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ABSTRACT Scientific organizations and researchers are eager to apply recent technological advance-
ments, such as sensors and actuators, in different application areas, including environmental monitoring,
creation of intelligent buildings, and precision agriculture. Technology-assisted irrigation for agriculture is
a major research innovation which eases the work of farmers and prevents water wastage. Wireless sensor
networks (WSNs) are used as sensor nodes that directly interact with the physical environment and provide
real-time data that are useful in identifying regions in need, particularly in agricultural fields. This paper
presents an efficient methodology that employs WSN as a data collection tool and a decision support
system (DSS). The proposed DSS can assist farmers in their manual irrigation procedures or automate
irrigation activities. Water-deficient sites in both scenarios are identified by using soil moisture and envi-
ronmental data sensors. However, the proposed system’s accuracy is directly proportional to the accuracy
of dynamic data generated by the deployed WSN. A simplified outlier-detection algorithm is thus presented
and integrated with the proposed DSS to fine-tune the collected data prior to processing. The complexity of
the algorithm is O(1) for dynamic datasets generated by sensor nodes and O(n) for static datasets. Different
issues in technology-assisted irrigation management and their solutions are also addressed.

INDEX TERMS Crop irrigation, decision support system, outliers detection and correction, wireless sensor
networks.

I. INTRODUCTION
Water is an important resource and must be used efficiently.
The agriculture sector is the main water consumer; it uses
approximately 70% of all available water resources world-
wide [1]. This sector‘s consumption will be controlled if
modern technology is adopted with traditional irrigation
procedures, particularly flooding. However, in this sector,
modern technologies are accepted only if they exhibit a suffi-
cient potential to increase crop yield while preserving as
many resources as possible [2]. At present, different activ-
ities, particularly irrigation, in agriculture are performed
with traditional procedures that are time consuming, labor

intensive, and wasteful [3]. The traditional agricultural
paradigm was geared toward modern technology utilization
in the last decade, and its acceptance ratio at the commer-
cial level increased. Technology adaptation has led to the
automation of different agriculture-related activities, and
this automation is known as precision farming or precision
agriculture in literature [4]. The main motivation is that
crop quality and production rates will improve if the right
resources are applied at the right time under suitable envi-
ronmental conditions. Such mechanisms improve crop yield
and conserve considerable resources, such as water, pesticide
spray, and potassium. Different mechanisms are utilized to
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collect environmental parameters and soil features, such as
moisture, salinity, pH, temperature, air humidity, and wind
direction [5], [6].

Scientific and research organizations are eager to apply
the potential of micro-electro-mechanical system (MEMS)
technology and the overwhelming characteristics of wire-
less sensor networks (WSNs) in different application areas,
including the military, intelligent buildings and bridges,
medical field, industries, and precision agriculture [7]–[9].
In precision agriculture,WSNs are deployed in fields to sense
and report various parameters that are vital to plant growth.
Initial experiments with WSNs in the agriculture sector have
been conducted in controlled environments, such as green-
houses, in which sensors/actuators are deployed to control
the indoor environment automatically [10], [11]. WSNs have
also been utilized in different projects, such as automating
greenhouses, efficient water utilization, and identification of
crop diseases. Most of these studies used WSNs as data
collection tools, and decision support systems (DSS) were
responsible for actual decisions. After the successful deploy-
ment of WSNs in controlled environments, researchers and
scientists explored their applications in open field environ-
ments, but such an exploration was challenging. As part of
a LOFAR project, Baggio [12] deployed a small network of
wireless nodes in potato fields to detect a fungal disease
known as Phytophthora. A similar experimental study was
performed as a joint project of Switzerland and India in [13].
Mancuso and Bustaffa [14] explored the potential ofWSNs to
control various tomato diseases and described how this tech-
nology helps in controlling such diseases. Burrell et al. [15]
deployed sensor nodes in a vineyard to assist managers in
handling different scenarios, frost risk, and specific loca-
tion by providing valuable information continuously. The
FLOW-AID project used WSN to identify water deficit
situations, scenarios where plants are in desperate need of
water [16]. In 2011, Commonwealth Scientific and Indus-
trial Research Organization Information and Communication
Technology utilized WSNs to help recover the ecological
integrity of Queensland‘s Spring Brook National Park and
regenerate the rain forest from agricultural grassland [17].
Other experimental studies have been conducted recently, but
their description is beyond the scope of this work.

The literature on WSNs in the agriculture sector is robust,
but most of the studies neglected an important issue associ-
ated with data generated by sensor nodes, namely, outliers.
Outliers are noisy data generated by sensor nodes when a
sensor is malfunctioning or generated because of interfer-
ence or colliding packets. These data must be detected and
corrected prior to examination by DSS. Existing noise detec-
tion algorithms are highly complex, and their implementation
in real-time DSS, a system that operates 24 hours a day and
7 days a week, is difficult. Therefore, a simple mechanism
that does not degrade the overall performance of real-time
DSS is needed to detect outliers. Most existing studies are
designed for sprinkler systems and are inapplicable to real
agriculture environments where flooding mechanisms are

generally used to irrigate crops; such a practice is particularly
common in Asia.

In this work, a WSN-based outlier detection and irriga-
tion management system is developed to assist farmers in
handling crop irrigation schedules. The proposed system
collects environmental and soil-related data through sensor
nodes that are examined by the outlier detection module.
The proposed noise detection algorithm is implemented
to improve the system‘s accuracy. Afterward, DSS further
examines it to identify water deficient sites in agricultural
fields. After identification, the alarming unit is activated, and
text messages are sent over a local area network (LAN) to
inform farmers.

The remainder of the paper is organized as follows.
In Section II, a brief overview of WSNs, particularly in the
agriculture sector, is presented, followed by the proposed
system architecture in Section III. Section IV describes the
proposed outlier detection algorithm and its working mech-
anism. The different issues identified and solved during this
study are presented in Section V. In Section VI, the achieve-
ments of the proposed approach are described, and a compar-
ison of the proposed algorithm with other algorithms is
performed based on real-time and benchmark datasets. The
last section provides the concluding remarks.

II. WSN IN AGRICULTURE SECTOR
The distinguishing characteristics of WSNs make this tech-
nology an ideal solution to various real-world problems.
These problems arise in different domains, such as the
military, medicine, telemetric, intelligent building, hazard
environments, and agriculture [18]. In the agriculture sector,
WSNs are used to assist farmers in different activities, such
as irrigation (whether sprinkled or flooding), detection and
prevention of crop diseases in early stages or preventing
favorable occurrence conditions, water-deficient location
identification, and duration of field monitoring and pesticide
spraying [19]. Various experimental studies on WSNs in the
agriculture sector have addressed particular problems. The
studies that are relevant to our work are presented in this part.

WSNs have been deployed in greenhouses to control the
dew condensation problem that arises due to temperature,
air humidity, pressure, and other environmental factors [20].
Park et al used different sensor nodes to collect data and
adjust greenhouse environments accordingly. To compute for
dew condensation, they utilized a well-known Bahrenburg
formula. In a joint project to determine the ratio of arsenic
in underground water, a WSN was deployed in [21] to collect
various soil parameters of a rice field, such as arsenic, soil
moisture, temperature, calcium, carbonate, chloride, nitrate,
and pH. The collected data were thoroughly examined in
sophisticated laboratories to determine the required ratio.
Similarly, sensor nodes were deployed in Malawi to collect
pH, reduction/oxidation (redox), and turbidity values to deter-
mine the quality of water [22].

In Spain, WSN was deployed to monitor soil contents,
such as moisture, salinity, pH, and temperature [23].
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This system was successfully implemented in a real agri-
culture environment, but the decisions were not automated.
To describe how few sensor nodes covered a particular area,
the authors wrote an expression that describes the relationship
between shower nozzle capacity and sensor node radius [24].
Konstantinos et al. presented a WSN-based architecture to
control environmental conditions in a commercial green-
house. The collected data were thoroughly examined to find
their correlation with crop conditions [25]. Proper seedling
of watermelon relies on environmental parameters, such as
temperature, air humidity, and light values. Sensor nodes
were deployed in greenhouses to collect and examine desired
information and assist farmers in proper seedling of water-
melon. A process control strategy management system was
also designed in previous studies to determine proper and
automatic seedling of watermelon; its various components
were WSN, DSS, RFID-based method, and queuing theory-
based algorithm [26], [27].

Phytophthora is a potato fungal disease that occurs due to
certain environmental conditions, and if these conditions are
prevented/avoided, then the possibility of the disease‘s exis-
tence will become negligible. Baggio [12] utilized a WSN
to collect desired data and attempted to avoid conditions
that are favorable for the disease. Similarly, WSNs were
deployed in potato fields by Shinghal et al. [3] to improve
productivity. Favorable conditions for tomato diseases were
avoided by using WSNs inside greenhouses [14]. In vine-
yards, sensor nodes were deployed in different locations
to collect valuable data that were used for predicting
various diseases, pest control, and facilitating the handling
of different activities [15]. Kotamäki et al. [28] deployed a
WSN near a river basin to determine the quality of water
and described its effects on soil content and crop yield.
The Common Sense Net Project was designed for marginal
farming in India, in which different sensor nodes were used
to identify areas whose water, rain, reservation capacities
were high. Additionally, the project can identify various crop
diseases [13]. The Flow AID Project was designed to utilize
the WSN‘s potentials in determining water-deficient sites
in agriculture fields [16]. Dursun and Ozden [29] presented
an automatic drip irrigation management system for cherry
trees. Pardossi et al. [30] described a mechanism to integrate
rote zone sensors with WSN and used it in the identifi-
cation of water deficit situations. Various investigations on
automatic control of greenhouses were reported in [4], [31],
and [32]. Different site-specific automatic irrigation manage-
ment systems were presented in [33]–[36].

III. PROPOSED SYSTEM ARCHITECTURE
AND DEPLOYMENT
A. ARCHITECTURE
Fig. 1 depicts the architecture of the proposed DSS. In the
proposed architecture, an application layer is designed to
provide services to farmers through a user-friendly graph-
ical user interface (GUI). These services include interaction

with the real-time system, identification of water-deficient
locations, vulnerable situation alarms, and environmental
monitoring. The middle layer describes how various compo-
nents of the proposed system interact with one another, phys-
ically or logically, to provide the desired services precisely.
The sensor manager unit collects data from sensors and
forwards these to a microprocessor that conducts aggregation
for further processing. The gateway module receives packets
from sensor nodes, and is attached to a computer that runs
the proposed DSS. DSS collects the newly arrived packets
from the gateway module, checks their accuracy through a
noise detection module, decides the current situation, and
stores it. The physical layer directly interacts with the envi-
ronment. Sensor nodes that use various sensing capabilities
collect soil moisture, air humidity, temperature, and leaf
wetness data and send the data to the sensor manager. These
parameters are vital in the development of a precise DSS for
irrigation.

Real-time systems need to be continuously operational to
assist farmers, but at the same time, the sensor node sampling
rate must be adjusted accordingly to prolong the WSN‘s
lifetime. In our testbed, wasp-mote agriculture sensor boards
with desired functionality were programmed and deployed in
a real agriculture environment, namely, an orange orchard.
During the first phase of the experimental setup, the boards
were placed in close proximity to reduce packet losses,
thereby improving communication reliability. In the second
phase, the boards were placed to cover as much area as
possible, and each node can communicate with the gateway
either directly or through multi-hop communication. Their
transceivers use the Xbee protocol and can communicate
within a 500 m range. Node3 was deployed within the direct
communication range of the gateway (460 m), andNode1 and
Node2 were placed at a distance of 460 m from Node3. The
distance between the nodes and gateway was kept small to
maximize their throughput.

The proposed DSS performance is not affected by
increasing or decreasing scalability of sensor nodes because
these nodes act as data collection points. Dense deployment
increases data packets, but this situation is not an issue,
particularly in the agriculture sector, in which the sampling
rate of the deployed sensor nodes must be very low, namely,
two or three packets per 24 hours.

B. WASP-MOTE BOARDS DEPLOYMENT
The implementation of a precise real-time DSS in any appli-
cation depends on the selection of appropriate technology,
sensors, and parameters to be monitored. Sensor board selec-
tion is based on coverage area, battery lifetime, processing
capability, transceiver, and integration of sensors. Parameter
selection is application-specific. In our study, we considered
soil and environmental parameters. Soil moisture is vital in
the development of a precise irrigation schedule; that is,
if the sensed value is below a threshold value, then this
area needs water and must be irrigated. For this purpose,
soil moisture sensors were deployed at three different levels
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FIGURE 1. Architecture of the proposed DSS.

in the agricultural field, as shown in Figs. 2 and Fig. 3.
In addition to the soil moisture parameter, an atmospheric
moister exerts drastic effects on the watering schedules of
various crops and must be monitored regularly. These sensors
are deployed in close proximity to plant leaves, as shown
in Fig. 4. Additionally, temperature and humidity parame-
ters are significant in the design of a precise DSS because
the soil moisture threshold value is directly proportional to
the environmental temperature. Therefore, these sensors are

integrated with wasp-mote boards to collect their full poten-
tial, as shown in Fig. 5. The gateway module is connected to
a computer to receive data and process them.

IV. PROPOSED DECISION SUPPORT SYSTEM
The proposed system collects soil and environmental param-
eters through its deployed WSN in the orange orchard.
Initially, the collected data are examined by the concerned
board to minimize redundant packets via aggregation, and the
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FIGURE 2. Deployment of soil moisture sensors in orange orchard.

FIGURE 3. Deployment soil moisture sensor in real agricultural
environment.

data are transferred to the destination via a gateway. The data
sensed by four different sensors are merged into one packet
to increase the efficiency of the proposed system in terms
of energy consumption. These packets are forwarded to the
outlier detection module where their accuracy is checked and
sent to DSS for onward processing if found correct. DSS
thoroughly examines these packets by comparing different
parameters with their defined threshold values, particularly
soil moisture (250 Hz).The threshold values such as soil
moisture (250Hz), are determined through deploying the
sensors (3) in dry soil; and collecting their readings over a
period of three days. If the data are in the defined range, then
they are stored in a database; otherwise, the alarm unit is acti-
vated, and alert messages are forwarded to the LAN ormobile
phone. The GUI of the proposed system shows collected

FIGURE 4. Leaf wetness sensor deployment near plant leaves.

FIGURE 5. Air temperature and humidity sensors deployment.

data in graphical and textual formats. The operation of the
proposed system is summarized in Fig. 6.

A. PROPOSED OUTLIERS DETECTION ALGORITHM
Outliers are data packets generated by a malfunctioning
sensor or via interference and collision. WSNs are highly
susceptible to outliers due to various restrictions on their size,
processing, and transceivers. The literature on outlier/noise
detection is bulky, but most of the approaches were presented
and validated based on static datasets, and their implementa-
tion in a real-time system is difficult or impractical. These
algorithms improve dataset accuracy but equally degrade
the overall performance of a real-time system because for
every packet, the mechanism repeatedly searches the entire
dataset [37], [38].Moreover, the accuracy of these algorithms
is directly proportional to dataset size and computation time.
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FIGURE 6. Working of the proposed system.

Their accuracy for large datasets is extremely high, but the
computation time is also high and results in low perfor-
mance of DSS, particularly in a real-time system. There-
fore, a simplified outlier detection algorithm was developed
to overcome these issues and improve the performance of
real-time DSS and dataset accuracy. The performance of
a real-time system based on the proposed outlier detection
algorithm is unaffected by dataset size because the algorithm
does not scan the overall dataset and considers the most
recent packets only. Its computation time and performance
are exceptionally good in real-time datasets, and it is equally
applicable to static datasets.

Algorithm 1 starts by matching the currently received
packet with the previously stored one, which is the last accu-
rate packet, that is, the packet received at time Ti and Ti−1.
If their difference is less than the defined threshold value
(10 Hz for the soil moisture sensor), then it is forwarded to the
DSS for further analysis. However, if their difference crosses
the defined limit, then it is either an outlier or an abrupt
change scenario that occurs because of direct connection of
water with soil moisture sensors. In this case, data are stored

temporarily, and further processing is delayed until the next
packet from that particular node arrives. Then, the recently
received packet is compared with two packets, namely,
the one that is temporarily stored and the last packet stored
in the database. For example, data collected at time T3 are
matched with data received at time T2 and stored temporarily,
and data gathered at time T1 is successfully stored. If the
difference between packets received at T3 and T1 is less than
the defined threshold value, then the data packet received at
T2 is an outlier and replaced with the average value of data
packets T1 and T3. However, if the difference between data
packets T2 and T3 is less than the threshold value, then it is
an abrupt change scenario, and both values are stored in the
database.

FIGURE 7. A scenario of both outliers and abrupt change.

We consider Fig. 7 in which the soil moisture value
received at time 13:00 is 0 Hz, representing the most recent
packet. The packet collected at time 12:30, 850 Hz, is the
last accurate value stored in the database. These two values
are matched, and their difference is much larger than the
threshold value, which is 10 Hz in our case. Therefore, this
packet is temporarily stored, and the decision is delayed until
the next packet from the same node,Node1, arrives. When the
next packet at time 13:30 is received, it is matched with the
packet collected at time 12:30 or with most recently stored
packet. The difference between these packets is below the
threshold value, 1 Hz, indicating that the temporarily stored
packet is an outlier and must be replaced with the average
value of data packets that arrived at times 12:30 and 13:30
(840 Hz). Then, both values are stored in the database, and
the data are as shown in Fig. 8. In this scenario, a real-
time DSS that does not use the outlier detection mecha-
nism activates the alarm unit for the water deficit condi-
tion and sends a text message over LAN because the soil
moisture value is less than the threshold value. However,

FIGURE 8. Outliers free scenario.
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Algorithm 1 Proposed Outliers Detection and Correction Algorithm
Require: Received Data Packets
Ensure: Return Accurate Data
1: Pre-Pkt← Latest Stored Packet in DB
2: Cur-Pkt← Recently Collected data from WSN
3: Temp− Locationi← 0
4: Outliers-ID← 0
5: DB← Existing Data
6: if Distance(Cur-Pkt,Pre-Pkt) ≥ Threshold value and Outliers-ID = 0 then
7: Temp− Locationi← Cur-Pkt
8: Outliers-ID← 1
9: else if Distance (Cur-Pkt, Pre-Pkt) ≤ Threshold value and Outliers-ID = 1 then

10: If Distance (Cur-Pkt, Temp-location) ≤ Threshold value then
11: Value at Temp− locationi is an Outlier
12: Temp− Locationi← Avg(Cur-Pkt, Pre-Pkt)
13: DB← Temp− Locationi
14: DB← Cur-Pkt
15: Outliers-ID← 0
16: else
17: Temp− Locationi← Cur-Pkt
18: Outliers-ID← 1
19: else if Distance (Cur-Pkt, Pre-Pkt) ≤ Threshold value and Outliers-ID = 0 then
20: DB← Cur-Pkt
21: else
22: Temp− Locationi← Cur-Pkt
23: Outliers-ID← 1
24: end if

smart DSS, which possesses outlier detection facility, easily
handles this situation. Another debatable scenario for real-
time DSS in the agricultural environment is the separation of
the abrupt change that occurs because of the direct connection
of water with a soil moisture sensor, as shown in Fig. 8 at
time 15:30. The proposed algorithm handles this situation
through a similar mechanism described for the detection of
outliers. However, in this case, the temporarily stored value
and the currently received value are identical or approximate
each other. Both values are stored in the database without
modification.

V. ISSUES RESOLVED DURING PROPOSED
EXPERIMENTAL SETUP
During the deployment phase of the proposed testbed, various
issues were identified and resolved.

A. PACKETS COLLISION AND NODES OVERHEARING
A sensor node uses a broadcasting mechanism to commu-
nicate with the gateway and other nodes in the network,
thereby resulting in the collision of packets or reduc-
tion of throughput. Collision usually occurs due to the
concurrent communication of sensor nodes deployed in
close proximity or within the communication range of one
another. In the proposed testbed, a simplified mechanism,
namely, delay timers in wasp-mote boards, is used to avoid

concurrent communication of sensor nodes and collision.
Every experimental setup uses a sampling rate or a sensor
node rate of transmission, which is 30 minutes in our
case. The criteria for packet transmission of every node
are adjusted according to the neighbor node communication
schedules. For example, if node1 begins communication with
other nodes or the gateway at time 10:00:00, then its neighbor
nodes must wait for the maximum propagation delay; that
is, the time required for successful communication between
the most widely separated nodes (approximately 5 seconds in
the proposed experimental setup). Therefore, node2, a neigh-
boring node of node1, must delay its communication for
3 seconds and start around 10:00:04 if its neighbors are not
interested in transmission. However, this mechanism works
only for a testbed in which a limited number of sensor nodes
are used. For dense WSNs, other mechanisms, such as chan-
nelization, are utilized.

Overhearing of a sensor node in WSNs exerts drastic
effects on node lifetime and needs to be handled efficiently,
particularly in highly dense networks. To avoid this problem,
sensor nodes are placed in such a manner that each node
has at most one path for communication with the gateway
and does not hear other neighboring nodes where feasible.
In our case, the problem was successfully solved through
manual adjustment of the distance between sensor nodes.
However, this method is useful only in the engineered setup
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ofWSN only and is not feasible for random deployment. This
technique introduces the path loss problem in large networks,
but it is efficient for small networks.

B. CROPS CANOPY
Crop canopy is another important problem associated with
the deployment of WSNs in agricultural fields, particularly
orchards. Crop canopy affects the communication range of
sensor nodes in a network and environmental parameters.
During the initial phase of our project, the problem was not
considered, and nodes were deployed randomly at different
locations but within the direct communication range of the
gateway module. However, only node3 packets were received
successfully, and the remaining node packets were lost due to
crop canopy. Further analysis of the experimental setup and
field was performed, and different alternatives were applied
to resolve this issue. This thorough investigation led us to the
problem of crop canopy and its effects on the communication
range of sensor nodes because node1 was in the direct line
of sight with the sink node, whereas the other nodes were
not. Obstacles or orange trees were also present. Therefore,
nodes were deployed in the orange orchard in such a manner
that each node was in the direct line of sight with its intended
receiver node. Node deployment in direct line of sight does
not necessarily mean that nodes are unable to communi-
cate when obstacles exist between transmitting and receiving
nodes. Nodes placed in the crop canopy can communicate, but
their coverage area and transmission range are much smaller
than those in the direct line of sight communication. Another
issue caused by crop canopy was the effects on sensor
node readings, particularly sensors that collect environmental
data (e.g., temperature and humidity). In summer, nodes
deployed in a shady region generate temperature readings
of 40 ◦C – 44 ◦C, whereas sensors exposed to sunlight sense
temperatures in a range of 44 ◦C – 49 ◦C. To overcome this
problem, 50% of the sensor nodes were deployed in direct
sunlight, and the remaining nodes were placed in shady areas.

C. EFFECTS OF HEAVY RAIN
Heavy rain is vital to plant growth rate, particularly in
summer when watering requirements are high. In traditional
approaches, flooding/watering schedules are postponed due
to heavy rain and particularly based on farmers‘ experi-
ence. Therefore, the proposed DSS must handle this scenario
in a manner similar to traditional approaches but without
requiring an experienced farmer to monitor the system and
judge its decisions. In the proposed DSS, the decision
whether to irrigate or not is primarily based on soil moisture
content and other supplementary parameters. In the case of
heavy rain, soil moisture sensor readings exceed the threshold
value, clearly indicating that the irrigation schedule must be
deferred. Similarly, conducting specific case studies for every
season is not needed because if soil moisture content values
are above the threshold value, then irrigation is unnecessary.
Additionally, the proposed system possesses the flexibility to

adjust threshold values whenever required and can be used in
different agricultural scenarios.

D. WSNS LIFETIME
An important aspect of the applicability of WSNs in different
application areas is their lifetime, which mostly relies on
the onboard batteries of sensor nodes. Efficient utilization
of available power resources increases WSN lifetime. In the
proposed testbed, sensor nodes actively probe the environ-
ment for the shortest duration of 1 minute and then switch
to sleep mode for approximately 29 minutes. Every board
conducts aggregation of the data collected by its sensors
and merges the data into a single packet. The aggregation
approach combines the data gathered through temperature,
air humidity, soil moisture and leaf wetness sensors into a
single data packet. The aggregation mechanism reduces the
number of transmitted packets from 4 to 1, and individual
packets for every sensor are attached to a wasp-mote board,
thereby improving the lifetime of WSNs. Additionally, in the
agriculture sector, particularly in the watering schedules of
open field crops, collection of data once or even twice a
day is appropriate or needed. Therefore, the sampling rate of
deployed nodes must be decreased to 12 hours or more to
further increase WSN lifetime.

VI. RESULTS AND DISCUSSION
In the case of real-time data, the worst case complexity of
the proposed outlier detection algorithm is O(1), whereas
pattern anomaly value (PAV), MPAV, and rare pattern drift
detector (RPDD) algorithms [37], [38] have complexities of
O(n2), O(n) and O(n2 + n) respectively. Hence, the proposed
algorithm is the best solution among these algorithms for real-
time DSS because it does not affect the functionality of DSS.
Similarly, the proposed algorithm‘s worst case complexity for
a static dataset is O(n), where n represents size of the dataset.

FIGURE 9. Computational time comparison on real time data set.

These algorithms were tested on real-time data obtained
via our testbed deployed in an orange orchard. The perfor-
mance of the algorithms in terms of computational time is
presented in Fig. 9, which shows that the proposed algorithm
outperformed contemporary schemes. Moreover, the perfor-
mance of these algorithms was examined thoroughly by
continuously increasing the dataset size. Unlike the proposed
algorithm, the other schemes were inconsistent with the
dynamically changing dataset. In the case of the real-time
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TABLE 1. Comparative computation time of the proposed algorithm on benchmark data sets.

TABLE 2. Comparative accuracy of the proposed algorithm on benchmark data sets.

dataset, the computational time of the other algorithms was
directly proportional to the size of the dataset, whereas the
proposed algorithm was not affected. Moreover, the proposed
algorithm‘s memory requirements were fewer than those of
the other algorithms. The implementation of these complex
algorithms in real-time DSS required highly sophisticated
and demanding technology, which is expensive, whereas the
proposed algorithm worked well with existing technology.
The algorithms were also tested on a static dataset, and their
computation time is depicted in Fig. 10. Our algorithm‘s
performance was better than that of the other algorithms,
particularly in terms of execution time.

FIGURE 10. Computational time comparison on static data set.

The complexity of an algorithm is vital to its develop-
ment, implementation, and execution in real-time systems.
Complexity is directly proportional to algorithm accuracy
and computation time. In real-time DSS specifically for the
agriculture sector, an algorithm must be as accurate and
simple as possible so the overall performance of DSS is unaf-
fected. If the algorithm is accurate and precise but degrades
the overall performance of the system, then it is useless.

An accuracy comparison is presented in Fig. 11. Although
the proposed algorithm‘s accuracy is lower than that of the
other algorithms, its effect on the overall performance of
real-time DSS was smaller, and the algorithm works on a
personal computer. Improving the accuracy and precision of
an algorithm results in increased complexity, degradation of
the overall performance of the real-time system, and inability
to run efficiently on personal computers.

FIGURE 11. DSS’s accuracy.

In addition to the real-time dataset, the algorithms were
examined thoroughly by using benchmark datasets, as shown
in Table 1. The execution time of the proposed algorithm was
less than that of the other algorithms specifically for dynamic
datasets. The proposed algorithm is an ideal candidate for
an efficient real-time DSS. The precision and accuracy of
these algorithms on the benchmark datasets are presented
in Table 2. Accuracy is described in terms of accurate deci-
sions taken by DSSwhen these algorithms were implemented
as a separate module to fine tune data before processing.
The proposed algorithm is not precise for datasets that
possess multi-valued noise, such as the FacesUCR dataset.
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However, when datasets have single-valued outliers only,
the proposed algorithm is ideal.

A real-time decision support system was designed in this
study to facilitate farmers in various agriculture-related activ-
ities. Farmers will adopt a technology-assisted system if it
has a simplified interaction paradigm, possesses a simple
GUI, and provides the desired services. The proposed DSS
possesses a user-friendly interface that is can be easily under-
stood by inexperienced users and provides different services
simultaneously, as shown in Fig. 12.

FIGURE 12. A sample screen shot of the proposed system showing data
of soil moisture sensor.

VII. CONCLUSION AND FUTURE WORK
The demand for efficient utilization of available water
resources, specifically in the agriculture sector, is increasing
daily due to water scarcity and global climate change. There-
fore, technology-assisted irrigation mechanisms, sensors,
and actuators must be realized in real agriculture envi-
ronments. These approaches provide water upon demand
and control water wastage. They are helpful in controlling
water resources but exert drastic effects on plant growth
rate and yield. In this work, we developed a technology-
assisted outlier detection and decision support system (DSS)
to facilitate irrigation, particularly flooding. The proposed
system is highly precise because it uses an embedded outlier
detection module that thoroughly examines the correctness of
the collected data and forwards the data to DSS for further
processing. DSS analyzes different parameters to identify
water-deficient sites and reports them to farmers or generates
an alarm. This system possesses a user-friendly interaction
environment that makes it easy to use.

In the future, we will further improve the accuracy of the
proposed DSS by examining additional parameters and will
enhance it to assist farmers in other agriculture-related activ-
ities, such as pesticide and fertilizer use and determination of
soil properties. Furthermore, due to nodes un-availability and
their security issues, the proposed scheme was evaluated only
on three sensor nodes. As a future work, we will investigate
the proposed algorithm on a large-scale.
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