
Received February 12, 2018, accepted April 20, 2018, date of publication May 11, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2830799

OEHadoop: Accelerate Hadoop Applications by
Co-Designing Hadoop With Data Center Network
YINAN TANG , HONGXIANG GUO, TONGTONG YUAN , QI WU, XIANG LI,
CEN WANG, XIONG GAO, AND JIAN WU, (Member, IEEE)
Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Hongxiang Guo (hxguo@bupt.edu.cn)

This work was supported by the NSFC Program under Grant 61331008 and Grant 61471054.

ABSTRACT Big data applications in Hadoop usually cause heavy bandwidth demand and network
bottleneck in the current data center network (DCN). On one hand, the design of DCN does not take the traffic
demand and the traffic patterns of Hadoop applications into account. On the other hand, Hadoop suffers from
inherent performance limitations due to its solution for transmitting massive data sets based on application-
layer overlays, which ignores the architecture of DCN. To improve the performance of Hadoop applications,
in this paper we propose the OEHadoop, a modified Hadoop which is built by co-designing Hadoop with
hybrid optical and electrical data center network. For Hadoop, we redesign the pipeline-based replication
process of MapReduce jobs to optical multicast. For the DCN architecture, we build a reconfigurable optical
multicast system to adapt the DCN architecture tomulticast traffic. A software-defined networking controller
is implemented in data center to adjust the DCN architecture and exchange information with application
layer. In order to accelerate theMapReduce jobs, a new algorithm to properly schedule the multicast requests
is presented and deployed in the controller.We build a small-scale prototype of the OEHadoop to evaluate the
control overhead, and to demonstrate the feasibility of our OEHadoop. In a simulation at a scale of real DCN,
we present that our multicast requests scheduling algorithm outperforms related state-of-the-art solutions,
and the MapReduce jobs in our OEHadoop speed up to about 2 times faster on average than native Hadoop.

INDEX TERMS Optical interconnections, computer networks, multicast communication, Hadoop, data
center network.

I. INTRODUCTION
In the age of big data, large-scale data-parallel computa-
tions are widely implemented in commercial data centers [1],
[2]. Due to the massive network traffic volume caused by
these distributed computations, the traffic leads to increasing
burden on data center networks (DCN). Such bottleneck of
network limits the performance of applications, and results
in slowing down the computations.

Hadoop [3] is a popular distributed computation frame-
work to handle big data mining problems. A Hadoop imple-
mentation contains a master node and several worker nodes.
The master node, called NameNode, manages the request
jobs from users, divides each job into several tasks, and
then assigns the tasks to workers. The workers called
DataNodes are in charge of data storage and executing
the tasks scheduled by NameNode. The computing jobs
in Hadoop are running based on Hadoop MapReduce [4],
which is one of the most commonly used distribution

programming model. In the MapReduce procedure, there are
three steps involving network traffic transmission during their
execution. The three steps are: (a) Mappers fetch the input
data splits from remote DataNodes of Hadoop distribution
file system (HDFS) [3] if the data is not locally existed.
(b) Mappers shuffle the intermediate results to reducers.
(c) Reducers write the output result replicas to a central num-
ber (typical three) of DataNodes in HDFS by pipeline com-
munication model. Although the designers of native Hadoop
try to reduce the network communication during data-parallel
computations (e.g. the pipeline model in replication stage,
the locality of the data import process in mapper, the job
placement [5]), the Hadoop applications still suffer from
the large burden caused by network communication [6], [7].
Figure 1 shows the network communication during aMapRe-
duce job. The traffic caused by step (a) is small because map-
pers are usually allocated and launched at DataNodes which
are close to the input splits [3]. In the other two steps, not

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

25849

https://orcid.org/0000-0002-6029-3744
https://orcid.org/0000-0002-8224-9891


Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

FIGURE 1. Traffic pattern of each stage in a MapReduce job.

only the all-to-all network traffic generated by shuffle stage
(b) largely affects the performance of MapReduce jobs [34],
but also the fan-out traffic in replication stage (c) makes up a
large proportion of whole network traffic in a job. According
to the previous studies [8], [28], [38], the write operation in
step (c) can produce nearly 50% the total network traffic in
Hadoop clusters and significantly affects the performance of
application jobs. As a result, the solutions to improve the
network performance of Hadoop applications are urgently
needed.

Due to the potential of low latency, high throughput and
low power of optical communication, hybrid optical and elec-
trical data center architecture has been regarded as a promis-
ing solution for next generation data center architecture. Till
now, numerous hybrid electrical and optical DCN solutions
have been proposed [9]–[12] to accelerate the Hadoop appli-
cations in DCN. The main idea of these researches is to the
offload the heavy long-live network traffic of Hadoop jobs by
optical communication and transmit the fine-grained traffic
of the jobs by electrical switching. However, these methods
fail to consider the native communication patterns of Hadoop
applications. Besides the above methods which change the
DCN architecture, to improve the performance of Hadoop
applications in DCN, several proposals attempt to modify
application itself [13], but result in sub-optimal performance
because they fail to take the DCN architecture into account.

The most preferred way to improve the performance of
Hadoop jobs is to co-design the network architecture and
Hadoop applications. Although several works have made
some trials, they do not achieve promising improvement
due to some limitations. For example, Xia et al. [14] and
Samadi et al. [15] utilize optical circuit switches (OCS) to
establish optical-layer one-to-many connections and fully
offload the multicast traffic between top of racks (ToRs)
caused by the replication stage to the optical network. These
methods suffer from non-negligible reconfigurable delay and
exclusive optical links. Bao et al. [16] use hybrid electrical
and optical DC architecture to accelerate DC applications,
but its greedy optical resources assignment algorithm cannot
achieve good performance in terms of Hadoop application
completion time.

In order to accelerate the Hadoop jobs more effec-
tively, in this paper we present optical-electrical Hadoop
(OEHadoop), a modified Hadoop to accelerate Hadoop appli-
cations by co-designing Hadoop with hybrid optical and elec-
trical data center. In our OEHadoop, to reduce the bottleneck
caused by the replication stage, we change the pipeline com-
munication model to optical multicast. To relieve the pressure
in electrical packet switching (EPS) based core switches,
we offload the heavy one-to-many traffic into a specially
designed optical switching system and multicast it by passive
optical splitters. An effective multicast requests scheduling
algorithm is implemented in OEHadoop to properly assign
multicast requests to DCN and meanwhile reduce the fre-
quency of reconfiguring OCS as much as possible. More-
over, an SDN-based control plane to exchange information
between the application layer and the network control layer
is also included in the OEHadoop.

In our work, a small-scale prototype is built to verify
the feasibility and capability of the OEHadoop. Through
experiment we demonstrate the efficiency of our control
plane and the requests scheduling algorithm. With the coop-
eration of Hadoop and DCN architecture, our OEHadoop
achieves better applications completion time compared with
native Hadoop. We also build a large scale simulation of the
OEHadoop to investigate its performance. Results show that
the requests scheduling algorithm in our OEHadoop achieves
much better performance than state-of-the-art methods. In the
simulation, we also discuss the MapReduce job completion
time of a real dataset under different over-subscription ratios.
Simulation results indicate that OEHadoop achieves up to
nearly 2× better performance than native Hadoop under the
over-subscription ratio 1:10.

The remainder of this paper is organized as follows.
In Section II we introduce the related works in recent years.
Section III describes the details of OEHadoop, including the
DCN architecture of OEHadoop, the design and modification
of Hadoop, and the control plane implementation. Section IV
presents the prototype of OEHadoop and experiment results.
Section V reports and analyzes the simulation results of
OEHadoop in comparison to the performance of existing
methods. Finally, we conclude our work in Section VI.

II. RELATED WORKS
Recent years, researchers have proposed various approaches
to improve the performance of the cluster computing
applications running in DCN. According to the research
Benson et al. [6], almost 80% of the flows in MapRe-
duce jobs are smaller than 10KB and the most traffic
volume are carried in the top 10% of elephant flows.
As a result, researches [9], [10] present hybrid optical
and electrical DCN architectures to offload the long-live
heavy traffic of Hadoop applications by optical switch-
ing technology. Besides, the proposed method in [11] uti-
lizes reconfigurable all-optical interconnection architecture
to adapt the DCN topology to the traffic demand of appli-
cations. Although these architectures can offer significant

25850 VOLUME 6, 2018



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

reductions in terms of power consumption, amount of
switching elements and cabling, they ignore the native traffic
patterns of applications and result in sub-optimal applications
completion time. The programmable OCS based scalable
optical DCN architecture [12] can support diverse commu-
nication patterns (∗-cast [17]) based on topology reconfigu-
ration by a central controller. However, the interconnection
between ToR pairs in its DCN architecture only contains
OCS layer connections, so the fine-grained traffic caused by
applications (e.g. the traffic generated by the shuffle stage in
Hadoop applications) is hard to be fully satisfied. Moreover,
when the scale of DCN becomes larger, the difficulty to
control the whole DCN will rapidly increase. The above
researches attempt to change the architecture of DCN in
order to improve the performance of DCN, but none of them
successfully solves the problem of the application traffic in
DCN. Different from the solutions above, Wu et al. [13]
modify the replication stage of MapReduce jobs. Instead
of using native TCP-based pipeline replication method, the
researchers develop a congestion-controlled reliable multi-
cast socket for HDFS. Although this method uses multicast
to solve the bottleneck problem of one-to-many traffic in
some degree, the heavy multicast traffic with large volume
is still coexisting with the all-to-all shuffle network traffic,
and causes congestion in EPS based DCN.

Most relative works to our research are [14]–[16]. [15] pro-
poses an optical multicast system which uniquely integrates
passive optical splitters in a hybrid network architecture for
simpler and faster delivery of multicast traffic flows. [14]
uses the similar optical multicast system in [15] to replace the
application overlay of delivering the massive data sets in dis-
tribution computing. These methods deploy reconfigurable
OCS multicast system to offload all multicast traffic, but
suffer from exclusive optical links and non-negligible recon-
figurable delay when small multicast requests occupy a large
proportion. Besides, the flow scheduling algorithms in [14]
and [15] aim to achieve maximum throughput and minimize
the negative effect of reconfiguring OCS topology. Although
these methods exhibit good performance in terms of net-
work, the performance of Hadoop applications is sub-optimal
because they ignore the application layer information (the
details will be shown in session III). Another research named
HERO [16] integrates hybrid electrical and optical multicast
to accelerate high performance DC applications. However,
HERO uses greedy optical links assignment algorithm which
schedules network by a FIFO way, leading to a poor perfor-
mance. It is worth to mention that although the goal of these
methods is to accelerate the cluster computing applications,
instead of using a real application traffic model, they simply
demonstrate the performance of their system by transmitting
a batch of multicast flows. Because the one-to-may traffic is
only a part of whole network traffic inside an application job,
the actual performance improvement of applications in these
works is still needed to be further discussed.

To overcome the disadvantages of previous researches,
our OEHadoop is built by co-designing Hadoop with hybrid

optical and electrical data center. The details of OEHadoop
will be discussed in the next section.

III. DETAILS OF OEHadoop
In this section we will introduce OEHadoop, including the
network architecture, the modifications of Hadoop, the net-
work control plane, and the requests scheduling algorithm.

A. NETWORK ARCHITECTURE OF OEHadoop
In order to support the traffic model of MapReduce jobs,
we build a hybrid optical and electrical data center archi-
tecture for our OEHadoop, which is shown in figure 2. The
bottom of figure 2 shows a typical tree based EPS architec-
ture. On the basis of the EPS structure, we add a MEMS-
based optical switching system as shown on the top of the
figure 2. In the optical switching system, several passive
optical splitters are connected to the optical ports of an optical
space switch (OSS). Because the replication number of output
files is 3, the size of the splitters is determined as 1:3. The top-
of-rack switches (ToRs) in the EPS structure are connected to
the OSS based on point-to-point bidirectional optical links.
Based on properly setting the optical path in the OSS, the
optical switching system can support one-to-many traffic
demand by optical multicast.

FIGURE 2. Hybrid electrical and optical data center architecture of
OEHadoop.

To design and build a cloud-based DCN, application-
driven networking [18] and software-defined networking
(SDN) control framework [19] are candidate solutions.
As shown in figure 2, in OEHadoop, we use SDN technology
to realize the control plane of whole network. The ToRs,
electrical core switches and OSS in DCN are OpenFlow
protocol [35] supported and each of them is connected with
an SDN controller through an independent control channel.
The controller can schedule the whole network resources
according to the application layer network traffic requests and
the requests scheduling algorithm (detailed in Section III. D).

B. MODIFICATIONS OF HADOOP
1) REDESIGN OF COMMUNICATION IN THE REPLICATION
STAGE
In the native MapReduce applications, the communication
dataflows can be broadly characterized into three steps:
import, shuffle and replication. Because most map tasks read
their input splits locally, the communication in the import step

VOLUME 6, 2018 25851



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

is rare compared with other steps, so we ignore the traffic
generated by import step in OEHadoop. When the shuffle
stage starts, the reducer starts to fetch intermediate result from
mappers, and there is one segment in each mapper typically.
These fetch operations usually cause heavy all-to-all traffic
amongDCN.According to the recent researches [6], [7], [20],
the network traffic in the shuffle stage consists of a large
proportion of short-live small flows, and leads to complexity
in the network resources scheduling. So a good choice is to
guarantee that the free network bandwidth resources are as
large as possible when shuffle appears in DCN. However,
in the third step of MapReduce, the replication stage will also
bring heavy network traffic. The result data is partitioned into
several fix-sized data blocks (typical 128 MB or 256 MB,
the last data block of a result may be smaller) and each data
block is replicated to three DataNodes in HDFS by a pipeline
communication model. If the total output traffic volume is
large, the traffic caused by the replication step can be regarded
as heavy long-live background flows. In a large scale com-
mercial DCN, the interaction between multiple Hadoop jobs
is inevitable. So in Hadoop clusters, the replication flows and
the shuffle flows will coexist, leading to resource competition
and congestion in the network and affecting the performance
of Hadoop applications.

The most preferred method to offload the background
flows is to transmit them byOCS. However, the traffic pattern
of the replication stage is one-to-many type, which is ineffec-
tive if we deliver it based on unicast one by one [14], [15].
Fortunately, data multicast by optical splitters is demon-
strated to be lossless and effective [17], [36], [37]. Based
on the specific optical switching system shown in figure 2,
the one-to-many traffic in Hadoop applications can be effec-
tively supported by optical multicast.

Native Hadoop places date replicas at 3 DataNodes, includ-
ing a source node, a different node in the same rack, and
a different node in a different rack. In our OEHadoop,
we modify the replication stage by multicasting the replicas
to three DataNodes in different racks by optical multicast.
Such modification can not only improve the reliability (the
number of racks with replicas is increased from 2 to 3) of
storage system [21], but also it will accelerate the replication
stage in MapReduce applications [15]. The Fault-tolerant
problem of optical layer multicast can be solved by reliable
multicast NORM [22] or CCRMSocket [13]. Based on such
modification, the replication traffic is transmitted by the OCS
layer optical multicast, while the shuffle traffic is delivered
by the EPS network. The completion time of the shuffle
stage and the replications stage will be reduced by this traffic
separation. As a result, such modification will accelerate the
completion time of MapReduce jobs.

2) MESSAGE EXCHANGE SYSTEM IN OEHadoop
To realize cooperative work between the application layer
and the network layer, an additional message exchange sys-
tem is crucial to be realized. Due to the limitation of the
optical resources (e.g. number of optical transceiver and
splitters) in the optical switching system, the replication

network demands need to be properly allocated. When a
replication request appears, instead of directly starting data
transmission, the application should report the request infor-
mation to the SDN controller and obey the assignment from
the controller. So we design a message exchange system
in Hadoop to exchange control information with the SDN
controller.

In OEHadoop, when a MapReduce job starts, the
NameNode will firstly notify the total number of the reducers
in this task to the SDN controller. Then when a reducer
finishes its reduce task, it will send the message <job ID,
reducer IP, replication destination IPs, replication output
size> about its replication requests to the controller. All of
the information is readily available at the NameNode, or the
application manager, of a MapReduce job [20]. Because
multi-jobs are possible to be submitted at a same time in
a Hadoop cluster, we use the job ID to identify a unique
job. The reducer IP and the replication destination IPs are
indirect factors which indicate the location of source and
destination nodes. According to the IP address, the SDN
controller is capable of building multicast tree by allocating
control messages to ToRs and the OSS. Moreover, the repli-
cation output size and the number of the reducers are crucial
parameters in our flow scheduling algorithm. After notifying
the controller, the reducers need to wait for the allocation
result. Once a reducer receives the order, the reducer starts to
transmit the output data blocks by optical switching system.
Moreover, the reducers also need to suspend its transmission
at any moment if the new arrival scheduling result doesn’t
allow their transmission.

C. CONTROL PLANE IMPLEMENTATION
The greatest challenge to build a control plane is that the
optical multicast does not exist in current network protocol
stack. Because the passive optical splitters are unidirectional
devices, switches cannot automatically discover such physics
link and will ignore these additional optical paths. Since
existing multicast protocols depend on bidirectional commu-
nication for topology discovery, if we simply use traditional
multicast to transmit the replicas, the current IGMP protocol
will automatically build multicast trees and schedule the
multicast requests to the EPS network. Although modifying
the network stack is one of the solutions, the difficulty will
be large because we have to redesign the kernel program in
ToR switches.

Fortunately, SDN technology provides possibility to sim-
ply solve the problems above. The SDN technology allows
application-network interactions and complex decisions to be
programmable. A centralized control model used in the SDN
technology can collect the global information, conveniently
manage the network and determine the routing, so the SDN
controller is capable of adjusting the network topology and
building multicast trees. As a result, in OEHadoop, we realize
a central controller based on the SDN technology.

In the SDN controller, the whole network topology infor-
mation is recorded. To build the multicast tree in DCN,

25852 VOLUME 6, 2018



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

according to the the source and destinations of a multicast
request, the SDN controller will build network paths along the
multicast tree. First, the SDN controller will reconfigure the
OSS ports. In the OSS, the input port connected with source
ToR will be linked to the input port of a 1:3 splitter, while the
output ports of the splitter will be linked to three destination
ToRs. Then, after the reconfiguration, the controller sends
control messages to the source and destination ToRs to match
the correspond field in packets and forward these packets
along the multicast tree. As a result, the optical multicast can
be successfully supported.

D. FLOW SCHEDULING AND OCS RECONFIGURATION
ALGORITHM
In OEHadoop, the OCS resources and the number of passive
optical splitters are limited. So how to reasonably utilize the
restricted bandwidth and the optical resources is the most
important problem of the control algorithm.

1) PROBLEM ANALYSIS
Given the multicast traffic requests, the goal of the algorithm
is to minimize the average complete time of MapReduce
jobs. So the SDN controller needs to compute the priority of
each network request based on the scheduling algorithm, and
firstly schedules the multicast flows with higher priority into
the optical switching system. The control algorithms in previ-
ous works [14]–[16] are not comprehensive because they only
take independent multicast requests into consideration. In
order to accelerateMapReduce applications asmuch as possi-
ble, our scheduling algorithm introduces the network abstract
concept named Coflow [23], which can express most com-
munication patterns of nowadays data-parallel applications.
Because there is not only one reduce task in a MapReduce
job, the job completion time is determined by the finishing
time of the slowest replication traffic in this job. In other
words, the job completion time is depended on a group of
multicast requests caused by multiple reducers in this job.
Inspired by the theory of coflow, we regard these relevant
multicast requests from a same job as a co-multicast, and
all these relevant requests need to be taken into account at
the same time. The multicast flows can be grouped into co-
multicasts by their job IDs.

According to the theory about smallest-first schedul-
ing policy to minimize the average flow completion
time [24], [25], the smallest co-multicast first scheduling
mechanism is a natural choice. We can borrow the method
of these researches to some extent to determine the priority
of co-multicast requests. However, the requests waiting for
allocating are multicast flows instead of unicast flows, while
the data plane is based on OCS but not EPS architecture.
So in OEHadoop, the co-multicast scheduling problem needs
to be reconsidered and reformulated. Figure 3 shows three
co-multicast requests submitted to controller. Different with
the EPS network, the schedule of optical multicasts is limited
by optical resources. Because the OCS links are passive
optical link without intermediate switching, the source and

FIGURE 3. This picture shows the comparison between optimal
scheduling and smallest-first scheduling. Assume that each ToR in this
case only equips one optical transceiver. The top of the picture shows an
example of current co-multicast requests where multicast requests
belong to a same co-multicast have the same color. Different multicast
requests are identified by different letters. The multicast requests in the
same row or column have the same destinations or source. The length of
requests stands for the traffic volume units. We assume that the optical
multicast system can transmit one unit of traffic volume in a time unit.
The bottom shows the average completion time of co-multicast requests
based on different scheduling methods.

destinations of a multicast request must synchronously send
and receive. Besides, due to the limitations of the optical
transceivers in ToRs, the multicast requests with the same
source or destinations cannot be synchronously transmitted
if the source or destination ToRs have no more available
optical transceivers. For example, the requests c and d in
figure 3 cannot be scheduled at a same time due to the conflict
in their destinations. According to the smallest-first schedul-
ing, because the traffic volume in the co-multicast 2 is 4 units,
the first request to be satisfied should be the co-multicast 2.
But in this scenario, although the traffic volume of the
co-multicast 1 is 6, the multicast flows in the co-multicast 1
can be simultaneously transmitted. We can find that if we
firstly schedule the co-multicast 1 into the system, the average
complete time will be reduced.

To improve the performance of Hadoop applications, given
the size, the source and destinations of each multicast flow in
co-multicast requests, the control algorithm must decide the
priority of each multicast request under the restrictions of
OCS link resources to minimize the average complete time of
submitted co-multicasts. In this process, new arrival requests
will also affect the scheduling results. Although there is no
existing method for such scheduling problem, we envision
that the optimal co-multicast scheduling problem is an NP-
hard problem which is useless in a changeable online net-
work system. So we develop a heuristic method to solve the
scheduling problem.

2) HEURISTIC ALGORITHM
In the scheduling algorithm, the first problem is how to
decide the priority of each request. To effectively allocate

VOLUME 6, 2018 25853



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

the co-multicasts with low complexity, for each co-multicast,
we define a widthW which takes both the traffic volume and
the optical resources limitation into account. Given the traffic
volume V , the source and destinations, the relationship of
each multicast request i in a co-multicast m, and the number
of optical transceivers t in each ToR, we define the traffic
burden TBm,N as the minimum time needed to completely
transmit or receive all the network demand of m in the source
or destination node N . The TBm,N can be calculated by
algorithm 1.

Algorithm 1 Traffic Burden Calculation
Input:
A source (or destination) node N .
The traffic volume Vi of each multicast request i in the

co-multicastm if i has the same source (or destination) with
node N .
The number of optical transceivers t in each ToR.

Output:
The traffic burden TBm,N of m carried by node N .

Steps:
1. Sort the traffic demand volume of the multicast requests

by Vi.
2. Assign Vi from the biggest to the smallest to each idle

optical port p in N until there are no more idle ports in
N . Record the traffic demand volume DV p carried by
each port p.

3. Assign the next largest request to the port with the
smallest DV p and update DV p. Loop this step until all
the requests of m in node N are assigned.

4. Calculate the traffic burden by TBm,N =
Max(DV p)
Link speed .

Based on the algorithm 1, we can calculate the traffic
burden TBm,N of a co-multicast m whether N is a source
ToR or a destination ToR. After calculating the TBm,N of all
the ToRs, we formulate the width W of this co-multicast m
as:

Wm = Max(MaxTBm,S ,MaxTBm,D), (1)

where S and D stand for all the source and destination ToRs
in DCN. For example, in figure 3, the W1,W2,W 3 are 3,
4, 5 respectively. To minimize the average completion time
of co-multicast requests, the co-multicast with smaller W is
assigned a higher priority.

After obtaining the width W of each co-multicast
request, the co-multicast scheduling problem can be
regarded as a variant of graph coloring problem [26]. Each
multicast request can be represented as a vertex v in G(v,e).
In OEHadoop, when an OCS optical multicast tree is built
based on passive splitters, the multicast requests with dif-
ferent source or destinations cannot be transmitted in the
same OCS multicast tree. To express this restriction, we add
edges e in the G(v,e) between two v if the sources of the
two multicast requests are the same ToR or their destination
sets have intersection. As we know, in the vertex coloring

problem, the two vertexes with an adjacent edge cannot have
the same color. With this condition, after coloring the graph,
the vwith the same color will have no conflict in optical layer
transmission.

The details of the co-multicast scheduling algorithm are
shown in algorithm 2. Although the algorithm cannot achieve
optimal solution, the algorithm significantly reduces the com-
plexity of the co-multicast scheduling problem and it outper-
forms other state-of-the-art methods (details in section V).

Algorithm 2 Co-Multicast Requests Scheduling
Input:
The <job ID, reducer IP, destination IP, output size> of

current co-multicast requests.
The number of optical transceivers t in each ToR. The

number of splitters z.
Output:
Scheduling results of multicast requests

Steps:
1. Initialize the G(v,e), and the number of optical

transceivers t . CalculateW of all co-multicast requests.
2. Sort theW and find the co-multicastmwith smallestW

if there are any unallocated multicast requests in m.
3. Choose a color to draw the G(v,e) if v is a member of

m until all the v of m are colored or no more v in m is
available to be colored.

4. Record the colored v into a result set R one by one. If the
number of v inR is equal to z, submitR as the scheduling
result and break the algorithm.

5. Remove the colored v and all their adjacent v in G(v,e).
If there are still any v existing in G, change m to the
co-multicast with next smallest W and go to step 3,
otherwise go to step 6.

6. t = t − 1, refresh the G(v,e). Remove all the recorded v
of R from G(v,e).

7. Go to step 2 until t is 0.
8. Submit R as the scheduling result.

3) TRIGGER CONDITION OF THE SCHEDULING ALGORITHM
Before we deploy the algorithm into an online network sys-
tem, the trigger condition of the scheduling algorithm is
still needed to be further considered. Because of the control
overhead and the delay of reconfiguring the OSS, frequently
changing the current transmitting requests will lead to bad
performance. Besides, once we act our scheduling algorithm
as soon as a new multicast request arrives, there will be
an inevitable problem. If a new arrival multicast request
belongs to a new job, because the new co-multicast consists
of only one multicast request, the new arrival co-multicast
request will have great possibility to have small W and to be
firstly scheduled into optical switching system. As a result,
we design following principles for our scheduling algorithm:

1) To save optical resources, if there are available opti-
cal resources for a new arrival multicast request,

25854 VOLUME 6, 2018



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

FIGURE 4. OEHadoop prototype architecture and control information.

the request will be immediately scheduled into the
optical switching system.

2) Knowing the number of the reducers in a MapReduce
job, the co-multicast request will not be taken into
account unless all the multicast information of this co-
multicast request has been received.

3) When the information of a new co-multicast is entirely
collected, the scheduling algorithm is triggered. Before
scheduling, the controller needs to firstly update the
remaining traffic volume of the last allocated multicast
requests. The already transmitted traffic volume can be
easily obtained in the application layer.

4) If there are no new arrival co-multicast requests,
the algorithm will not be triggered. Once there are
idle optical resources in the optical switching system,
the SDN controller will firstly schedule the available
multicast requests which belong to co-multicasts with
smaller W .

IV. EXPERIMENT DEMONSTRATION
To verify the feasibility of our OEHadoop, we built a
small prototype of OEHadoop. As shown in figure 4, our
OEHadoop platform consisted of 4 ToRs, where the ToRs
were simulated by generating virtual network bridge in a
Pica8 SDN switch and each ToR was connected to 2 nodes.
Each node was a virtual machine (VM) generated by Dell
PowerEdge R220 server. All the nodes were equipped with a
virtual dual-core Xeon E3-1220 v3 CPU, 2GB memory, and
a 1GbE physical link connected to the SDN switch. We used
RYU [33] as our SDN controller which was installed on
a server with Intel Core i7-6700 CPU and 16G RAM.
The optical multicast system was built by a Polatis OSS

and 2 1:2 passive optical splitters. The operating system in
each VMwas CentOS 6 kernel 2.6.32. Figure 4 demonstrates
the details of our small scale OEHadoop.

The workload was generated based on the data set FB-
2009 in the SWIM project [27], [28], which was a job trace
gathered from the historical Hadoop trace on a 600-machine
cluster at Facebook. The data set recorded the total traffic
volume of the shuffle stage and the replication stage in each
MapReduce job. We extracted 10 jobs in FB-2009 as the
workload of our experiment (job 1671 ∼ job 1680). To sim-
ulate the network traffic of real MapReduce jobs, in our
experiment, each job consisted of several randomly placed
reducer tasks, which firstly fetched the shuffle traffic from
some random nodes and then replicated the data blocks to
2 random remote nodes. The total traffic volume of each stage
was determined by FB-2009. All the flows in our experiment
were generated by Iperf 2.0.5 [29].

If there was a reducer ready to replicate its data to HDFS,
the reducer submitted the multicast request through the north-
bound interface of the SDN controller. According to the co-
multicast scheduling algorithm, the controller would allocate
a uniquemulticast group IP address for eachmulticast request
if the request would be scheduled to the optical switching
system. Then, the controller would reconfigure the OSS and
note the reducer to start its replication stage. We realized
unidirectional multicast transmission by the up-mode of the
Pica8 SDN switch. The completion time of a job was defined
as the duration between the submission time of the job and
the latest complete time among all the replication stages in
this job.

We firstly evaluated the processing latency of calculat-
ing a scheduling result. In our controller, we realized our

VOLUME 6, 2018 25855



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

scheduling algorithm. We assumed that the DCN consisted
of 150 ToRs and each ToR was equipped with three opti-
cal transceivers. We randomly generated 100 co-multicast
requests as the existing requests in the system and then sub-
mitted a new integrated co-multicast request and evaluated
the processing latency. Table 1 shows the delay of each pro-
cess from submitting the request to starting the transmission.
As we can see that our OEHadoop prototype could handle a
co-multicast request with latency about 37ms.

TABLE 1. Time consumption of control plane.

Then we compared our OEHadoop with native Hadoop
which used the pipeline model to replicate date without opti-
cal communication. Because the optical network resources
in our small scale prototype were rare, we allowed that
the waiting multicast requests which belonged to the co-
multicasts with higher priority could be transmitted in the
EPS network if the total number of current waiting multicast
requests exceeded 5. In this experiment, the result indicated
that the average completion time of the 10 jobs in native
Hadoop was 472.46s, while the average completion time of
them in OEHadoop was 320.23s. By co-designing Hadoop
with optical network, our OEHadoop performed much better
than native Hadoop in terms of average jobs completion time.
In the bottom of Figure 4, we list the control information col-
lected from the controller during building an optical multicast
tree. After the accurate configuration, the multicast traffic
was transmitted from its source server (192.168.2.31) to the
port 50 and was copied to two replicas by the optical switch-
ing system. The replicas finally arrived at their destinations
ToRs through the ports 52 and 51 respectively.
V. SIMULATION
In this section we evaluate the performance of OEHadoop
in a large scale cluster by simulation. Our simulation
includes two parts. In order to prove the superiority of
our co-multicast scheduling algorithm, we firstly compare
our scheduling algorithm with related state-of-the-art optical
multicast approaches. The traffic demand involves a set of
single multicast flows and two sets of co-multicast flows.
Secondly we demonstrate the performance of OEHadoop by
testing theMapReduce jobs completion time under a job trace
which is gathered from Facebook’s production cluster and
published in the SWIM project [27], [28].

A. PERFORMANCE OF CO-MULTICAST SCHEDULING
ALGORITHM
1) SCHEDULING ALGORITHM IN RELATED WORKS
The control algorithm deployed in Blast [14] is based on
greedy heuristic. In Blast, the multicast groups are sorted
according to the scoring function s = volume/#rack, where
the volume stands for the traffic volume of a multicast request

and the #rack stands for the number of ToRs involved. This
score balances the group size and the traffic volume to ensure
that the optical ports are occupied by the most profitable mul-
ticast groups. The algorithm in controller iteratively selects
multicast request with the highest scores until nomore optical
ports can be used. The research named optical multicast
system (OMS) [15] uses greedy algorithm which iteratively
selects the multicast requests with the maximum values of
traffic and checks whether the request can be scheduled under
the limitation of available optical splitters and optical ports in
ToRs. This algorithm tries to maximize the multicast traffic
offloaded by the OMS. In HERO [16], the controller imple-
ments greedy optical link assignment algorithm to firstly find
free optical resources when a new multicast request arrives.

All of the above methods evaluate the performance of the
algorithm by transmitting a group of multicast requests based
on their network system.

2) SIMULATION SETTING
In this scenario, we build a simulation including 100 ToRs,
each with 40 servers. Each ToR equips a central number of
optical transceivers connected with the OSS, and there are 25
1:4 passive optical splitters connected with the OSS. In the
simulation, we take the 19.5 ms OSS reconfiguration delay
and the 14.3 ms control algorithm delay into account. The
link speed in our simulation is 10 Gbps. To fairly compare
the performance of different algorithms, in this simulation,
we do not connect the ToRs with EPS network, as the model
described in [14] and [15].

We evaluate the performance of our scheduling algorithm
under three different kinds of traffic demands. The first group
of traffic demand is consisted of a group of independence
multicast flows. The traffic volume of eachmulticast flow fol-
lows a uniform distribution from 500 Mbits to 2.5Gbits. The
source and destinations are randomly chosen, and the number
of the destinations of each multicast flow is determined by a
uniform distribution from 2 to 10 (a tenth of the total number
of ToRs, which is similar to the traffic generating method
in [15]). This set of traffic demand aims to compare the
performance of different scheduling algorithms under normal
multicast requests. The second group of traffic demand is
generated by co-multicast requests, which is more close to
the real traffic demand in big data applications. The count of
multicast flows in a co-multicast is randomly generated by a
uniform distribution from 2 to 10. In the third group, on the
base of the second group, the number of the destinations of
each multicast flow is adjusted to 3, which is similar to the
traffic pattern in the replication stage of MapReduce jobs.

3) SIMULATION RESULTS
We use average multicast flow completion time and aver-
age co-multicast completion time as the evaluation indexes
in our simulation. By adjusting the total number of mul-
ticast requests and the optical transceiver ports in each
ToR, we obtain the simulation results which are shown
in figure 5. All the results in our simulation are obtained

25856 VOLUME 6, 2018



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

FIGURE 5. Simulation results: (a) and (b) are the results when the traffic demand consists of independent multicast requests. (a) shows
the average requests completion time of different scheduling methods under different number of multicast requests. (b) expresses the
average completion time when the number of optical transceiver ports is different. (c)(d) show the result when the traffic demand
consists of a group of co-multicast requests and (e)(f) show the results when the number of the destinations of each multicast request in
co-multicast requests is 3.

by averaging the results of 50 time runs. As we can
see in figure 5, OEHadoop outperforms all state-of-the-
art scheduling methods under any data sets and any situa-
tions. Figure 5 (a) proves that our scheduling method can
reduce the average completion time when the requests are
consisted of independence multicast flows. As shown in
figure 5 (c) (e), compared with the request set 1, the improve-
ment of our method is much more remarkable under request
sets 2 and 3. That is because the previous scheduling algo-
rithms ignore the relationship between the multicast requests
in the real applications. Besides, we can find that with the
increase of the amount of the multicast requests in the system,
the performance of OEHadoop turns better compared with
othermethods. Although there is no existingmethod to sched-
ule co-multicast requests based on the small co-multicast
first (SCMF), we realize it as a baseline in our simulation.
Under the request set 2 and 3, the performance of SCMF
is much better than previous methods, but it is worse than
our OEHadoop because it fails to take into account the char-
acteristics of co-multicast requests under the constraints of
the optical transceivers. The influence caused by the number
of optical transceiver ports is shown in figure 5 (b) (d) (f),
which is obtained under 500 multicast requests. With the
increase of the number of optical ports, the bottleneck of the
optical switching resources is gradually changed from the
number of optical transceiver ports to the number of passive
optical splitters. However, the best result is still determined
by the scheduling algorithm. Obviously we can find that our
OEHadoop outperforms other methods under different ports
number.

B. PERFORMANCE OF MapReduce JOBS IN OEHadoop
The completion time of applications is critical to evaluate the
performance of DCN. However, previous methods [14]–[16]
only discuss the completion time of multicast requests. So in
this section we firstly take the complete time of MapReduce
jobs into consideration.

1) SIMULATION SETTING
In our simulation, we did not use the existing Hadoop simula-
tors such as [30] or [31] because these simulators mainly aim
to evaluate resource management or job scheduling, and they
are unable to simulate the network traffic of applications. The
ns-2 based MRPerf [32] is a packet-level simulator, which
leads to long simulation time in a large-scale DCN.

In order to capture the link status during running MapRe-
duce jobs, we build a flow-level simulation, which is similar
to the HFlowSim discussed in [13]. The simulation is based
on discrete time ticks, where each tick stands for 1 ms of
running time. In the EPS architecture, we updated
the throughput of flows following the additive-increase/
multiplicative-decrease (AIMD) rule, which is a widely
deployed protocol of TCP traffic. Based on this rule, the speed
of a flow will be increased by 1MB/s if all the links it
transmitting through has 1 MB more residual bandwidth,
while the speed of the flow will decrease by half if any link
of its path has no more available bandwidth. The links in
optical switching system will never congest because all the
multicasts will be scheduled by the line rate of optical paths.

To make our simulation more closed to the situation in real
commercial DCN, we use the data set FB-2009 in SWIM

VOLUME 6, 2018 25857



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

FIGURE 6. (a) shows the average completion time of jobs in the OEHadoop and native Hadoop respectively under different
over-subscription ratios. (b)(c) express the busy duration ratio of each ToR to core links under 1:4 over-subscription ratio, where
(b) shows the result of native Hadoop and (c) is the result of the OEHadoop. We define a unidirectional link as busy if the
occupied bandwidth of the link exceeds 80% of its capacity. The busy duration ratio of the unidirectional link stands for the
proportion of busy duration in total running time.

project. In our simulation, we ignore the import stage of a
MapReduce job because the locality of scheduling mapper
tasks usually leads to little network traffic. We model the
traffic demand of each job by the same way in our experi-
ment. Each job consists of a set of reduce tasks, and each
task has two stages: shuffle and replication. In the shuffle
stage, the reducers fetch data from several randomly chosen
servers in DCN. When a reducer finishes its shuffle stage,
it will immediately start its replication stage. In the replication
stage, the reducers randomly choose 3 servers and submit a
multicast request to the controller. When a reducer receives
the scheduling result, the reducer will start its transmission.
According to the real tasks placement method in Hadoop
system [5], in our simulation, one server can only host one
reduce job at a time. All the traffic volume of the flows in a job
is generated based on randomly separating the recorded total
network traffic volume of the job in FB-2009.We use the first
1000 jobs in FB-2009 including 1 hour and 15 minutes run-
ning duration. The submission time of each job is determined
by the records in FB-2009, and the completion time of each
job is defined as the time duration between the submission
time of a job and the finishing time of the last replication stage
in this job.

To ensure that the DCN is capable of carrying the comput-
ing and network demand of FB-2009, we build a same scale
simulation including 600 servers. The network architecture
is similar to figure 2. The link speed from servers to ToRs
is 1Gbps, while the link speed from ToRs to core switch
is 10Gbps. We obtain the simulation results under different
over-subscription ratios. To adjust the ratio, maintaining the
number of servers, we change the number of ToRs and the
number of servers connected to ToRs. For example, when
the over-subscription ratio is 1:4, there will be 40 servers
connected to each ToR, while the number of ToRs will be 15.
We assume that there are 3 optical transceivers in each ToR
and there are 50 1:4 passive optical splitters connected to the
OSS.

2) SIMULATION RESULTS
We compare our OEHadoop with native Hadoop, which uses
the pipeline traffic model to replicate data to destination

nodes. Figure 6 shows the results of simulation. As we
can see in figure 6 (a), our OEHadoop achieves better per-
formance than native Hadoop along with the increase of
over-subscription ratio. Under the over-subscription ratio
1:10 which is a universal ratio deployed in real DCN, our
OEHadoop can achieve up to x1.97 faster than nativeHadoop.
Figure 6 also shows the busy duration ratio of the links
between ToRs and core switch in the EPS network under the
over-subscription ratio 1:4, where (b) expresses the native
Hadoop and (c) expresses the OEHadoop. In the figure 6
(b)(c) we can find that by offloading the replication traf-
fic into optical switching system, OEHadoop reduces the
network congestion in the EPS network and accelerates the
transmission of both the shuffle traffic and the replication
traffic. Our co-multicast scheduling algorithm also plays an
importance role in our OEHadoop.

VI. CONCLUSIONS
In this paper, we propose OEHadoop, a modified Hadoop
which is built by co-designing the application layer and the
network layer to accelerate theMapReduce jobs. On the basis
of offloading the long-live large-size replication traffic in to
the optical switching system by optical multicast, we design a
specific hybrid optical and electrical data center architecture
for OEHadoop. We implement an SDN control plane, a mes-
sage exchange system, and a co-multicast scheduling algo-
rithm in OEHadoop. A small scale prototype is realized in our
experiment to prove the feasibility of OEHadoop. Through
simulation, we demonstrate that not only the scheduling
algorithm of OEHadoop can achieve better performance than
state-of-the-art methods, but also our OEHadoop can accel-
erate MapReduce jobs compared with native Hadoop.

REFERENCES
[1] N. Farrington and A. Andreyev, ‘‘Facebook’s data center network architec-

ture,’’ in Proc. IEEE Opt. Interconnects Conf., May 2013, pp. 49–50.
[2] A. Singh et al., ‘‘Jupiter rising: A decade of clos topologies and central-

ized control in Google’s datacenter network,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[3] K. Shvachko et al., ‘‘The hadoop distributed file system,’’ in Proc. IEEE
26th Symp. Mass Storage Syst. Technol. (MSST), 2010.

25858 VOLUME 6, 2018



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

[4] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[5] V. K. Vavilapalli, ‘‘Apache Hadoop YARN: Yet another resource negotia-
tor,’’ in Proc. 4th Annu. Symp. Cloud Comput., 2013, Art. no. 5.

[6] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., Nov. 2010, pp. 267–280.

[7] D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and
K. Rauschenbach, ‘‘Optical networks come of age,’’ Opt. Photon. News,
vol. 25, no. 9, pp. 50–57, 2014.

[8] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, ‘‘Parallel data
processing with MapReduce: A survey,’’ ACM SIGMOD Rec., vol. 40,
no. 4, pp. 11–20, Dec. 2011.

[9] N. Farrington et al., ‘‘Helios: A hybrid electrical/optical switch architecture
for modular data centers,’’ in Proc. SIGCOMM, Sep. 2010, pp. 339–350.

[10] G. Wang et al., ‘‘c-Through: Part-time optics in data centers,’’ in Proc.
SIGCOMM, 2010, pp. 327–338.

[11] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, ‘‘Proteus:
A topology malleable data center network,’’ in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw. (HotNets), 2010, Art. no. 8.

[12] Z. Zhu, S. Zhong, L. Chen, and K. Chen, ‘‘Fully programmable and
scalable optical switching fabric for petabyte data center,’’ Opt. Exp.,
vol. 23, no. 3, pp. 3563–3580, 2015.

[13] J. Wu and B. Hong, ‘‘Multicast-based replication for Hadoop HDFS,’’ in
Proc. 16th IEEE/ACIS Int. Conf. IEEE Softw. Eng., Artif. Intell., Netw.
Parallel/Distrib. Comput. (SNPD), 2015, pp. 1–6.

[14] Y. Xia, T. E. Ng, and X. S. Sun, ‘‘Blast: Accelerating high-performance
data analytics applications by optical multicast,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), May 2015, pp. 1930–1938.

[15] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and K. Bergman,
‘‘Optical multicast system for data center networks,’’ Opt. Exp., vol. 23,
no. 17, pp. 22162–22180, 2015.

[16] J. Bao, B. Zhao, D. Dong, and Z. Gong, ‘‘HERO: A hybrid electrical and
optical multicast for accelerating high-performance data center applica-
tions,’’ in Proc. SIGCOMM Posters Demos, 2017, pp. 17–18.

[17] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, and S. Sahu, ‘‘Rethinking the
physical layer of data center networks of the next decade: Using optics to
enable efficient ∗-cast connectivity,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 43, no. 3, pp. 52–58, 2013.

[18] J. Lee et al., ‘‘Application-driven bandwidth guarantees in datacenters,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 467–478,
2014.

[19] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[20] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu, ‘‘Hadoopwatch:
A first step towards comprehensive traffic forecasting in cloud comput-
ing,’’ in Proc. IEEE INFOCOM, May 2014, pp. 19–27.

[21] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn ‘‘CRUSH: Con-
trolled, scalable, decentralized placement of replicated data,’’ in Proc.
ACM/IEEE Conf. Supercomput., Nov. 2006, Art. no. 122.

[22] B. Adamson, C. Bormann, M. Handley, and J. Macker, NACK-Oriented
Reliable Multicast (NORM) Transport Protocol, document RFC 5740,
2009.

[23] M. Chowdhury and I. Stoica, ‘‘Coflow: A networking abstraction for
cluster applications,’’ in Proc. 11th ACM Workshop Hot Topics Netw.,
2012, pp. 31–36.

[24] M. Alizadeh et al., ‘‘pFabric: Minimal near-optimal datacenter transport,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435–446,
2013.

[25] C.-Y. Hong, M. Caesar, and P. Godfrey, ‘‘Finishing flows quickly with pre-
emptive scheduling,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 127–138, 2012.

[26] T. R. Jensen and B. Toft, Graph Coloring Problems. Hoboken, NJ, USA:
Wiley, 1995.

[27] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, ‘‘The case for evaluat-
ing mapreduce performance using workload suites,’’ in Proc. IEEE 19th
Annu. Int. Symp. Modelling, Anal., Simulation Comput. Telecommun. Syst.,
Jul. 2011, pp. 390–399.

[28] Y. Chen, S. Alspaugh, and R. Katz, ‘‘Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads,’’ Proc.
VLDB Endowment, vol. 5, no. 12, pp. 1802–1813, 2012.

[29] A. Tirumala, T. Dunigan, and L. Cottrell, ‘‘Measuring end-to-end band-
width with Iperf using Web100,’’ Tech. Rep. SLAC-PUB-9733, 2003.

[30] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, ‘‘MRSim: A discrete
event based MapReduce simulator,’’ in Proc. 7th Int. Conf. Fuzzy Syst.
Knowl. Discovery, vol. 6. Aug. 2010, pp. 2993–2997.

[31] Y. Liu, M. Li, N. K. Alham, and S. Hammoud, ‘‘Hsim: A mapreduce
simulator in enabling cloud computing,’’ Future Generat. Comput. Syst.,
vol. 29, no. 1, pp. 300–308, 2013.

[32] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, ‘‘A simulation approach
to evaluating design decisions in mapreduce setups,’’ in Proc. IEEE Int.
Symp. Modeling, Anal, Simulation Comput. Telecommun. Syst., Sep. 2009,
pp. 1–11.

[33] R. Kubo et al., ‘‘Ryu SDN framework: Opensource SDN platform soft-
ware,’’ NTT Tech. Rev. 12.8, 2014.

[34] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, ‘‘Delay Scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,’’ in Proc. EuroSys, 2010, pp. 265–278.

[35] N. McKeown et al., ‘‘Openflow: Enabling innovation in campus net-
works,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[36] P. Samadi, D. Calhoun, H. Wang, and K. Bergman, ‘‘Accelerating cast
traffic delivery in data centers leveraging physical layer optics and SDN,’’
in Proc. Int. Conf. Opt. Netw. Design Modeling, May 2014, pp. 73–77.

[37] H.Wang, C. Chen, K. Sripanidkulchai, S. Sahu, andK. Bergman, ‘‘Dynam-
ically reconfigurable photonic resources for optically connected data center
networks,’’ in Proc. OFC/NFOEC, 2012, paper OTu1B-2.

[38] J. Deng et al., ‘‘Keddah: Capturing Hadoop network behaviour,’’ in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 2143–2150.

YINAN TANG received the bachelor’s degree
in telecommunication engineering from the
Beijing University of Posts and Telecommuni-
cations (BUPT) in 2015. He is currently with
the Institute of Information Photonics and Opti-
cal Communications, BUPT. His current research
interests include optical interconnection in data
center network, software-defined networking con-
trol plane, data center network, distribution
computing system, and optical interconnection

topology reconstruction in data center network.

HONGXIANG GUO received the B.E. and
Ph.D. degrees in electrical engineering from the
Beijing University of Posts and Telecommunica-
tions (BUPT), Beijing, China, in 2000 and 2005,
respectively. From 2005 to 2008, he was a Post-
Doctoral Researcher with KDDI R&D Laborato-
ries, Inc., Saitama, Japan, where he was involved
in research on intelligent all-optical networks and
their control and management technologies. He is
currently with BUPT. His current research inter-

ests include the designing and modeling of photonic networks.

TONGTONG YUAN received the bachelor’s
degree in telecommunication engineering from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2015, where she is cur-
rently pursuing the Ph.D. degree. Her research
interests include image retrieval, image hashing,
and computer vision.

VOLUME 6, 2018 25859



Y. Tang et al.: OEHadoop: Accelerate Hadoop Applications by Co-Designing Hadoop With DCN

QI WU received the B.S. degree in communi-
cation engineering from the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, in 2015. She is currently pursuing the mas-
ter’s degree in electronic and communication engi-
neering with the Beijing University of Posts and
Telecommunications, Beijing, China. His research
interests include software-defined networking and
data center optical network.

XIANG LI received the bachelor’s degree in com-
munications engineering from the Chongqing Uni-
versity of Posts and telecommunications in 2016.
She is currently pursuing the master’s degree in
electronics and communications engineering with
the Beijing University of Posts and Telecommu-
nications. Her research interests include software-
defined optical networks.

CEN WANG received the bachelor’s degree
in telecommunication engineering from the
Chongqing University of Posts and Telecom-
munications, Chongqing, China, in 2014. He is
currently pursuing the Ph.D. degree with the
Beijing University of Posts and Telecommuni-
cation. He has the internship experience with
KDDI Research Laboratories, Inc., Japan. His
research interests include optical interconnec-
tion, AI-assisted network resource scheduling, and

software-defined networking control.

XIONG GAO received the B.S. degree in commu-
nication engineering from the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, in 2016. He is currently pursuing the Ph.D.
degree in electronic science and technology with
the Beijing University of Posts and Telecommu-
nications (BUPT), Beijing, China. His research
interests include routing algorithm in complex net-
work and data center optical network.

JIAN WU (M’99) received the B.S. degree in opto-
electronics from the Beijing Institute of Technol-
ogy, Beijing, China, in 1995, and the Ph.D. degree
in physical electronics from Tsinghua University,
Beijing, in 1999. From 1999 to 2001, he was a
Post-Doctoral Fellow with the Optical Commu-
nication Center, Beijing University of Posts and
Telecommunications (BUPT), Beijing, where he
was involved in the area of high-speed optical
networks and all-optical signal processing. He is

currently a Professor with the State Key Laboratory of Information Photonics
and Optical Communications, BUPT. His research interests include opti-
cal packet/burst switching networks, network architecture and simulation,
all-optical signal processing, optical time-domain multiplexing, high-speed
optical transmission systems, nonlinear fiber optics, and high-speed opto-
electronic devices.

25860 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORKS
	DETAILS OF OEHadoop
	NETWORK ARCHITECTURE OF OEHadoop
	MODIFICATIONS OF HADOOP
	REDESIGN OF COMMUNICATION IN THE REPLICATION STAGE
	MESSAGE EXCHANGE SYSTEM IN OEHadoop

	CONTROL PLANE IMPLEMENTATION
	FLOW SCHEDULING AND OCS RECONFIGURATION ALGORITHM
	PROBLEM ANALYSIS
	HEURISTIC ALGORITHM
	TRIGGER CONDITION OF THE SCHEDULING ALGORITHM


	EXPERIMENT DEMONSTRATION
	SIMULATION
	PERFORMANCE OF CO-MULTICAST SCHEDULING ALGORITHM
	SCHEDULING ALGORITHM IN RELATED WORKS
	SIMULATION SETTING
	SIMULATION RESULTS

	PERFORMANCE OF MapReduce JOBS IN OEHadoop
	SIMULATION SETTING
	SIMULATION RESULTS


	CONCLUSIONS
	REFERENCES
	Biographies
	YINAN TANG
	HONGXIANG GUO
	TONGTONG YUAN
	QI WU
	XIANG LI
	CEN WANG
	XIONG GAO
	JIAN WU


