response CMNNs can be exponentially
synchronized by controlling a single first node. In the sim-
ulations, Figure 1 presents the error trajectories of the first
states of the five nodes in the CMNNs with different initial
values. Figure 2 presents the error trajectories of the second
states of the five nodes in the CMNNs. It can be seen that
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FIGURE 1. Time response of the error variables’ modulus.

FIGURE 2. Time response of the error variables’ modulus.

FIGURE 3. Time response of the error variables’ modulus.

the trajectories is highly dependent on its initial values and it
cannot realize synchronization spontaneously. After applying
control to the first node in the response neural networks,
the two memristive networks reach synchronization,which is
shown in Figure 3 and Figure 4.
Example 2: In this example all the nodes will be con-

trolled and the control strengths are also chosen as ui =
15, i = 1, . . . , 5. With the same parameters, initial condi-
tions and memristive mechanism as Example 1 and choosing

FIGURE 4. Time response of the error variables’ modulus.

FIGURE 5. Time response of the error variables’ modulus.

FIGURE 6. Time response of the error variables’ modulus.

p1 = p2 = 0.2, eventually the error system converges to
zero, which means the drive CMNNs and response CMNNs
finally realize synchronization, and the figures are shown
in Figure 5 and Figure 6.

V. CONCLUSION
In this paper, the model of a system of nonlinearly and
diffusively coupled memristive neural networks (CMNNs)
with time-varying delays is formulated, and its dynamics
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behaviors are then studied. First this class of CMNNs is
transferred into traditional neural networks with mismatched
parameters. Next by using the Lyapunov function and pinning
control approach and referring to some lemmas and existing
works, a sufficient condition for quasi-synchronization of
drive-response CMNNs with time delays is derived. Further-
more, the main result is expanded by taking into account the
another case of coupling function, coupling strength as well
as the number of controlled nodes. However, thinking about
the control approach in this paper, though it is more economic
and practical than other approaches, it still has to control the
objective nodes all the time. Hence, we will try to combine
pinning control strategy with other feasible approach such
as intermittent control or event trigger method, and more
control strategies will be studies to compare their validity
and practicability for this class of CMNNs. In addition, in the
existing works on CMNNs, only the segmentation model of
the meristor is considered, while there are many other models
in neuroscience. Therefore, in future we will continue to
adapt other models into the neural networks and analyze their
properties.

REFERENCES
[1] L. Chua, ‘‘Memristor-the missing circuit element,’’ IEEE Trans. Circuit

Theory, vol. TCT-18, no. 5, pp. 507–519, Sep. 1971.
[2] S. H. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, and W. Lu,

‘‘Nanoscale memristor device as synapse in neuromorphic systems,’’Nano
Lett., vol. 10, pp. 1297–1301, Mar. 2010.

[3] A. Long and Z. Z, ‘‘Dynamic behaviors of memristor-based recur-
rent neural networks with time-varying delays,’’ Neural Netw., vol. 36,
pp. 1–10, Dec. 2012.

[4] P. Jiang, Z. Zeng, and J. Chen, ‘‘Almost periodic solutions for a memristor-
based neural networks with leakage, time-varying and distributed delays,’’
Neural Netw., vol. 68, pp. 34–45, Aug. 2015.

[5] M. Itoh and L. O. Chua, ‘‘Memristor cellular automata and memristor
discrete-time cellular neural networks,’’ Int. J. Birfucation Chaos, vol. 19,
no. 11, pp. 3605–3656, 2009.

[6] Y. V. Pershi andM. D. Ventra, ‘‘Experimental demonstration of associative
memory with memristive neural networks,’’ Neural netw., vol. 23, no. 7,
pp. 881–886, 2010.

[7] A. Wu, Z. Zeng, X. Zhu, and J. Zhang, ‘‘Exponential synchroniza-
tion of memristor-based recurrent neural networks with time delays,’’
Neurocomputing, vol. 74, no. 17, pp. 3043–3050, 2011.

[8] H. Bao, J. H. Park, and J. Cao, ‘‘Matrix measure strategies for expo-
nential synchronization and anti-synchronization of memristor-based neu-
ral networks with time-varying delays,’’ Appl. Math. Comput., vol. 270,
pp. 543–556, Nov. 2015.

[9] S. Yang, C. Li, and T. Huang, ‘‘Exponential stabilization and syn-
chronization for fuzzy model of memristive neural networks by peri-
odically intermittent control,’’ Neural Netw., vol. 75, pp. 162–172,
Mar. 2016.

[10] X. Yang, J. Cao, and J. Liang, ‘‘Exponential synchronization of memristive
neural networks with delays: Interval matrix method,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 8, pp. 1878–1888, Aug. 2017.

[11] L. Zhang, Y. Yang, F. Yang, and X. Sui, ‘‘Lag synchronization for
fractional-order memristive neural networks with time delay via switch-
ing jumps mismatch,’’ J. Franklin Inst., vol. 355, no. 3, pp. 1217–1240,
2018.

[12] Y. Li, B. Luo, D. Liu, and Z. Yang, ‘‘Robust synchronization of memristive
neural networks with strong mismatch characteristics via pinning control,’’
Neurocomputing, vol. 289, pp. 144–187, May 2018.

[13] Z. Guo, S. Yang, and J. Wang, ‘‘Global exponential synchronization
of multiple memristive neural networks with time delay via nonlin-
ear coupling,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1300–1311, Jun. 2015.

[14] S. Yang, Z. Guo, and J. Wang, ‘‘Robust synchronization of multiple mem-
ristive neural networks with uncertain parameters via nonlinear coupling,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 7, pp. 1077–1086,
Jul. 2015.

[15] W. Guan, S. Yi, and Y. Quan, ‘‘Exponential synchronization of coupled
memristive neural networks via pinning control,’’ Chin. Phys. B, vol. 25,
no. 5, p. 050504, 2013.

[16] G. Wang and Y. Shen, ‘‘Exponential synchronization of coupled memris-
tive neural networks with time delays,’’ Neural Comput. Appl., vol. 24,
no. 6, pp. 1421–1430, 2014.

[17] X. Liu and T. Chen, ‘‘Synchronization of complex networks via aperiodi-
cally intermittent pinning control,’’ IEEE Trans. Autom. Control, vol. 60,
no. 12, pp. 3316–3321, Dec. 2015.

[18] W. Yu, G. Chen, J. Lü, and J. Kurths, ‘‘Synchronization via pinning
control on general complex networks,’’ SIAM J. Optim., vol. 51, no. 2,
pp. 1395–1416, 2013.

[19] A. Chandrasekar and R. Rakkiyappan, ‘‘Impulsive controller design
for exponential synchronization of delayed stochastic memristor-
based recurrent neural networks,’’ Neurocomputing, vol. 173, no. 3,
pp. 1348–1355, Jan. 2016.

[20] T. Huang, C. Li, W. Yu, and G. Chen, ‘‘Synchronization of delayed
chaotic systems with parameter mismatches by using intermittent
linear state feedback,’’ Nonlinearity, vol. 22, no. 3, pp. 569–584,
2009.

[21] X. Liu and T. Chen, ‘‘Synchronization of linearly coupled networks
with delays via aperiodically intermittent pinning control,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2396–2407,
Oct. 2015.

[22] S. El-Ferik, H. A. Hashim, and F. L. Lewis, ‘‘Neuro-adaptive distributed
control with prescribed performance for the synchronization of unknown
nonlinear networked systems,’’ IEEE Trans. Syst., Man, Cybern. Syst., to
be published, doi: 10.1109/TSMC.2017.2702705.

[23] L. Jin, S. Li, X. Luo, Y. Li, and B. Qin, ‘‘Neural dynamics for cooperative
control of redundant robot manipulators,’’ IEEE Trans. Ind. Inform., to be
published, doi: 10.1109/TII.2018.2789438.

[24] L. Jin, S. Li, B. Hu, M. Liu, and J. Yu, ‘‘Noise-suppressing neu-
ral algorithm for solving time-varying system of linear equations: A
control-based approach,’’ IEEE Trans. Ind. Inform., to be published,
doi: 10.1109/TII.2018.2798642.

[25] L. Pan and J. Cao, ‘‘Stochastic quasi-synchronization for delayed dynam-
ical networks via intermittent control,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 17, no. 3, pp. 1332–1343, 2012.

[26] X. Y. Liu, T. P. Chen, J. D. Cao, and W. L. Lu, ‘‘Dissipativity and quasi-
synchronization for neural networks with discontinuous activations and
parameter mismatches,’’ Neural Netw., vol. 24, no. 10, pp. 1013–1021,
Dec. 2011.

[27] W. He, F. Qian, Q.-L. Han, and J. Cao, ‘‘Lag quasi-synchronization
of coupled delayed systems with parameter mismatch,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 6, pp. 1345–1357,
Jun. 2011.

[28] W. He, F. Qian, J. Lam, G. Chen, Q. L. Han, and J. Kurths, ‘‘Quasi-
synchronization of heterogeneous dynamic networks via distributed impul-
sive control: Error estimation, optimization and design,’’ Automatica,
vol. 62, pp. 249–262, Dec. 2015.

[29] X. Liu and T. Chen, ‘‘Synchronization analysis for nonlinearly-
coupled complex networks with an asymmetrical coupling matrix,’’
Phys. A, Statist. Mech. Appl., vol. 387, nos. 16–17, pp. 4429–4439,
Jul. 2008.

[30] L. Wen, Y. Yu, and W. Wang, ‘‘Generalized Halanay inequalities for
dissipativity of Volterra functional differential equations,’’ J. Math. Anal.
Appl., vol. 347, pp. 169–178, Nov. 2008.

[31] A. F. Filippov, ‘‘Differential equations with discontinuous right-
hand side,’’ Matematicheskii Sbornik, vol. 93, no. 1, pp. 99–128,
1960.

VOLUME 6, 2018 26281

http://dx.doi.org/10.1109/TSMC.2017.2702705
http://dx.doi.org/10.1109/TII.2018.2789438
http://dx.doi.org/10.1109/TII.2018.2798642


J. Feng et al.: Quasi-Synchronization of Coupled Nonlinear Memristive Neural Networks

JIANWEN FENG was born in Huanggang, Hubei,
China, in 1964. He received the B.S. degree
from Hubei Normal University, Huangshi, China,
in 1986, and the M.S. and Ph.D. degrees from
Wuhan University, Wuhan, China, in 1995, and
2001, respectively, all in mathematics/applied
mathematics. From 1986 to 1998, he was a Faculty
Member with Yunyang Normal College, Shiyan,
China. From 2009 to 2010, he was a Visiting
Research Fellow and a Visiting Professor with the

Department of Applied Mathematics, The Hong Kong Polytechnic Univer-
sity, Hong Kong. Since 2001, he has been with the College of Mathematics
and Statistics, Shenzhen University, Shenzhen, China, where he is currently
a Professor of applied mathematics. He has authored or co-authored over
50 refereed international journal papers. His research interests include non-
linear systems, control theory and applications, complex networks, stability
theory, and applied mathematics. He has been a reviewer for several interna-
tional journals.

SIYA CHEN received the B.S. degree in mathe-
matics/applied mathematics from Shenzhen Uni-
versity, Guangdong, Shenzhen, China, in 2016,
where she is currently pursuing the M.S. degree in
applied mathematics. Her main research interests
include synchronization of complex networks and
control theory.

JINGYI WANG was born in Ruzhou, Henan,
China, in 1987. He received the B.S. degree in
information management and information system
from Northwest Normal University in 2009 and
the M.S. degree in applied mathematics and
the Ph.D. degree in information and commu-
nication engineering from Shenzhen University,
Guangdong, Shenzhen, China, in 2012 and 2015,
respectively. From 2015 to 2018, he was a Post-
Doctoral Researcher with Shenzhen University,

where he is currently an Assistant Professor with the College ofMathematics
and Statistics. His research interests include multi-agent systems and com-
plex dynamical networks.

YI ZHAO was born inWulumuqi, Xinjiang, China,
in 1980. He received the B.S. degree in mathe-
matics and applied mathematics from Fudan Uni-
versity, Shanghai, China, in 2003, and the Ph.D.
degree in mathematics from the City University
of Hong Kong, Hong Kong, in 2007. He is cur-
rently an Associate Professor with the College of
Mathematics and Statistics, Shenzhen University,
Guangdong, Shenzhen, China. His main research
interests include complex networks, control theory
and applications, and asymptotic theory.

26282 VOLUME 6, 2018


	INTRODUCTION
	MODEL DESCRIPTION AND PRELIMINARIES
	MAIN RESULT
	NUMERICAL EXAMPLES
	CONCLUSION
	REFERENCES
	Biographies
	JIANWEN FENG
	SIYA CHEN
	JINGYI WANG
	YI ZHAO


