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ABSTRACT Conventional stitching techniques for images and videos are based on smooth warping models,
and therefore, they often fail to work on multi-view images and videos with large parallax captured
by cameras with wide baselines. In this paper, we propose a novel video stitching algorithm for such
challenging multi-view videos. We estimate the parameters of ground plane homography, fundamental
matrix, and vertical vanishing points reliably, using both of the appearance and activity-based featurematches
validated by geometric constraints. We alleviate the parallax artifacts in stitching by adaptively warping the
off-plane pixels into geometrically accurate matching positions through their ground plane pixels based on
the epipolar geometry. We also exploit the inter-view and inter-frame correspondence matching information
together to estimate the ground plane pixels reliably, which are then refined by energy minimization.
Experimental results show that the proposed algorithm provides geometrically accurate stitching results of
multi-view videos with large parallax and outperforms the state-of-the-art stitching methods qualitatively
and quantitatively.

INDEX TERMS Multi-view videos, video stitching, image stitching, large parallax, adaptive pixel warping,
epipolar geometry.

I. INTRODUCTION
Multi-view videos are widely used in many applications such
as surveillance [1]–[3], sports [4]–[6], virtual training [7] and
video conferencing [8], [9]. One of the essential techniques
for multi-view applications is stitching, which combines mul-
tiple images, captured from different viewing positions and
directions, to generate a single image with a wider field of
view [10]. Image stitching has been actively studied in the
literatures [11]–[21], and related commercial products have
been also developed, e.g., Adobe Photoshop PhotomergeTM

and Microsoft Image Composite Editor. Moreover, many
current mobile devices with cameras are able to synthesize a
panorama image by stitching multiple images captured at dif-
ferent time instances. Also, around view monitoring is one of
the core applications of autonomous vehicles, which employs
bird’s eye views of stitchedmultiple images captured by front,
side, and rear view cameras [22].

Traditional image stitching methods assume that a pair of
images is taken from very close camera locations to each
other and the captured scene structures are roughly planar.

Based on these assumptions, we obtain stitched images by
performing the three major steps: feature matching, image
alignment, and image composition. First, feature points are
detected from different images, which are then matched
together by using feature descriptors, e.g., SIFT [23]. In the
alignment step, a global image warping model such as
homography is estimated by using the obtained feature
matches, and multiple images are aligned to a common image
domain accordingly. Finally, the pixel values in a stitched
image are determined by average blending or seam cutting
methods [10].

However, when multi-view cameras capture non-planar
scene structures at relatively far camera positions from one
another, resulting multi-view images exhibit parallax phe-
nomenon where the relative locations of scene contents are
varying across different views. In such cases, the traditional
stitching methods suffer from parallax artifact. Therefore,
advanced image stitching methods [11]–[21] have been
studied which alleviate some amount of parallax artifact
by designing locally adaptive transformations for flexible
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warping, employing similarity transformation to reduce
perspective distortion, and/or hiding the misalignment in
composition stage based on seem-cutting method.

Recently, in many practical applications such as surveil-
lance and sports, static multiple cameras are placed at very
far viewing positions from one another with wide base-
lines. Also, captured 3D real-world scenes often include
multiple foreground objects moving over a wide range
of scene depths. For example, walking pedestrians are
captured by static multiple cameras installed at arbitrary
locations [24]–[26], and multiple players in sports games are
captured by static cameras with wide baselines [27]. On these
challenging multi-view images, even the aforementioned
advanced image stitching techniques have limitations to com-
bine the diverse scene structures accurately causing ghosting
artifacts in stitching results due to the two main reasons.
First, abrupt depth discontinuity among multiple foreground
objects and background is hard to be treated accurately by the
existing warping schemes. Second, appearance-based feature
descriptors may provide large numbers of outlier matches due
to severe parallax.

Compared to the image stitching research, relatively little
effort has been made to develop multi-view video stitching
techniques. Video stitching was regarded as an extension
of image stitching where the multiple frames from different
views at a certain time instance are stitched together by using
existing image stitching techniques [28]. Also, a temporal
cost term is simply added to the cost function for image
stitching [29]. Therefore, stitching for challenging multi-
view videos with large parallax still has the aforementioned
problems of image stitching.

In this paper, we propose a geometrically accurate stitching
algorithm for multi-view videos with large parallax (MVLP)
which are captured by stationary cameras with wide base-
lines. We also consider surveillance and sports applications
where multiple people are moving on the ground plane at
arbitrary distances from the cameras. We develop a parallax-
adaptive pixel warping model, where the ground plane pixels
are warped by homography, but the pixels off the plane,
i.e. the pixels on the foreground objects and the distant
background region, are warped through their ground plane
pixels based on the epipolar geometry. We also estimate
the optimal ground plane pixels by employing both of the
reliable spatial and temporal feature matches based on energy
minimization framework. Experimental results show that the
proposed algorithm stitches multi-view videos successfully
without severe parallax artifacts, and yields a significantly
better performance than that of the existing state-of-the-art
image stitching techniques qualitatively and quantitatively.

A preliminary result of this work was presented in [30].
The major differences between [30] and this paper are as
follows.
• We propose a more generalized video stitching frame-
work which aligns the foreground objects and the back-
ground, respectively, while our previous algorithm [30]
was applied to the foreground objects only.

• We improve the warping performance by estimat-
ing optimal ground plane pixels, while our previous
work [30] estimates a projective depth using the lowest
pixel in each object.

• We perform more extensive experiments using 12 video
sequences and provide comparative experimental results
between the conventional methods and the proposed
algorithm qualitatively and quantitatively.

The rest of this paper is organized as follows. Section II
describes the related work on image and video stitching and
static multi-camera based tracking. Section III proposes the
basic concept of the proposed parallax-adaptive pixel warping
model. Section IV and Section V explain the algorithms
of parameter estimation and ground plane pixel estimation,
respectively. Section VI presents the experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK
A. IMAGE AND VIDEO STITCHING
Homography is a traditional image warping model which
describes the projective relationship between two image
planes based on the planar scene assumption [10], [31].
In general, an optimal homography is estimated by feature
matching between two images. Homography can register
multiple images associated with small camera baselines suc-
cessfully, however, it fails to work on the images with large
camera baselines where a captured scene is composed of
multiple planar structures.

To overcome this limitation, advanced image stitching
methods employ spatially-varying warps which adaptively
align spatial deviation between two images caused by paral-
lax. Gao et al. [11] estimated dual homographies to align the
ground plane and the distant background plane, respectively,
by clustering the feature points according to their positions.
Lin et al. [12] initialized a global affine transformation which
is then iteratively refined to minimize a cost function defined
by matched features. Zaragoza et al. [13] partitioned an input
image into multiple cells, and estimated a homography for
each cell by weighting feature matches according to the rela-
tive distances to the feature points. Zhang et al. [14] proposed
a mesh-based alignment technique to mitigate the shrink-
ing problem of wide-baseline panorama synthesis, which
designs a scale preserving cost function using the perimeter of
polygons created from feature points. The spatially-varying
warps reduce the parallax artifact of image stitching by a
certain amount, however they cannot reflect abrupt depth
changes in a captured scene completely since the neighbor-
ing cells are processed with smoothness constraints. More-
over, the spatially-varying warps were inherently designed
to deform images assuming small baselines [32], and thus
the warped images look unnatural when the relative orders
of control points are changed across multiple images due to
large parallax [33].

The stitched images usually exhibit perspective distor-
tions in non-overlapping regions among multiple images
where no valid feature matches are obtained. To alleviate the
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FIGURE 1. Stitching images with large parallax. (a) A target image and (b) a reference image. The resulting stitched images by using
(c) a homography based warping scheme, (d) APAP [13], and (e) the proposed parallax-adaptive stitching, respectively.

perspective distortions, shape-preserving warps were pro-
posed which extrapolate the warping models to non-
overlapping regions using similarity transformation and/or
homography linearization [15]–[18]. Chang et al. [15]
applied a homography to the overlapping region of images
and similarity transformations to the non-overlapping
regions, respectively. Lin et al. [16] proposed a homography
linearization method to combine homography and similarity
transformations smoothly. Chen and Chuang [17] improved
the shape-preserving warp by accurately estimating the scale
and rotation of similarity transformation. Li et al. [18]
proposed quasi-homography warps which linearly extrapo-
late the horizontal component of homography. The shape-
preserving warps provide visually plausible stitching results,
but do not always produce geometrically correct results.

Attempts have been also made to align only a certain
region of input images and hide the artifacts of mismatched
regions by applying seam-based composition methods.
Gao et al. [19] obtained multiple homographies by taking
the groups of inlier feature matches in order, and selected
the best homography that yields a minimum seam cost.
Zhang and Liu clustered closely located feature points
together and found an optimal local homography associ-
ated with a minimum seam cutting error to align a local
image region [20]. They also applied content-preserving
warping (CPW) [34] to further refine the local alignment.
Lin et al. [21] generated multiple local homographies using a
superpixel-based grouping scheme, and further refined each
homography to select the best one by using energy minimiza-
tion. They also designed an energy function to encourage the
warp undergoes similarity transformation and to preserve the
structures like curves and lines after warping. Note that these
techniques register one local region only and thus inevitably
cause geometrically inaccurate stitching results.

On the other hand, the previous video stitching algorithms
simply apply the existing image stitching techniques to stitch
the video frames at each time instance, respectively [28].
Also, they extend the image stitching techniques straight-
forwardly to video stitching for the purposes of improving
the computation speed or reducing the flickering artifacts.
El-Saban et al. [28] computed SIFT descriptors for selected
frames only and tracked the feature points to reduce the
computational complexity of video stitching. Jiang and Gu
extended CPW of local alignment and image composition
to video stitching by applying the seam cutting scheme to
spatiotemporal domain [29].

B. STATIC MULTI-CAMERA BASED TRACKING
Multi-camera based people tracking techniques detect walk-
ing pedestrians on a ground plane from multiple videos,
which are captured by different static cameras set toward a
common ground plane and positioned with relatively wide
baselines. Specifically, moving foreground objects are first
detected by background subtraction methods, and then the
elongated shapes of detected people are represented by prin-
cipal axes [24] which are used for people tracking in addition
to the ground plane homography. To localize each person
for robust tracking, Khan and Shah [25] computed multiple
homographies associated with parallel planes to the ground
plane using vanishing points. In addition to homography
and vanishing points, fundamental matrix was also used to
reliably find correspondence matching for the top points of
people [26].

III. PARALLAX-ADAPTIVE PIXEL WARPING MODEL
In many practical applications of multi-view videos such
as surveillance and sports, static multiple cameras are
located with wide baselines toward a target real-world scene
which yields severely different camera parameters, e.g., rota-
tion, translation, and zoom factor. Also, in a typical video
sequence, the background is composed of a ground plane
and optionally a far distant region orthogonal to the ground
plane, and moreover, people moving on the ground plane at
different distances from the cameras are captured as multiple
foreground objects. Figs. 1(a) and (b) show two frames of
the ‘Soccer’ sequence captured by two cameras with severely
different positions and viewing directions from each other,
where large parallax is observed especially in the vicinity of
the foreground objects. For example, the players denoted by
red boxes in Fig. 1(a) appear in a different order in Fig. 1(b).
In addition, the players denoted by yellow boxes appear in
only one view of Fig. 1(a) not in Fig. 1(b).
Such large parallax makes the multi-view video stitch-

ing quite a challenging problem, and the conventional
stitching techniques often fail to provide faithful results.
Fig. 1(c) shows the stitched image by warping a target frame
in Fig. 1(a) to a reference frame in Fig. 1(b) according
to the homography. Since the homography-based warping
assumes a planar scene structure, only the ground plane is
accurately aligned and the foreground objects and the dis-
tant background region yield large parallax artifacts. Also,
Fig. 1(d) shows the stitching result of APAP [13] which
is one of the state-of-the-art image stitching techniques.
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The APAP adaptively warps images using mesh grid struc-
ture to reduce parallax artifacts, however, it still exhibits
inaccurate alignment of multiple foreground objects due to
depth discontinuity, and furthermore, it causes perspective
distortions in the non-overlapping area between two images.

The parallax between two views can be explained based
on the epipolar geometry as shown in Fig. 2. Homography is
a planar mapping from one image domain to another image
domain. Suppose that a 3D real-world point X1 is located on
a plane π and projected to the pixels p1 and q1 in the image
planes I and J , respectively. Then the relation between p1 and
q1 is described by

q1 = Hπp1 (1)

where Hπ is the homography associated with the plane π .
However, for the pixels p2 and q2 projected from
a 3D point X2, which is not on π , the relation (1) does not
hold, i.e., q2 6= Hπp2, and therefore, a single homography
Hπ map p2 to a wrong pixel q̃2 = Hπp2, which causes
parallax artifact. On the other hand, we can describe the
geometric relationship between any pair of corresponding
pixels by epipolar constraint. For example, for a given
pixel p2 ∈ I , the corresponding pixel q2 ∈ J should be
located on the epipolar line l2 computed as

l2 = Fp2 (2)

where F is the fundamental matrix.

FIGURE 2. Epipolar geometry.

In this work, we propose an adaptive pixel warping model
for parallax-free stitching of MVLP which employs faithful
correspondence matching among multi-view videos based
on the epipolar constraint. We first define on-plane pixels
which are projected from the ground plane in real-world
scene, and define off-plane pixels belonging to the foreground
objects and the far distant background region. We generalize
the concept of epipolar constraint, used for matching the
top points of people in multi-camera based tracking [26],
to find reliable correspondence matching of off-plane pixels.
As shown in Fig. 3, for a given off-plane pixel p in a target
image I , we first estimate the ground plane pixel (GPP) gp
of p along the object direction Lp = p × vI determined by
the vertical vanishing point vI . Since gp is an on-plane pixel,
it can be warped to the corresponding GPP gq in the reference

FIGURE 3. Parallax-adaptive pixel warping.

image J by using the homography matrix H evaluated on the
ground plane.

gq = Hgp. (3)

The unknown pixel q corresponding to p can be esti-
mated as the cross point between the object direction line
Lq = gq × vJ passing through gq and the vertical vanishing
point vJ , and the epipolar line lp = Fp specified by the
fundamental matrix.

q = Lq × lp. (4)

Fig. 1(e) shows the resulting image stitched by using the
proposed warping model, where we see that the multiple
foreground objects and the background are aligned correctly,
while the parallax artifacts, occurred in the conventional
methods as shown in Figs. 1(c) and (d), are alleviated effec-
tively. Also the proposed algorithm can warp the foreground
objects and the background on the non-overlapped areas nat-
urally as well.

Consequently, to perform the proposed parallax-adaptive
pixel warping, we need to estimate the parameters of the
homography matrix H of the ground plane, the fundamental
matrixF, and the vertical vanishing points vI and vJ .Wewill
explain the details of the parameter estimation in Section IV.
Also, we need to estimate an optimal GPP gp for a given query
pixel p. Note that [26] employs only a single query pixel at
the top of a foreground object and roughly estimates the GPP
by using the average height of objects. In this work, we esti-
mate optimal GPPs more accurately by using the spatial and
temporal feature matches based on an energy minimization
framework, which will be explained in Section V.

IV. PARAMETER ESTIMATION
For given two input MVLP, we first estimate the parameters
of the homography matrix, the fundamental matrix, and the
vertical vanishing points. Note that these parameters are fixed
over all the frames since we assume that multi-view videos
are captured by static cameras.

A. GROUND PLANE HOMOGRAPHY
We estimate the homography associated with the ground
plane using inter-view correspondence matching. In general,
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initial matching between two views is performed by using
feature descriptors such as SIFT [23] or ASIFT [35], and
then the spurious matches are removed by outlier removal
schemes such as RANSAC [36]. However, the conventional
appearance-based techniquesmay not provide reliablematch-
ing results on MVLP, especially in multiple foreground
objects at different scene depths, since the neighboring pixels
of a feature point in one image yield severely different val-
ues from that of the corresponding feature point in another
image [37], [38]. Therefore, in this work, we estimate the
homography more reliably by employing the appearance fea-
tures as well as the activity information of moving foreground
objects.

Fig. 4(a) shows an input color video sequence: I = {I (k) :
k = 1, 2, · · · ,K } where I (k) denotes the k-th frame and
K is the total number of frames. We find Bground the set of
feature matches on the ground plane between I and J using
the activity-based correspondence matching technique [38].
Then we compute an initial homography Hinit from Bground
using RANSAC. We also obtain a background image IBG,
as shown in Fig. 4(b), by performing the median filtering to
all the frames in I. Then we use SIFT to find a set of feature
matches B between two background images IBG and JBG
obtained from two video sequences I and J , respectively.
Note that B includes the matches on the ground plane and the
matches in the distant background region together. Hence we
first extract the matches on the ground plane only from B by
selecting the inliers matches of Hinit. Then we refine Hinit to
obtain a final homographyH by usingBground and the selected
ground plane matches in B, based on RANSAC.

FIGURE 4. (a) An input video sequence and (b) its background image.

B. FUNDAMENTAL MATRIX
To estimate the fundamental matrix between two views,
we find inter-view featurematching on the foreground objects
as well. Note that, while the correspondence matching for the
background is performed once over a whole video sequence,
that for the foreground objects is performed at each time
instance, respectively. In practice, we use SIFT to find the
inter-view feature matches between I (k) and J (k), and obtain
the set F (k)

spatial by selecting the matches lying on the fore-
ground regions only by using background subtraction [39].
While Bground includes a small number of outlier matches
thanks to reliable performance of activity-based matching,
F (k)
spatial and B include relatively large numbers of spurious

matches since appearance-based matching is vulnerable to

severe parallax. Therefore, we further refine the matches in
F (k)
spatial and B using the geometric constraints.
As shown in Fig. 5, when a pair of corresponding off-plane

pixels p ∈ I and q ∈ J are given, their GPPs gp and gq are
corresponding on-plane pixels to each other and should be
located on the object direction lines Lp and Lq, respectively.
Hence we can estimate gp and gq as [24]

gp = Lp × L′q,

gq = Lq × L′p, (5)

where L′p and L′q are the warped lines of Lp and Lq into
the other views, respectively, by the ground plane homog-
raphy H. Based on this property, we induce two geometric
constraints to validate the obtained correspondence matches.
First, gp should be located at a position on Lp equal
to or below p such that (gp − p) · vI ≥ 0. Similarly, we have
(gq − q) · vJ ≥ 0. Second, gp should be close to the
lowest possible pixel plow along Lp in a connected object
area. In practice, we employ a tolerance range for gp such
that |(gp − plow) ·

vI
||vI ||
| is less than 40% of the height of a

foreground object. This also applies to gq and q.

FIGURE 5. Ground plane pixel estimation. p and q are given as
corresponding to each other. L′

p and L′
q denote the homography

transformed lines of Lp and Lq into the other views, respectively.

We remove the false matches from F (k)
spatial, which vio-

late the first and/or second constraints, to yield a refined
set F̃ (k)

spatial. For B, we test only the first constraint and
apply the multi-structure guided sampling (MULTI-GS) [40]
to obtain a refined set B̃. Fig. 6 shows that the proposed
matching refinement for MVLP removes most of the spu-
rious matches successfully both on the foreground objects
and the background. Finally, we estimate the fundamental
matrix F by applying RANSAC to the appearance-based
feature matches of F̃ (k)

spatial’s and B̃ as well as the activity-
based matches of Bground together. Note that, due to com-
putational complexity, we empirically collect 1000 feature
matches from F̃ (k)

spatial’s associated with randomly selected
frames.

C. VERTICAL VANISHING POINTS
Vanishing points are the points where the parallel lines are
converging [31]. In multi-view video sequences, people are
assumed to be standing along the orthogonal direction to the
ground plane, and therefore, we define a vertical vanishing
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FIGURE 6. Refinement of feature matching on (a) foreground objects and
(b) background. Correct and spurious matches are denoted by the yellow
and red lines, respectively.

point as a converging point of parallel lines in a scene orthog-
onal to the ground plane. In practice, we estimate the vertical
vanishing points by using [41]. Instead of complex people
tracking, we simply select 10,000 major axis lines of people
from randomly selected frames, where the lines satisfy the
condition that the ratio of the length of minor axis to the
length of major axis is below 0.3. Then, as shown in Fig. 3,
the object direction Lp can be computed at each off-plane
pixel p as the line passing through p and v

Lp = p× v (6)

where v is the vertical vanishing point. Note that the object
direction Lp is used to estimate the GPP gp based on the
constraint that gp should be located on Lp.

V. GROUND PLANE PIXEL ESTIMATION
We estimate optimal GPPs for given query pixels in a target
frame to find their warped pixels in a reference frame. Note
that the proposed pixel warping model is not only applicable
to off-plane pixels but on-plane pixels such that gp = p for a
pixel p on the ground plane. We perform the GPP estimation
for the foreground objects and the background, respectively,
where the inter-view and inter-frame feature matches are used
together for the foreground objects while only the inter-view
feature matches are used for the background. The estimated
GPP positions are also optimized based on an energy mini-
mization framework.

A. GROUND PLANE PIXEL AND GROUND VALUE
Multiple off-plane pixels on a same object direction line share
a same GPP, since the corresponding real-world points are
assumed to be located on a same vertical line perpendicular
to the ground plane. For example, as shown in Fig. 7(a),
the pixels r1, r2 and r3 on Lr have the GPP gr, while the pix-
els s1, s2 and s3 onLs have GPP gs. However, off-plane pixels
lying on different object direction lines have different GPPs.
We define a ground value δp for the pixel p according to

FIGURE 7. Relation between ground plane pixels and ground values.
(a) A target frame and (b) its ground value map.

its GPP gp, as shown in Fig. 7(a).

δp =
vI − p
||vI − p||

· gp. (7)

Note that the ground values of off-plane pixels are almost
invariant within a same foreground object or a same distant
background region. We exploit this property to estimate the
GPPs by estimating their ground values instead, since gp and
δp are put in one-to-one correspondence with each other for
a given p via (7).

B. SPATIOTEMPORAL ESTIMATION FOR
FOREGROUND OBJECTS
Let us first define8(k)

spatial as the set of feature pixels in F̃
(k)
spatial

detected from a target image I (k). For a given feature pixel
p(k) ∈ 8(k)

spatial associated with an inter-view match denoted
by a yellow line in Fig. 8, a GPP gp(k) is found by (5). We call
this procedure of GPP estimation using inter-view feature
matches as spatial matching based estimation (SME).We per-
form SME using F̃ (k)

spatial for each k-th frame, respectively.
However, some foreground objects may not provide suffi-

cient numbers of inter-view matches or may have no inter-
view match at all, due to large parallax between two views
and/or relatively small areas in an image. Hence we addi-
tionally employ the temporal information from the previous
frame to predict GPPs. Specifically, we use SIFT to obtain the
set of inter-frame feature matches F̃ (k)

temporal associated with
the foreground objects between a current frame I (k) and its
previous frame I (k−1), which are denoted by the blue lines
in Fig. 8. In general, F̃ (k)

temporal has a much larger number of

reliable matches than F̃ (k)
spatial, since the adjacent frames in a

same view exhibit similar scene contents to each other while
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FIGURE 8. Inter-view feature matches (yellow lines) and inter-frame
feature matches (blue lines).

the frames from different views exhibit severely different
appearance due to large parallax. Note that some pixels may
be detected as the spatial features and the temporal features
simultaneously, which belong to both of F̃ (k)

spatial and F̃
(k)
temporal.

Let us define 8(k)
temporal as the set of inter-frame feature

pixels in F̃ (k)
temporal detected from a target image I (k). For

each pixel p(k) ∈
(
8

(k)
temporal −8

(k)
spatial

)
, we find its temporal

corresponding pixel p(k−1). In addition, we also collect the
inter-view feature pixels from 8

(k)
spatial, which are located in

the same foreground object to p(k). Then, by (3) and (4),
we compute a candidate pixel q̂(k) in the reference image
J (k) corresponding to p(k) by finding a candidate GPP ĝp(k) .
Note that we estimate the optimal GPP by estimating the
ground value via (7) instead. In practice, we take a ground
value of p(k) as the ground value of p(k−1) and the ground
values of the additionally collected inter-view feature pixels,
respectively, since the ground values are same within a same
foreground object while the GPPs are changeable. Then we
check whether each of the candidate positions q̂(k) lies on a
foreground object region in J (k) or not, and we discard the
associated GPP ĝp(k) when q̂

(k) lies outside of the foreground
areas within J (k). Finally, we evaluate the SIFT descriptors
for the surviving candidate positions q̂(k), and select the
GPP of p(k) associated with the best matching candidate
position. We call this procedure as temporal matching based
estimation (TME).

When TME returns no available solution, we estimate the
GPP by taking the ground value of the lowest possible pixel
in a foreground object. We call this procedure as region
based estimation (RE). RE yields relatively lower accuracy of
GPP estimation than SME due to the lack of inter-view
matching information, however it can perform reason-
able warping of the foreground objects lying on the non-
overlapping region which appear only in I (k) but not in J (k).

C. SPATIAL ESTIMATION FOR BACKGROUND
We also estimate the GPPs for the background. We assume
that the background is composed of the ground plane and
optionally a far distant region. To adaptively warp the back-
ground image, we first decide whether the captured scene

includes a distant background region or not. To be specific,
we use the inter-view feature matching on the background.
From B̃, we extract the set of matches which are outliers of
the ground plane homography obtained in Section IV-A. If the
number of outlier matches is less than 5% of the total number
of matches in B̃, we decide the background scene includes
only the ground plane without a distant region, and then we
simply estimate the GPPs as gp = p for all the background
pixels p.

Otherwise, it means that the background includes a distant
region where we perform GPP estimation. We first compute
the GPPs for the extracted outlier matches in B̃ by SME, and
predict a line passing through the obtained GPPs using linear
regression. This line is regarded as a boundary to roughly
separate the distant background region from the ground plane.
For the pixels p located below the boundary line, we sim-
ply estimate the GPPs as gp = p. For the feature pixels
in B̃ located above the boundary line, we estimate the GPPs
by SME.

D. GROUND VALUE OPTIMIZATION
For seamless warping of foreground objects and distant back-
ground region, we further refine the positions of the initial
GPPs for the off-plane feature pixels, obtained in Section V-B
and Section V-C. Specifically, we formulate an energy
function EFG to refine the associated initial ground values
for the feature pixels of the foreground objects in
8(k)
=

(
8

(k)
spatial

⋃
8

(k)
temporal

)
.

EFG(F(k))=EFG,data(F(k))+αEFG,ss(F(k))+βEts(F(k)) (8)

where F(k) denotes the set of optimal ground values δp(k) ’s
for all feature pixels p(k)’s in 8(k). We set the weighting
parameters as α = 0.5 and β = 0.5 experimentally.
EFG,data is the data cost designed as

EFG,data(F(k)) =
∑

p(k)∈8(k)

(
δp(k) − δ̄p(k)

)2 (9)

where δ̄p(k) denotes the initial ground value of p
(k). The initial

ground values may be inaccurate due to the errors in feature
matching and/or background subtraction. Hence we employ
the spatial smoothness cost given by

EFG,ss(F(k))=
∑

p(k)i ∈8
(k)

∑
p(k)j ∈N

(k)
i

w(p(k)i ,p
(k)
j ) ·

(
δp(k)i
− δp(k)j

)2

(10)

where N (k)
i denotes the set of spatially neighboring pixels

to p(k)i . Two pixels p(k)i and p(k)j are regarded as spatial neigh-
bors to each other when they are located in a same foreground
object region and satisfy the compatibility constraint: the
warped pixel of p(k)i ∈ I (k) using the initial GPP of p(k)j is
located on a foreground object region in J (k), and at the same
time, the warped pixel of p(k)j ∈ I (k) using the initial GPP

of p(k)i is also located on the same foreground object in J (k).
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In this work, we select at most the four nearest neighboring
pixels to p(k)i to define N (k)

i . The spatial weight is given by

w(pi,pj) = exp (−||pi − pj||/τ ) (11)

where we set τ = 100 empirically. Moreover, to mitigate
the flickering artifacts in a resulting stitched video sequence,
the temporal smoothness cost is defined as

Ets(F(k)) =
∑

p(k)∈8(k)
temporal

(
δp(k) − δ

∗

p(k−1)

)2
(12)

where δ∗p(k−1) is the optimal ground value of the inter-frame

corresponding pixel p(k−1) in the previous frame I (k−1). Note
that we do not use the temporal cost function at the first frame.

Let 9 represent the set of the feature pixels in B̃ located
above the boundary line in the background image of a target
view. We also formulate an energy function EBG for 9 as

EBG(B) = EBG,data(B)+ γEBG,ss(B) (13)

where B denotes the set of optimal ground values δp’s for all
feature pixels p’s in 9. The weighting parameter γ is set to
be 1 empirically. The data term is given by

EBG,data(B) =
∑
p∈9

(
δp − δ̄p

)2 (14)

where δ̄p denotes the ground value of p ∈ 9 initially obtained
by SME. The spatial smoothness cost is given by

EBG,ss(B) =
∑
pi∈9

∑
pj∈Ni

w(pi,pj) ·
(
δpi − δpj

)2 (15)

where Ni is the set of the four feature points in 9 nearest
to pi.

We refine the ground values for all the off-plane feature
pixels in the foreground objects by minimizing the energy
function in (8) using a linear solver. Then the remaining non-
feature pixels in the foreground objects are assigned ground
values by using the nearest interpolation on the available
optimal ground values computed at the feature pixels.We also
find the set of the optimal ground values at the off-plane
feature pixels in the distant background region byminimizing
the energy function in (13), which are then interpolated to
determine the ground values at all the background pixels
above the boundary line. In practice, we apply the linear inter-
polation within the convex hull of the feature pixels and apply
the nearest interpolation outside of the convex hull. Fig. 7(b)
shows the resulting ground value map of a target image frame
in Fig. 7(a). Note that the off-plane pixels belonging to a same
foreground object region or a distant background region have
almost same ground values to one another, even though their
GPPs are different. On the contrary, the on-plane pixels on
the ground plane have different ground values according to
their relative positions along the direction toward the vertical
vanishing point.

VI. EXPERIMENTAL RESULTS
We evaluate the performance of the proposed algorithm using
12 test video sequences, as shown in Fig. 12. Each test video
sequence is composed of two videos captured at 30 frames
per second by two synchronized cameras with unknown cam-
era parameters. A captured scene includes multiple moving
people on a ground plane at various scene depths. Table 1
presents the specification of the test sequences. We simply
approximate the parallax angle by first taking the sum of the
angle between Lp and L′q and the angle between Lq and L′p
shown in Fig. 5, and by computing the average for all the
manually obtained ground truth matching pixels of p and q
which is then divided by 2. In general, a larger parallax
angle is yielded, when two videos are captured with a wider
camera baseline and a captured scene is closer to the cameras.
We warp each pixel in a target image frame to a reference
frame based on the proposed parallax-adaptive pixel warping
model. The hole pixels inwarped target frame are interpolated
by using the valid warped pixels. To evaluate whether the
alignment is geometrically accurate or not, we simply use the
average blending scheme to combine the warped target frame
and the reference frame.

TABLE 1. Specification of test video sequences.

A. FOREGROUND OBJECT ALIGNMENT
The performance of video stitching highly depends on
the accuracy of correspondence matching between different
views. In particular, accurate inter-view matches on the fore-
ground object regions are required to adaptively alleviate the
parallax artifacts caused by different scene depths of multiple
objects. Therefore, we first evaluate the alignment perfor-
mance of multiple foreground objects according to various
GPP estimation methods.

Fig. 9 compares the stitching results on selected
frames from the three test sequences of MVLP, using
the GPPs estimated by the four different methods: RE,
SME+RE, SME+TME+RE without optimization, and
SME+TME+RE with optimization. Figs. 9(a) and (b) show
target frames and reference frames, respectively, where we
mark the obtained inter-view feature pixels in F̃ (k)

spatial by
crosses. In the ‘‘Lawn’’ sequence, the foreground objects
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FIGURE 9. Stitching results of multiple foreground objects using the proposed ground plane pixel estimation methods. (a) Target frames and
(b) reference frames. The stitched images by using (c) RE, (d) SME+RE, (e) SME+TME+RE without optimization, and (f) SME+TME+RE with
optimization, respectively. From top to bottom, ‘‘Lawn,’’ ‘‘Street,’’ and ‘‘Garden’’ sequences.

occupy relatively small image areas since the cameras are
located far from the captured scene, and thus they yield
few inter-view feature matches. RE shows the artifact on
the person in red, since the associated GPPs are selected
on the person in white, which is connected to the person
in red in the target frame by the blob analysis. The match-
ing accuracy on the person in red is improved by using
SME+RE, but the artifact on the legs is still observed.
The selected frames in the ‘‘Street’’ sequence are quite a
challenging case, since the two people occlude each other.
SME+RE improves the results of RE using inter-viewmatch-
ing information, but it still causes the misalignment on the
right person. However, SME+TME+RE provides accurate
results of foreground object alignment on the two sequences
by using the spatiotemporal information together. The
‘‘Garden’’ sequence includes the false matches marked by
yellow crosses in Figs. 9(a) and (b). Hence, SME+RE and
even SME+TME+RE without optimization suffer from the
misalignment artifact of foreground objects, however, this
artifact is alleviated in SME+TME+RE with optimization.

We also quantitatively measure the matching errors of the
foreground objects using the ground truth correspondence
matches. We select regularly distributed query pixels on
the foreground objects in a target frame, and obtain initial
matching pixels in a reference frame by using a dense fea-
ture descriptor DAISY [42], which are then refined manu-
ally. We find ground truth matches on 100 selected pairs of
frames for each sequence, and on average, we obtain about
20 matches on the foreground objects at each pair of frames.
Fig. 10 compares the root mean squared errors (RMSEs) of
the foreground matching averaged over the 12 test sequences,
where the RMSEs of RE, SME+RE, and SME+TME+RE
without and with optimization are 5.45, 4.38, 3.77, and
3.34 pixels, respectively.

B. VIDEO STITCHING
Fig. 11 shows the video stitching results of the proposed
algorithm on six test sequences of MVLP.We select frames at
five different time instances in each sequence which include

FIGURE 10. Comparison of the average error of correspondence matching
for the foreground objects using different ground plane pixel estimation
methods. The matching error measures the RMSE between the resulting
matches and the ground truth matches averaged over 12 test sequences.

various challenging scene contents. In Fig. 11, all the
sequences except the ‘‘Square’’ are detected to include the
distant background regions in addition to the ground planes.
We see that the ground planes and the distant background
regions are well aligned simultaneously, since the on-plane
pixels and the off-plane background pixels are warped adap-
tively. Note that the ground planes in the ‘‘Office’’ and
‘‘Soccer’’ sequences have less textures, which are often
occurred in surveillance and sports scenes, but the proposed
algorithm also finds correct homographies for these ground
planes by using the appearance and activity based feature
matches together.

We also observe that the multiple foreground objects are
accurately aligned without ghosting artifacts in most frames.
For example, in the ‘‘Tennis’’ sequence, the two people on
the right side are moving toward different directions from
each other, and thus they are detected as a single object at
some time instances due to overlap. The proposed algorithm
provides accurate warping of these foreground objects by
estimating optimal GPPs reliably using the spatiotemporal
feature matches. In the ‘‘Square’’ sequence, the left person
moves on the overlapped area between the target and ref-
erence views at the 29571th and 29663th frames, however
it disappears from the reference frames at the 29804th and
29857th frames. The proposed algorithm warps this object
naturally on the non-overlapped area in the stitched images.
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FIGURE 11. Video stitching results of the proposed algorithm. For each sequence, pairs of target and reference frames (left) and the stitched
images (right) are shown.

In the ‘‘Trail’’ sequence, the foreground object approaches
to the camera yielding severely changing scene depths, but
the proposed algorithm aligns this object correctly at various

scales. On the other hand, the proposed algorithm yields
artifacts on some exceptional situations. In the ‘‘Badminton’’
sequence, the person marked with a red circle is jumping and
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never touches the ground plane at the 27767th frame. In such
a case, no valid inter-view feature matches are obtained on
this region due to the geometric constraint in Section IV-B,
and thus RE yields the misalignment artifact. In the ‘‘Office’’
sequence, we see some artifacts near the right person since a
moving car behind the cameras is reflected on the background
windows. The ‘‘Soccer’’ is quite a challenging sequence
which includes various fast moving players, where multiple
people occlude one another at the 3800th and 5038th frames.
In such cases, SIFT provides insufficient correct inter-view
matches or even no correct match at all, resulting in the
stitching artifacts indicated by red circles.

C. COMPARISON WITH CONVENTIONAL METHODS
We compare the performance of the proposed algorithm with
that of the four conventional methods including the state-of-
the-art image stitching techniques: Homography, CPW [34],
SPHP [15] and APAP [13]. Note that CPW is used as an
alignment model for stitching methods [20], [29]. SPHP is
a shape-preserving warping method which can be compared
to evaluate the naturalness of warping on non-overlapping
regions. APAP is one of the most flexible warping methods
which directly estimates multiple homographies for local
image regions. However, we do not compare the seam-based
techniques [19]–[21], since they just hide the misalignment
artifacts using seam-cutting based composition. We apply
the compared image stitching techniques to the frames at
each time instance, respectively. We implement Homography
and CPW. The parameters for warp in CPW are set as [29].
We obtain the stitching results of SPHP and APAP using the
source codes provided by the authors’ webpages [43], [44].
In our experiment, MULTI-GS [40] used in [13] yields a
better performance of outlier removal than RANSAC, and
thus we also apply MULTI-GS to remove outlier matches of
SIFT in Homography, CPW, and SPHP as well.

Fig. 12 compares the stitching results on selected frames
of 12 test video sequences. All the conventional methods
including the proposed algorithm achieve good stitching
results on the ‘‘Fountain’’ sequence which yields the smallest
parallax angle of 1.9◦. However, for the other sequences of
MVLP, the conventional methods fail to work to align mul-
tiple foreground objects and background simultaneously. For
example, in the ‘‘Square’’ and ‘‘Office’’ sequences, the feet
of multiple people are well aligned on the ground planes,
but the mismatch artifact gets worse toward the heads, since
the ground plane warping is dominant in the conventional
methods. On the other hand, in the ‘‘Stadium,’’ ‘‘Soccer,’’
and ‘‘Garden’’ sequences, a same person appears twice at dif-
ferent locations without any overlap on the stitched domain,
since the conventional methods extract dominant features
from the distant background regions causing the misalign-
ment artifacts on the ground planes and the foreground
objects.

Specifically, Homography warps all the pixels in a target
frame by global transformation derived from a dominant
planar scene structure, and thus it mismatches either the

ground plane or a distant background region. CPW adap-
tively refines the initial homography according to feature
matches, and reduces the parallax artifacts on the foreground
objects compared with that of Homography, as shown in the
‘‘Tennis,’’ ‘‘Office’’ and ‘‘Street’’ sequences. SPHP adopts
the similarity transformation to reduce the perspective dis-
tortion of the non-overlapping area, and thus it aligns the
foreground objects on the non-overlapping areas well in the
‘‘Square’’ sequence as marked with a red circle. However,
at the same time, SPHP distorts the line structure on the
ground plane to curves as marked with green ellipses in the
‘‘Lawn’’ and ‘‘Square’’ sequences. APAP estimates locally
adaptive warps and reduces the spatial deviation of a same
foreground object in the stitched domain compared with that
of CPW, as shown in the ‘‘School’’ sequence, however, APAP
results in unnatural distortions in the ‘‘Badminton,’’ ‘‘Trail,’’
and ‘‘School’’ sequences as marked with green ellipses.

On the contrary, in all the frames, the proposed algorithm
alleviates the parallax artifacts of video stitching success-
fully by adaptively aligning the multiple foreground objects
and background simultaneously. It also performs geomet-
rically accurate warping on the non-overlapping areas as
well, as shown in the ‘‘Badminton,’’ ‘‘Square,’’ and ‘‘Soccer’’
sequences. Moreover, the proposed algorithm correctly deter-
mines the existence of distant background regions in all
12 test sequences. Thus both of the ground plane and the
distant background region are correctly aligned as shown in
the ‘‘Badminton,’’ ‘‘Office,’’ and ‘‘School’’ sequences. In the
‘‘Soccer’’ sequence, even some ghost artifacts are observed
due to significant amount of occlusion as marked by a red
circle, the proposed algorithm aligns most people accurately
while the compared methods fail to work on this challenging
case. Also, the umpire chair and the net in the ‘‘Tennis’’
sequence and the net and the light lamp in the ‘‘Badminton’’
sequence are static objects over a whole video sequence
which are not detected as moving foreground objects, and
therefore the proposed algorithm cannot align them correctly.
However, all the compared methods also fail to align these
objects as marked with yellow ellipses. More comparative
results of video stitching are provided in the supplementary
video.

We also quantitatively compare the performance of the pro-
posed algorithm with that of the conventional methods using
manually obtained ground truth correspondence matches on
the foreground objects and the background together. We use
the same ground truth matches on the foreground objects as
explained in Sec. VI-A. We generate ground truth matches
on the background only once for each sequence using the
background image. We first consider multiple large planar
areas in the background, and compute an optimal homogra-
phy for each planar area by using manually obtained feature
matches. Then we select regularly distributed query pixels
on the background image of a target view, and find the
ground truth matching pixels by warping the query pixels
employing the multiple homographies selectively. For the
query pixels on small and/or non-planar areas, we manually
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FIGURE 12. Comparison of video stitching results of the proposed algorithm and the four existing methods: Homography, CPW [34], SPHP [15], and
APAP [13]. From top to bottom, ‘‘Fountain,’’ ‘‘Tennis,’’ ‘‘Lawn,’’ ‘‘Badminton,’’ ‘‘Square,’’ ‘‘Office,’’ ‘‘Trail,’’ ‘‘Stadium,’’ ‘‘Soccer,’’ ‘‘Street,’’ ‘‘School,’’ and
‘‘Garden’’ sequences.

obtain the ground truth matching pixels. The resulting ground
truth matches on the background image are added to each of
the 100 frames which are selected for finding ground truth
matches on the foreground objects, where we exclude the
background query pixels occluded by the foreground objects.
Consequently, on average, we have 724 ground truth matches
on the background for each of the 100 selected frames over
12 test sequences.

Fig. 13 presents the RMSE between the ground truth
corresponding pixels and the warped pixels on the over-
lapped regions of the target and reference frames. We see
that the conventional methods tend to yield large RMSEs
on test sequences with large parallax angles. For example,
the RMSEs of all the stitching methods are below 2 pixels on
the ‘‘Fountain’’ sequence which exhibits the smallest parallax
angle of 1.9◦. However, on the challenging sequences of
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FIGURE 13. Quantitative comparison of the stitching performance of the
proposed algorithm with that of the conventional methods. The matching
error measures the average RMSE between the warped pixels and the
ground truth corresponding pixels.

MVLP such as ‘‘Soccer’’ and ‘‘School,’’ the conventional
methods yield significantly larger RMSEs compared with
that of the other sequences. On the other hand, the proposed
algorithm always achieves smaller RMSEs than that of the
conventional methods on all the test sequences, and yields a
much smaller average error of 5.64 pixels while Homography,
CPW, SPHP, and APAP result in the average errors of 35.37,
34.91, 32.05, and 34.86 pixels, respectively.

D. EXECUTION TIME COMPARISON
Table 2 compares the execution times of the conventional
methods and the proposed algorithm measured on a PC with
3.4 GHz AMD Ryzen 7 1700X CPU and 32 GB RAM. Note
that this may not be a fair comparison since the optimiza-
tion level of implementation is different for the compared
methods. The execution times of the conventional methods

TABLE 2. Comparison of execution times of the conventional methods
and the proposed algorithm. The Unit is seconds per frame. PP:
preprocessing. PE: parameter estimation. ST: stitching.

.

and the stitching (ST) in the proposed algorithm are averaged
on 100 frames for each sequence, and that of the prepro-
cessing (PP) and the parameter estimation (PE) in the pro-
posed algorithm are averaged on the entire frames for each
sequence. Homography is the fastest method which takes
0.57 seconds per each frame on average. CPW, SPHP, and
APAP require relatively longer execution times, since these
methods use different warping models for each cell or mesh
grid in an image. Note that CPW is a non-parametric
warping scheme and takes the longest execution time
of 15.4 seconds per frame among the four conventional meth-
ods. The proposed algorithm is divided into three steps to
evaluate the execution times. PP includes the background
subtraction and the activity extraction for activity-based
correspondence matching [38]. PE includes the homogra-
phy estimation with activity-based correspondence match-
ing computation, the fundamental matrix estimation, and
the estimation of vertical vanishing points. ST includes the
SIFT matching computation, ground pixel estimation, warp-
ing, and blending. Note that PP and PE are performed once
over the entire frames for each video sequence, and thus yield
relatively short execution times for each frame. However,
ST in the proposed algorithm consumes a major portion of
the execution time to compute hole pixels in the warped target
frame using valid warped pixels, which takes 33.8 seconds
per frame on average. Note that ‘‘Fountain,’’ ‘‘Lawn,’’ and
‘‘Square’’ sequences exhibit relatively short execution times
of ST, since they do not have distant background regions.

VII. CONCLUSIONS
We proposed a novel video stitching algorithm to achieve
geometrically accurate alignment of MVLP. We warped the
multiple foreground objects, distant background, and ground
plane adaptively based on the epipolar geometry, where an
off-plane pixel in a target view is warped to a reference
view through its GPP. We also estimated optimal GPPs for
the foreground objects by using the spatiotemporal feature
matches, and for the background by using the spatial feature
matches, respectively. The initially obtained GPPs are refined
by energy minimization. Experimental results demonstrated
that the proposed algorithm aligns various MVLP accurately,
and yields a significantly better performance of parallax arti-
fact reduction qualitatively and quantitatively compared with
the state-of-the-art image stitching techniques. Our future
research topics include thewarping of static objects with large
parallax and the parallax-free stitching forMVLP captured by
moving cameras.

REFERENCES
[1] W. Liu, M. Zhang, Z. Luo, and Y. Cai, ‘‘An ensemble deep learning method

for vehicle type classification on visual traffic surveillance sensors,’’ IEEE
Access, vol. 5, p. 24417–24425, 2017.

[2] R. Panda and A. K. Roy-Chowdhury, ‘‘Multi-view surveillance video
summarization via joint embedding and sparse optimization,’’ IEEE Trans.
Multimedia, vol. 19, no. 9, pp. 2010–2021, Sep. 2017.

[3] M.Wang, B. Cheng, and C. Yuen, ‘‘Joint coding-transmission optimization
for a video surveillance system with multiple cameras,’’ IEEE Trans.
Multimedia, vol. 20, no. 3, pp. 620–633, Mar. 2018.

26916 VOLUME 6, 2018



K.-Y. Lee, J.-Y. Sim: Stitching for Multi-View Videos With Large Parallax Based on Adaptive Pixel Warping

[4] K. Bilal, A. Erbad, and M. Hefeeda, ‘‘Crowdsourced multi-view live video
streaming using cloud computing,’’ IEEE Access, vol. 5, pp. 12635–12647,
2017.

[5] S. A. Pettersen et al., ‘‘Soccer video and player position dataset,’’ in Proc.
ACM Multimedia Syst. Conf., 2014, pp. 18–23.

[6] Q. Yao, H. Sankoh, K. Nonaka, and S. Naito, ‘‘Automatic camera self-
calibration for immersive navigation of free viewpoint sports video,’’ in
Proc. Int. Conf. Multimedia Signal Process., Sep. 2016, pp. 1–6.

[7] B. Kwon, J. Kim, K. Lee, Y. K. Lee, S. Park, and S. Lee, ‘‘Implementation
of a virtual training simulator based on 360◦ multi-view human action
recognition,’’ IEEE Access, vol. 5, pp. 12496–12511, 2017.

[8] B.Macchiavello, C. Dorea, E. M. Hung, G. Cheung, andW.-T. Tan, ‘‘Loss-
resilient coding of texture and depth for free-viewpoint video conferenc-
ing,’’ IEEE Trans. Multimedia, vol. 16, no. 3, pp. 711–725, Apr. 2014.

[9] L. Toni, G. Cheung, and P. Frossard, ‘‘In-network view synthesis for
interactive multiview video systems,’’ IEEE Trans. Multimedia, vol. 18,
no. 5, pp. 852–864, May 2016.

[10] R. Szeliski, ‘‘Image alignment and stitching: A tutorial,’’ Found. Trends
Comput. Graph. Vis., vol. 2, no. 1, pp. 1–104, 2006.

[11] J. Gao, S. J. Kim, andM. S. Brown, ‘‘Constructing image panoramas using
dual-homography warping,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2011, pp. 49–56.

[12] W.-Y. Lin, S. Liu, Y. Matsushita, T.-T. Ng, and L.-F. Cheong, ‘‘Smoothly
varying affine stitching,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2011, pp. 345–352.

[13] J. Zaragoza, T.-J. Chin, Q.-H. Tran, M. S. Brown, and D. Suter, ‘‘As-
projective-as-possible image stitching with moving DLT,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1285–1298, Jul. 2014.

[14] G. Zhang, Y. He, W. Chen, J. Jia, and H. Bao, ‘‘Multi-viewpoint panorama
construction with wide-baseline images,’’ IEEE Trans. Image Process.,
vol. 25, no. 7, pp. 3099–3111, Jul. 2016.

[15] C.-H. Chang, Y. Sato, and Y.-Y. Chuang, ‘‘Shape-preserving half-
projective warps for image stitching,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Sep. 2014, pp. 3254–3261.

[16] C.-C. Lin, S. U. Pankanti, K. N. Ramamurthy, and A. Y. Aravkin, ‘‘Adap-
tive as-natural-as-possible image stitching,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 1155–1163.

[17] Y.-S. Chen and Y.-Y. Chuang, ‘‘Natural image stitching with the global
similarity prior,’’ in Proc. Eur. Conf. Comput. Vis., 2016, pp. 186–201.

[18] N. Li, Y. Xu, and C.Wang, ‘‘Quasi-homography warps in image stitching,’’
IEEE Trans. Multimedia, to be published.

[19] J. Gao, Y. Li, T.-J. Chin, andM. S. Brown, ‘‘Seam-driven image stitching,’’
in Proc. Eurographics, 2013, pp. 45–48.

[20] F. Zhang and F. Liu, ‘‘Parallax-tolerant image stitching,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3262–3269.

[21] K. Lin, N. Jiang, L.-F. Cheong, M. Do, and J. Lu, ‘‘SEAGULL: Seam-
guided local alignment for parallax-tolerant image stitching,’’ in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 370–385.

[22] M. Yu and G. Ma, ‘‘360◦ surround view system with parking guidance,’’
SAE Int. J. Commercial Vehicles, vol. 7, no. 1, pp. 19–24, 2014.

[23] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[24] W. Hu, M. Hu, X. Zhou, T. Tan, J. Luo, and S. Maybank, ‘‘Principal
axis-based correspondence betweenmultiple cameras for people tracking,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 663–671,
Apr. 2006.

[25] M. Shah and S. M. Khan, ‘‘Tracking multiple occluding people by local-
izing on multiple scene planes,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 3, pp. 505–519, Mar. 2009.

[26] A. Yildiz and Y. S. Akgul, ‘‘A fast method for tracking people withmultiple
cameras,’’ in Proc. Eur. Conf. Comput. Vis. Workshops, 2010, pp. 128–138.

[27] M. Takahashi, K. Ikeya, M. Kano, H. Ookubo, and T. Mishina, ‘‘Robust
volleyball tracking system using multi-view cameras,’’ in Proc. Int. Conf.
Pattern Recognit., Dec. 2016, pp. 2740–2745.

[28] M. El-Saban, M. Izz, and A. Kaheel, ‘‘Fast stitching of videos captured
from freely moving devices by exploiting temporal redundancy,’’ in Proc.
IEEE Int. Conf. Image Process., Sep. 2010, pp. 1193–1196.

[29] W. Jiang and J. Gu, ‘‘Video stitching with spatial-temporal content-
preserving warping,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2015, pp. 42–48.

[30] K.-Y. Lee and J.-Y. Sim, ‘‘Robust video stitching using adaptive
pixel transfer,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2015,
pp. 813–817.

[31] R. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[32] T. Igarashi, T. Moscovich, and J. F. Hughes, ‘‘As-rigid-as-possible shape
manipulation,’’ ACM Trans. Graph., vol. 24, no. 3, pp. 1134–1141,
Jul. 2005.

[33] S. Schaefer, T. McPhail, and J. Warren, ‘‘Image deformation using moving
least squares,’’ ACM Trans. Graph., vol. 25, no. 3, pp. 533–540, 2006.

[34] F. Liu, M. Gleicher, H.-L. Jin, and A. Agarwala, ‘‘Content-preserving
warps for 3D video stabilization,’’ ACM Trans. Graph., vol. 28, no. 3,
pp. 44:1–44:9, Aug. 2009.

[35] J.-M.Morel andG. Yu, ‘‘ASIFT: A new framework for fully affine invariant
image comparison,’’ SIAM J. Imag. Sci., vol. 2, no. 2, pp. 438–469, 2009.

[36] M. A. Fischler and R. Bolles, ‘‘Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy,’’ Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[37] E. Ermis, P. Clarot, P. Jodoin, and V. Saligrama, ‘‘Activity based matching
in distributed camera networks,’’ IEEE Trans. Image Process., vol. 19,
no. 10, pp. 2595–2613, Oct. 2010.

[38] S.-Y. Lee, J.-Y. Sim, C.-S. Kim, and S.-U. Lee, ‘‘Correspondence matching
of multi-view video sequences using mutual information based similar-
ity measure,’’ IEEE Trans. Multimedia, vol. 15, no. 8, pp. 1719–1731,
Dec. 2013.

[39] J. M. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin, ‘‘Foreground-
adaptive background subtraction,’’ IEEE Signal Process. Lett., vol. 16,
no. 5, pp. 390–393, May 2009.

[40] T.-J. Chin, J. Yu, and D. Suter, ‘‘Accelerated hypothesis generation for
multistructure data via preference analysis,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 4, pp. 625–638, Apr. 2012.

[41] F. Lv, T. Zhao, and R. Nevatia, ‘‘Camera calibration from video of a
walking human,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9,
pp. 1513–1518, Sep. 2006.

[42] E. Tola, V. Lepetit, and P. Fua, ‘‘DAISY: An efficient dense descriptor
applied to wide-baseline stereo,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 5, pp. 815–830, May 2010.

[43] C.-H. Chang’s Page. Accessed: May 12, 2018. [Online]. Available:
https://www.cmlab.csie.ntu.edu.tw/~frank/

[44] Project Page of APAP. Accessed: May 12, 2018. [Online]. Available:
http://cs.adelaide.edu.au/~tjchin/apap/

KYU-YUL LEE received the B.S. degree in elec-
trical and computer engineering from the Ulsan
National Institute of Science and Technology,
Ulsan, South Korea, in 2013, where he is currently
pursuing the Ph.D. degree in electrical and com-
puter engineering. His research interests include
correspondence matching, video stitching, and
deep learning.

JAE-YOUNG SIM (S’02–M’06) received the B.S.
degree in electrical engineering and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from Seoul National Univer-
sity, Seoul, South Korea, in 1999, 2001, and
2005, respectively. From 2005 to 2009, he was
a Research Staff Member with the Samsung
Advanced Institute of Technology, Samsung Elec-
tronics Company Ltd. In 2009, he joined the
School of Electrical and Computer Engineering,

Ulsan National Institute of Science and Technology, Ulsan, South Korea,
where he is currently an Associate Professor. His research interests include
image, video, and 3-D visual processing, computer vision, and multimedia
data compression.

VOLUME 6, 2018 26917


	INTRODUCTION
	RELATED WORK
	IMAGE AND VIDEO STITCHING
	STATIC MULTI-CAMERA BASED TRACKING

	PARALLAX-ADAPTIVE PIXEL WARPING MODEL
	PARAMETER ESTIMATION
	GROUND PLANE HOMOGRAPHY
	FUNDAMENTAL MATRIX
	VERTICAL VANISHING POINTS

	GROUND PLANE PIXEL ESTIMATION
	GROUND PLANE PIXEL AND GROUND VALUE
	SPATIOTEMPORAL ESTIMATION FOR FOREGROUND OBJECTS
	SPATIAL ESTIMATION FOR BACKGROUND
	GROUND VALUE OPTIMIZATION

	EXPERIMENTAL RESULTS
	FOREGROUND OBJECT ALIGNMENT
	VIDEO STITCHING
	COMPARISON WITH CONVENTIONAL METHODS
	EXECUTION TIME COMPARISON

	CONCLUSIONS
	REFERENCES
	Biographies
	KYU-YUL LEE
	JAE-YOUNG SIM


