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ABSTRACT Accurate evaluation of bradykinesia plays a crucial role in the diagnosis and therapy effect of
Parkinson’s disease. However, the subjective assessment shows low consistency among different evaluators,
and the objective sensor-based methods cannot accurately distinguish patients with different grades of
the 5-point clinical bradykinesia ratings. In this paper, an objective scoring method based on axis-angle
representation and multi-class support vector machine (SVM) classifier was employed to estimate the
bradykinesia severity. To reduce the dimension of attitude data for the better statistical analysis, the axis-
angle representation approach was employed to obtain the 1- D combined orientation angle to express the
3-D hand-grasping assessment task. The significant bradykinesia features extracted from the 1-D combined
orientation angle were used to train the SVM classification algorithm to acquire an objective score on the
bradykinesia severity. Clinical experiments with 78 patients and 18 age-matched healthy subjects showed
that the classification accuracy of the proposed method was 95.349%, which was superior to other related
reports. Hence, the proposed objective scoring method can provide a 5-point bradykinesia score in real-
time, and matches the clinical assessment approach of neurologists. Moreover, this method improves both
the inter-rater reliability and intra-rater reliability of the bradykinesia assessment.

INDEX TERMS Parkinsonian bradykinesia, support vector machine (SVM), quantification, wearable
device, sensor fusion.

I. INTRODUCTION
Parkinson’s disease (PD) is a common neurodegenerative
disease, which affects approximately 1% of the population
over 55 years old [1]. Rest tremor, bradykinesia, rigidity and
postural instability are the primary clinical character of PD.
Bradykinesia is defined as slowness of motion and occurs
in almost every case of PD [1]. Moreover, bradykinesia
causes difficulties in daily activities such as dressing, eating,
and bathing [2], which can be made worse by emotional
stress or intercurrent illnesses. Therefore, accurate and objec-
tive evaluation of bradykinesia occupies a pivotal part in the
diagnosis and monitoring of PD.

The gold standard for clinical diagnosis of bradykinesia
severity is the evaluation using the standard clinical rating

scales, which is performed by the well-trained neurolo-
gists [3]. The most commonly used clinical rating sys-
tem for PD is the Movement Disorders Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), which ranges from 0 to 4 (0=normal,
1=slight, 2=mild, 3=moderate, 4=severe) [4]. In the motor
examination (Part III) of MDS-UPDRS, a series of assess-
ment tests are defined, including the finger tapping, rapid
and repetitive hand-grasping movements, and pronation-
supination movements, which are completed by the patients
and the evaluators assess the movement performance accord-
ing to the rating scales. However, the rating is a subjec-
tive assessment based on the personal experience and relies
mainly on the visual judgment of neurologists, which shows
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low agreement among different evaluators. An objective and
automatic scoring of the bradykinesia severity can elimi-
nate inconsistencies and interrater assessment disagreements
among different evaluators, so as to improve the evaluation
and monitoring of PD symptoms.

The movement characteristics used to evaluate the
bradykinesia in MDS-UPDRS consist of speed, amplitude,
the occurrence of hesitations, and any variability or changes
in these characteristics over time [4]. Given the wide
application of wearable sensor technology and machine
learning algorithms [5], some researchers started to try
to develop systems that allow doctors to recognize these
movement disorder characteristics in sensor-wearing patients
remotely and objectively. In this direction, there have been
a series of articles employing various wearable motion sen-
sors or multiple-sensor combinations, such as accelerom-
eters [6]–[8], gyroscopes [9]–[11], magnetic sensors [12],
gyroscope-accelerometer combinations (IMUs) [13], [14],
and attitude and heading reference systems (AHRS, com-
posed of a triaxial gyroscope, a triaxial accelerometer, and
a triaxial magnetic sensor) [15], [18].

Kim et al. [9] used a quantitative measurement system
based on a gyroscope to recognize movement disorders
of 40 PD patients during the finger tapping assessment
test. Indices derived from the gyroscope signal showed high
correlations with the clinical assessment results (r=−0.73 to
−0.80, p<0.001). Salarian et al. [10] employed a gyro-
scope worn on the wrist to extract quantitative bradykine-
sia parameters in 20 PD patients. The clinical experiment
results demonstrated that the extracted quantitative
bradykinesia features, such as amplitude and periods
of movements, correlated well with the UPDRS scores
(r=−0.83, p=0.001). These studies focused on the extrac-
tion of related parameters of bradykinesia, which show
significant correlation with the clinical evaluation. However,
they cannot score directly on the severity of parkinsonian
bradykinesia.

Applications of machine learning algorithms for objective
monitoring and assessment of PD have attracted consider-
able attention during recent years. Several notable researches
based on machine learning algorithms were reported.
Patel et al. [8] used a support vector machine (SVM) classi-
fier to identify patients with Parkinsonian bradykinesia from
accelerometer data. Based on the inertial and electromyo-
graphic signal, Rabelo et al. [16] employed the k-nearest
neighbor (KNN) classifier to discriminate patients with
parkinsonian bradykinesia from healthy aged people. The
mean specificity and sensitivity in discriminating patients
and healthy aged were 83.33% and 86.67% respectively.
In addition, Arora et al. [17] used random forests to distin-
guish PD patients from healthy people based on a broad vari-
ety of smartphone sensor data. The experiment results with
20 participants showed that the mean sensitivity and speci-
ficity were 96.2% and 96.9% respectively. In spite of good
results, most of these classification methods focused on the
diagnosis: discriminating between healthy and PD cases,

which cannot directly distinguish patients with different
grades of UPDRS bradykinesia score.

Trying to overcome the limitations of the subjective diag-
nosis, Martinez-Manzanera et al. [18] used an AHRS and
an SVM-based classification method to obtain automatic
scores of three bradykinesia-related movements (finger tap-
ping, diadochokinesis and toe-tapping) of 25 PD patients.
A quaternions-based fusion algorithm was employed to
obtain the three-dimensional (3D) representation of move-
ments. In [18], quantitative features were extracted from a
single Euler angle, which explains most of the hand motion
and can be named the dominant axis. The dominant axis
for each assessing task was defined before the assessment.
However, a single Euler angle cannot provide full information
of the assessing movement, and the selected dominant axis
may vary to other two axes during the assessment task, which
will deteriorate the classification accuracy of the bradykinesia
severity.

In this study, the axis-angle representation approach was
employed to replace the single Euler angle to describe
the hand-grasping assessment movement based on the full
3D information. The nine degrees-of-freedom (9DoF) sensor
fusion algorithm based on Kalman filter was used to obtain
the 1D combined orientation angle of hand-grasping move-
ment. Features closely related to the significant bradykine-
sia characteristics (speed, amplitude, and variability) were
extracted from the 1D combined orientation signal to train
the SVMmulticlass classifier for estimating the bradykinesia
severity. The proposed objective scoring method can assess
the MDS-UPDRS bradykinesia-related items to reproduce
the classification results (5-point bradykinesia score: 0-4) of
the evaluators. The main contribution of our study is that the
axis-angle representation method was applied to obtain the
1D combined orientation angle, which can replace the Euler
angle to express the full 3D information of hand-grasping
assessment task. In accordance with the clinical UPDRS
assessment method, the SVM-based multiclass classifica-
tion can score the severity of bradykinesia to reproduce the
evaluators’ classification results with superior classification
accuracy. In addition, the objective scoring method proposed
in our study was compared with the other supervised classi-
fication algorithm, like the KNN classifier.

II. METHODS
A. SUBJECTS AND EXPERIMENT DESIGN
78 patients with slight to severe PD (UPDRS bradykinesia
score: 1-4) and 18 age-matched healthy controls (UPDRS
bradykinesia score: 0) participated in the clinical exper-
iments. Their demographics are listed in Table 1. The
participants were separated into two groups: one group
(43 PD and 10 controls) was used as the training set to
train the learning algorithm, and the other group (35 PD and
8 controls) was used as the testing set for testing the
algorithm. The distributions of the training and testing sam-
ples are listed in Table 2. The division of participants
demonstrated that the proposed classification methods are
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TABLE 1. Participants’ demographics.

TABLE 2. The distribution of dataset.

subject-independent and do not require pre-training for each
application. According to the MDS-UPDRS, the rapid and
repetitive hand-grasping task (Item 3.5 in the MDS-UPDRS)
was adopted in this study to evaluate the severity of parkin-
sonian bradykinesia. A single closing and opening action
of the hand is considered as a grasp cycle. All participants
were instructed to open the hand as fast and as fully as
possible for 10 seconds. For every participant, the assess-
ment task was videoed and later scored by an experienced
neurologist according to the MDS-UPDRS criterion. The
controls are healthy and age-matched participants who are
reported no movement disorder or any other neurological dis-
eases. Patients were told to stop medication at least 12 hours
before the experiments to make sure they were assessed in
OFF-levodopa state.

All clinical experiments were completed at the Affili-
ated Union Hospital of Fujian Medical University (Fuzhou,
China). This study was approved by the Ethics Committee of
Affiliated Union Hospital of Fujian Medical University.

B. SYSTEM FOR SIGNAL ACQUISITION
As Fig. 1 shows, a customwearable device was developed for
signal acquisition. The wearable device involves a fingertip
unit, which consists of a consumer-grade AHRS (BNO055,
Bosch Sensortec GmbH, Germany), a wrist-worn microcon-
troller board (MCU; ATmega1284P, Atmel Inc., USA) and a
Wireless Fidelity (WiFi) module (ESP-8266, Espressif Sys-
tems Pte., Ltd., China). The AHRS was worn on the fingertip
of the forefinger to capture the finger’s activity. Before each
measurement, the AHRS was calibrated by using the cali-
bration algorithm provided by the Bosch Sensortec GmbH.
The ranges of the three individual sensor components are
±4g, ±2000◦/s, and +/−1300µT respectively. After fusing
data from the three individual sensor components, the AHRS
output, involving quaternion, Euler angles, rotation vector,
linear acceleration vector, gravity vector, are acquired.

The AHRS outputs were sampled at 100Hz and transmit-
ted from the wearable device to the computer via WiFi in

FIGURE 1. The proposed bradykinesia quantification system. (a) system
diagram; (b) prototype implementation; (c) the starting posture of a
hand-grasping cycle; (d) the end posture of a hand-grasping cycle.

real-time. Then the AHRS outputs were saved for offline
analysis by usingMATLABR2014a (Mathworks Inc., USA).

C. SENSOR FUSION AND FEATURES EXTRACTION
To acquire a more accurate hand-grasping angular displace-
ment, signals from the AHRS were fused with the Kalman
filter theory, which is regarded as the most popular prob-
abilistic fusion algorithm applied in high-precision motion
tracking [19].

Fig. 2 illustrates the diagram of the Kalman filter-based
sensor fusion, which is an iterative process. The Kalman gain,
which depends on the covariance terms and varied in real-
time, represents the weight factors of the K and K-1 parame-
ters. The covariance values are determined by the models of
each sensor’s total noise. In addition, other impact factors for
long-term drift, such as temperature drift, linear acceleration,
and vibration were used to optimize the covariance values.
To overcome the disadvantages (gimbal lock) of traditional
Euler angles, the sensor fusion method utilized quaternions
to represent the orientations. A quaternion is a 4D complex

FIGURE 2. Block diagram of the Kalman filter for orientation estimation.
a represents the acceleration vector, v represents the angular velocity
vector. K-1 and K are the time series.
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number that can be used to represent the orientation of a rigid
body or coordinate frame in 3D space.

According to the axis-angle representation method [20],
the orientation of a rigid body in a 3D Euclidean space can be
equivalent to rotating a certain angle around a rotating axis.
Assuming the direction vector of the equivalent rotation axis
is

⇀

K =
(
kx , ky, kz

)T and the equivalent rotation angle is θ , the
quaternion q can be written as follows:

q =
[
q1 q2 q3 q4

]
. (1)

Here, 

q1 = kx · sin(θ/2)
q2 = ky · sin(θ/2)
q3 = kz · sin(θ/2)
q4 = cos(θ/2)
q21 + q

2
2 + q

2
3 + q

2
4 = 1.

(2)

The quaternion contains the information of the rotation
axis and rotation angle, which can conveniently describe the
rotation of the rigid body around an arbitrary axis.

The hand motion during the hand-grasping task can be
described by a single-axis combined orientation angle, which
depicts the flexion and extension of the palm. Therefore,
to reduce the dimension of attitude data for the better sta-
tistical analysis, the axis-angle representation method [20]
was employed to obtain the 1D combined orientation angle
to express the 3D hand grasping motion. The 1D combined
orientation angle, i.e., the equivalent rotation angle θ , can be
formulated as follows:

θ = 2 arccos(q4), (3)

where the single-axis combined orientation angle θ ranges
from 0 to 180◦.
To obtain features which are closely related to the

significant bradykinesia characteristics assessed in the
MDS-UPDRS (e.g., speed, amplitude, and the variability),
we defined three characteristic parameters to describe the
movement disorders during the hand movements. Firstly,
the dominant frequency (f ) of hand-grasping movement was
adopted to represent the speed of movement, which was com-
puted based on the number of the hand-grasping cycles (N )
during the 10-second assessment period:

f = N/10. (4)

The orientation angle θ represents the hand-grasping range
in bradykinesia assessment task, and the grasping amplitude
was obtained from themean value (ϕ̄) of peak-to-peak angles:

ϕ =

N∑
i=1

|θmax − θmin|i/N , (5)

where θmax and θmin represent the peak and valley values of
the orientation angle in the i-th grasp cycle.
In this study, a peak detection method [21] was adopted

to acquire the peak-to-peak values of grasping range ϕ.

By proceeding the angle signal starting from zero, the peak
detection method found the maximum and minimum values
of the hand-grasping range. To describe the variability of
amplitude during the hand-grasping movement, the standard
deviation (SD) value of grasping ranges was adopted:

σ|ϕ| =

√√√√ 1
N − 1

N∑
i=1

(
ϕ − |ϕ|i

)2
, (6)

where |ϕ|i is the peak-to-peak angle in the i-th grasp cycle;
N represents the number of the hand-grasping cycles in 10s’
assessment task.

D. STATISTICAL ANALYSIS
To verify the effectiveness of the three bradykinesia-related
features, the statistical analysis was carried out for each
characteristic parameter. The one-way ANOVA (analysis of
variance) test was employed to analyze the difference of each
parameter between different UPDRS bradykinesia grades.
In addition, the Pearson correlation analysis was examined
to determine the relation of data in each parameter and the
UPDRS bradykinesia scores. All the p values in this study
were two-sided tests, and p<0.05 was considered to be sta-
tistically significant. All statistical analyses were completed
by using SPSS ver.22 (SPSS Inc., Chicago, IL, USA).

E. MULTICLASS CLASSIFICATION ALGORITHM
We employed SVM-based classifier for the automatic classi-
fication to objectively evaluate the severity of parkinsonian
bradykinesia. A classification problem includes dividing the
dataset into training and testing sets (as Table 2 shows). In the
training set, each case includes one target value (i.e., the class
labels) and several attributes (i.e., the features). The SVMwas
designed to obtain a classification model, which can predict
the class labels of the test instances where only the features
were given.

SVM is a supervised learning model which can be used
for classification and regression analysis. The features are
mapped by a kernel function to a higher dimensional fea-
ture space where data can be distinguished by a hyperplane.
Almost every feature extracted from data can be involved in
an SVM classifier, but this might lead to over-fitting and poor
performance because of the curse of dimensionality [22].
Thus, to obtain satisfactory classification results, the classi-
fication in this study was based on features (dominant fre-
quency f , mean grasping angle ϕ̄, and standard deviation of
grasping ranges σ|ϕ|) highly related to the significant move-
ment disorder characteristics (speed, amplitude, and their
variability) assessed in the MDS-UPDRS.

SVM was initially designed for binary classification,
whereas the bradykinesia severity was scored on a 5-point
scale (bradykinesia scores: 0-4) according to the
MDS-UPDRS criteria by an experienced neurologist in this
study. Therefore, the traditional SVM classification needs
to extend to handle the multiclass problem. From some
SVM-based methods that were applied for multiclass
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classification [23], a one-against-all strategy (e.g., score-
zero versus the rest of the classes) based on the binary
classification was selected for distinguishing patients with
different grades of UPDRS bradykinesia score. For each
SVM binary classifier, given an instance-label pair from the
training set (xi, yi), i = 1, 2, . . . , l where xi ∈ Rn and
yi ∈ {1,−1}l, and the SVM classification was designed to
solve the following optimization problem [24]:

min
w,b,ξ

1
2
wTw+ C

l∑
i=1

ξi

subject to yi(wTφ(xi)+ b) ≥ 1− ξi
ξi ≥ 0, (7)

where w is the weights vector of the optimal hyper-
plane, ξi is a non-negative variable which equals to
max(0, 1 − yi(wTφ(xi) + b)), and b is a constant. C is the
penalty parameter, and xi are mapped to a higher dimensional
feature space by the function φ.

In the one-against-all classification method, the features
in the testing set were used as the test sample of each
SVM binary classifier to predict the class labels. The con-
fidence value of each test instance was determined by its
position in the feature space, which can be represented by
the Euclidian distance of the test sample to the separating
hyperplane. The testing sample was then classified in the
class obtained the highest confidence value across all SVM
binary sub-classifiers. The separation boundaries of different
classes in SVMwere determined by choice of the appropriate
kernel function. As a reasonable first choice in SVM [25],
we adopted the radial basis function (RBF) kernel as follows:

K (xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0, (8)

where γ is the kernel parameter, which represents the influ-
ence of the squared Euclidian on building the hyperplane.

We employed the cross-validation and grid-search
method [25] to determine the optimal kernel parameter γ
and penalty parameter C.Several different pairs of (C , γ )
values were tried in the SVMmodel and the one achieved the
highest cross-validation accuracy was adopted. In this study,
γ andC were adjusted to 0.2 and 1.5 respectively. In addition,
to avoid poor classification performance, the z-scores method
was used to normalize all the features.

We used the classification accuracy as the evaluation cri-
terion on the performance of a classifier. The classification
accuracy was defined as the percentage of participants that
are correctly classified (according to the clinical bradykinesia
scores) in the testing set. The MDS-UPDRS bradykinesia
scores from an experienced evaluator were used as the actual
class labels of participants.

III. CLINICAL EXPERIMENT RESULTS
The custom bradykinesia quantification system success-
fully captured motion data from all participants (including
training and testing sets) as they performed the clinical

hand-grasping assessment task to evaluate the severity of
parkinsonian bradykinesia.

Fig. 3 shows the hand-grasping angle waveform of the
10s assessment task for a PD patient and a healthy subject
respectively. It is obvious that the frequency and amplitude
of this PD patient’s hand-grasping movement are much lower
than those of the healthy subject. Moreover, the variability of
grasping amplitude is different between the PD patient and
healthy subject.

FIGURE 3. Angle waveform of hand-grasping movement. (a) 68-year-old
healthy control; (b) 67-years-old PD patient with UPDRS bradykinesia
score=3.

Fig 4 shows the descriptive statistics results for the three
characteristic parameters. As can be seen from Fig. 4, com-
pared with the standard deviation of grasping ranges σ|ϕ|,
the dominant frequency f and mean grasping angle ϕ̄ show
more significant difference among the five UPDRS groups.
In addition, we utilized the one-way ANOVA test to analyze
the differences of each characteristic parameter between dif-
ferent grades of UPDRS bradykinesia score. Table 3 shows
the F values of the variance analysis and the corresponding
significance level p values of the ANOVA in the training set.
Apparently, it can be seen that the three characteristic parame-
ters all show a significant difference among the five UPDRS
grades (p<0.05). The F value of the dominant frequency f
is the largest of all parameters, which indicates the differ-
ence of this parameter is the biggest. Table 4 describes the
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FIGURE 4. Box plots for summarizing the descriptive statistics results for
the three characteristic parameters. (a) The clinical UPDRS score versus
dominant frequency f ; (b) The clinical UPDRS score versus mean grasping
angle ϕ̄; (c) The clinical UPDRS score versus standard deviation of
grasping ranges σ |ϕ|.

correlation between each characteristic parameter and the
clinical assessment results. From the Pearson correlation
coefficients r and corresponding p values, it can be seen that
the dominant frequency f and grasping amplitude ϕ̄ show sig-
nificant linear correlation relationship with theMDS-UPDRS
bradykinesia score (p<0.05). In spite of the nonlinearity with
characteristic parameter σ|ϕ|(r=0.312), the RBF kernel in
SVM can nonlinearly map samples into a higher dimensional
feature space, hence it can deal with the case when the
relationship between classes and features is nonlinear.

TABLE 3. Results of single factor variance analysis.

TABLE 4. Results of the Pearson correlation analysis.

The dominant frequency f , mean grasping angle ϕ̄, and
standard deviation of grasping ranges σ|ϕ| were chosen as
features to train the classification algorithm. The chosen
features were closely related to the important movement
disorder characteristics (speed, amplitude, and variability),
which were assessed in the MDS-UPDRS. The features and
class labels in training set were used to train the classifi-
cation model, and the classification performance was ana-
lyzed based on the testing set. Table 5 shows the confusion
matrix of the classification results. Each column in the con-
fusion matrix represents the test samples with a predicted
class labels, and each row represents the test samples in an
actual class. The main diagonal elements of the confusion
matrix denote the numbers that correct decisions can bemade.
Classification results in Table 5 show that only two
participants are incorrectly classified, with the classification
accuracy of 95.349% (41/43).

TABLE 5. Confusion matrix of the classification results.

In the one-versus-all method, the classification consists
of five SVM binary classifiers. To depict the performance
of each binary classifier, Table 6 shows several evaluation
indices related to the classification performance, involving
the true positive rate (TPR), false positive rate (FPR), speci-
ficity, precision, and F1-score respectively. All the indices are
calculated from the confusion matrix in Table 5. The high
F1-scores (93.33%, 96.55%, 96.55%, 88.89%, and 100%) of
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TABLE 6. Classification results for the five SVM binary classifiers.

the five sub-classifiers suggest that the classifiers produce sat-
isfactory classification results for discriminating the severity
of bradykinesia.

For comparative analysis, the KNN classifier [26] was
employed to further analyze the classification performance
of SVM. The training of KNN classifier is based on the
data from the same training set. Table 7 shows the confusion
matrix of the KNN classification results based on the same
testing set. From the confusion matrix, we can find that
eight participants were incorrectly classified. Therefore, the
classification accuracy is 83.72% (36/43), which is much
worse than that of SVM. The choice of K value is based
on preliminary and empirical evaluations showed this value
produces the best classification result. Here, K is set to 5.

TABLE 7. Confusion matrix of the KNN classification results.

IV. DISCUSSION
The high-precision hand-grasping tracking and the quantifi-
cation of the parkinsonian bradykinesia severity were con-
ducted by a custom wearable device based on an AHRS and
SVM-based multiclass classification. We adopted SVM due
to its success in many classification problems. The sensor
fusion algorithm based on Kalman filter was employed to
accurately capture the handmovement information during the
hand-grasping assessment task. The axis-angle representation
approach was used to obtain the 1D combined orientation
angle, which can replace the Euler angle to express the full
3D information of hand-grasping assessment task.

78 PD patients (UPDRS bradykinesia score: 1-4) and
18 age-matched healthy controls (UPDRS bradykinesia
score: 0) were involved in this study. The classification
based on features such as speed, amplitude, and variability,

which were highly related to the significant movement
disorder characteristics assessed in the MDS-UPDRS,
achieved satisfactory classification accuracy (95.349%). The
main advantage of this study is that the axis-angle repre-
sentation approach was applied to capture the movement
thoroughly with a 1D combined orientation angle to per-
form high-precision hand-grasping motion tracking, which
can reduce the dimension of attitude data for the better sta-
tistical analysis. The significant bradykinesia-related features
(e.g., speed, amplitude, and the variability) extracted from
the 1D combined orientation angle were used to train the
SVMmulticlass classification algorithm for the bradykinesia
severity scoring (bradykinesia score: 0-4), in accordance with
the clinical assessment method. Moreover, the objective scor-
ingmethod proposed in this studywas compared with another
supervised classification algorithm, i.e., the KNN classifier.
Classification results with the same testing set showed that
the classification accuracy of the SVM-based classification
method was superior to the KNN method.

The objective scoring method employed in this study has
several advantages over previous studies. As mentioned,
the related works proposed in [8]–[10], [16]–[17] cannot
directly distinguish patients with different grades of UPDRS
bradykinesia score. Moreover, the quantitative analysis of the
selected assessment tasks was performed on a single Euler
angle signal which explains most of the hand motion and can
be named the dominant axis. However, a single Euler angle
cannot provide full 3D information of the assessing move-
ment, and the selected dominant axis may vary to other two
axes during the assessment task, which will deteriorate the
classification accuracy of the bradykinesia severity. Differ-
ent with the orientation representation in [18], the proposed
objective scoring method used the axis-angle representation
instead of Euler angles to obtain the 1D combined orientation
angle of hand-grasping movement, which can express the full
3D motion information and reduce the dimension of attitude
data for the better quantitative analysis. Due to the Kalman
filter sensor fusion and SVM-based multiclass classification
method, the classification based on features extracted from
the 1D combined orientation angle signal obtained satisfac-
tory classification performance (95.349%), which is superior
to the other related classification method, such as in [18],
whose classification accuracy is less than 80%.

For comparative analysis, we used the KNN classifica-
tion method to distinguish the bradykinesia severity of the
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participants from the same testing set. The classifica-
tion accuracy of this KNN algorithm is 83.72%, which
is much worse than that of SVM-based classification
approach. In KNN classification, a subject is classified
according to the class most common among its k nearest
neighbors. This ‘‘majority voting’’ classification approach
has a drawback when the sample distribution of different
classes is skewed [27]. That is, samples of a more frequent
class tend to dominate the prediction class of the new sub-
ject, because they tend to be common among the k nearest
neighbors due to their large number. In this study, the sample
size with the UPDRS score=1 and 2 was relatively larger
than other groups, which result in several new samples were
incorrectly classified as 1 and 2. This phenomenon can
be seen from the confusion matrix in Table 7. Therefore,
the KNN is contaminated by the drawback of majority voting,
whose classification accuracy is worse than the proposed
SVM-based classification approach.Moreover, the classifica-
tion performance of KNN is influenced by choice of K value,
which is based on preliminary and empirical evaluations.

V. CONCLUSION
Aimed at an objective assessment of the parkinsonian
bradykinesia severity, we proposed an automatic and
objective scoring method for the quantification of the
MDS-UPDRS bradykinesia-related items based on the
9DoF sensor fusion algorithm, the axis-angle represen-
tation approach, and the SVM multiclass classification
method. The fusion algorithm provides 3D rotations of
the hand-grasping task, and the axis-angle representation
approach reduces the 3D rotations to 1D combined orienta-
tion angle with full motion information, thereby the statis-
tical analysis is simplified. SVM-based multiclass classifier
achieves a superior classification performance (classification
accuracy: 95.349%) based on the features related to the key
characteristics during the hand-grasping assessment task. The
proposed objective scoring method can not only offer physi-
cians effective help for an accurate assessment of the bradyki-
nesia severity, but also serve as a self-monitor setting at home
for the patients themselves. In the future, we will integrate
quantifications of other parkinsonian motor symptoms into
this wearable system.
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