
SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT IN REDUCING
SOFTWARE FAILURES

Received March 15, 2018, accepted April 26, 2018, date of publication May 11, 2018, date of current version June 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2835654

DroidEnsemble: Detecting Android Malicious
Applications With Ensemble of String and
Structural Static Features
WEI WANG 1,2, ZHENZHEN GAO1, MEICHEN ZHAO1, YIDONG LI 1,
JIQIANG LIU1, AND XIANGLIANG ZHANG 3
1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China
2Science and Technology on Electronic Information Control Laboratory, Chengdu 610036, China
3Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology,
Thuwal 23955-6900, Saudi Arabia

Corresponding author: Yidong Li (ydli@bjtu.edu.cn).

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0802805, in part
by the Shanghai Key Laboratory of Integrated Administration Technologies for Information Security under Grant AGK2015002, in part by
the ZTE Corporation Foundation under Grant K17L00190, in part by the Funds of Science and Technology on Electronic Information
Control Laboratory under Grant K16GY00040, in part by the Fundamental Research Funds for the Central Universities of China under
Grants K17JB00060 and K17JB00020, and in part by the Natural Science Foundation of China under Grants U1736114 and 61672092.

ABSTRACT Android platform has dominated the operating system of mobile devices. However, the
dramatic increase of Android malicious applications (malapps) has caused serious software failures to
Android system and posed a great threat to users. The effective detection ofAndroidmalapps has thus become
an emerging yet crucial issue. Characterizing the behaviors of Android applications (apps) is essential to
detecting malapps. Most existing works on detecting Android malapps were mainly based on string static
features, such as permissions and API usage extracted from apps. There also exists work on the detection
of Android malapps with structural features, such as control flow graph and data flow graph. As Android
malapps have become increasingly polymorphic and sophisticated, using only one type of static features
may result in false negatives. In this paper, we propose DroidEnsemble that takes advantages of both string
features and structural features to systematically and comprehensively characterize the static behaviors
of Android apps and thus build a more accurate detection model for the detection of Android malapps.
We extract each app’s string features, including permissions, hardware features, filter intents, restricted API
calls, used permissions, code patterns, as well as structural features like function call graph. We then use
three machine learning algorithms, namely, support vector machine, k-nearest neighbor, and random forest,
to evaluate the performance of these two types of features and of their ensemble. In the experiments, we eval-
uate our methods and models with 1386 benign apps and 1296 malapps. Extensive experimental results
demonstrate the effectiveness of DroidEnsemble. It achieves the detection accuracy as 95.8% with only
string features and as 90.68% with only structural features. DroidEnsemble reaches the detection accuracy
as 98.4% with the ensemble of both types of features, reducing 9 false positives and 12 false negatives
compared to the results with only string features.

INDEX TERMS Android malicious application analysis, malware analysis, software failure reduction, static
analysis

I. INTRODUCTION
Android continues to dominate the market of mobile devices.
Gartner [1] indicates that Android market shares up to 86.1%
in 2017. The total number of Android applications (apps)
is rapidly increasing. Meanwhile, the proportion of mali-
cious applications (malapps) is on the rise. From January to
July in 2017, 360 Internet Security Center [2] cumulatively

monitored 4.839million newmobile malicious program sam-
ples added to end users. The malicious behaviors of these
programsmainly include traffic consumption, stealing private
information, malicious deductions, etc. Obviously, all the
malicious behaviors have posed a great threat to users on
both mentality and property. In addition, malapps often do
not comply with the user’s expectations and thus cause many

31798
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-5974-1589
https://orcid.org/0000-0003-2965-6196
https://orcid.org/0000-0002-3574-5665


W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

serious software failures. For instance, a set of malapps con-
sume lots of running memory, possibly leading to the failure
of running benign apps. Consequently, developing effective
approaches to vetting and detecting Android malapps is cru-
cial to secure the Android markets and to reduce the failures
of Android apps.

Most existing static analysis methods for Android
malapp detection are based on string features [3]–[8] or struc-
tural features [9], [10]. String features, or the meta-data
information, are descriptive information regarding the soft-
wares/applications and their source code. They usually refer
to features such as permissions, intents, API calls, etc. Struc-
tural features mainly refer to the structural relationships
within the app, such as Control Flow Graph (CFG) or inter-
component data flow graph as well as inter-procedural CFG.
Although both of these two types of features can be used for
detecting malapps, using only one of them may lead to false
negatives or false positives. For example, string features may
fail to detect most circumvention attacks or collusion attacks,
while structural features are not effective on the detection of
sophisticated malapps.

In order to better characterize the Android apps’ behav-
iors and thus more accurately detect malapps, in this work,
we propose a detection model called DroidEnsemble by tak-
ing advantages of both string features and structural features.
As for string features, we extract permissions, hardware fea-
tures, filtered intents, restricted API calls, used permissions
and code patterns from each Android app. We further extract
the structural features like function call graph to collaborate
with string features for malapp detection. We then employ
three methods, namely, Support Vector Machine (SVM),
k-Nearest Neighbor (kNN) and Random Forest (RF), to eval-
uate the effectiveness of both types of features and of their
ensemble of features. The extensive experimental results
demonstrate the effectiveness of DroidEnsemble. It achieves
the detection accuracy as 95.8% with only string features,
and 90.68% with only structural features. The ensemble fea-
tures acquire the highest accuracy of 98.4% and F-score of
over 0.98. The experimental results also show that string
features are more effective and efficient for malapp detec-
tion than structural features. However, the structural features
are able to detect most samples that cannot be detected
by string features, and they well make up for the defi-
ciency of string features. As a consequence, the ensemble of
both features outperforms any individual feature set within
DroidEnsemble.

We make the following three contributions.
1) We propose DroidEnsemble that effectively detects

Android malapps with ensemble of both string and
structural static features. The ensemble of both
features can characterize the static behaviors of
apps more systematically and comprehensively than
any individual feature. Moreover, DroidEnsemble
is more helpful to reduce the Android software
failures. In details, string features suit for vetting
malapps in general while structural features suit for

inspecting instruction-level obfuscation in apps in
particular.

2) We extract 6 types of string features and structural
features like function call graph (FCG) to characterize
the behaviors of Android apps. The number of string
features is as large as 34552. The FCG features of
each app contain several 15-bit function node encod-
ings. We employ three supervised classifiers, namely,
Support Vector Machine (SVM), k-Nearest Neigh-
bor (kNN) and Random Forest (RF), to vet malapps.
We compare the detection performance with different
types of features and with different classifiers.

3) We conduct experiments on a data set containing
1386 benign apps collected from four app markets
and 1296 malapps collected in the wild. Extensive
experimental results demonstrate the effectiveness of
DroidEnsemble. It achieves the detection accuracy as
95.8% with string features and 90.68% with structural
features. DroidEnsemble reaches the detection accu-
racy of 98.4% with ensemble of both features, outper-
forming any individual feature.

The rest of this paper is organized as follows. We review
relatedwork in section II. Section III introducesDroidEnsem-
ble, and explains in details both types of features. Section IV
describes the data sets and experiments. We illustrate the lim-
itations of DroidEnsemble in Section V. Section VI concludes
this paper.

II. RELATED WORK
The issue of information security has been receiving
widespread attention. There exists work on authentication
security [11]–[13] or data security [14]–[17]. Due to the
popularity of mobile devices, they have become major targets
of attacks with malapps. The detection of malapps is thus
essential to securing Android app markets and to reducing
apps’ failures.

Static analysis is often used for vetting and detecting
malapps. String features and structural features are two typ-
ical features in static analysis of apps. String features are
straightforward and easy to extract from most apps. If an
app wants to execute some specified operations or applies
for some resources, it must declare corresponding string
information in the manifest file, such as permissions, hard-
wares, etc. Much work extracts this kind of information to
discriminate malicious apps from benign ones. Wu et al. [18]
extracted permissions as well as other features as features
and utilized machine learning methods to detect malapps.
Feizollah et al. [19] evaluated the effectiveness of Android
Intents (explicit and implicit) for identifying malicious apps.
They also conducted experiments with Android Intent in
conjunction with permissions. Idrees et al. [20] used a
combination of permissions and intents for identifying
Android malicious apps, and optimized the results with
ensemble methods. Previous work [21]–[26] also employed
API calls as features in malapp detection. Hou et al. [25]
further categorized the API calls that belong to the same

VOLUME 6, 2018 31799



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

FIGURE 1. Overview of DroidEnsemble.

method in the smali code into a block, which is the so-called
API call block. In our previous work [4], [8], [27], we also
used permissions and other string features to detect malapps.

Although string features are generally effective for detect-
ing malapps, they are easily circumvented or exploited
by sophisticated attacks in many cases. For example,
Salehi et al. [28] built a kernel-level attack model that did
not need to apply for relevant permissions. This attack model
can obtain all the sensitive information it wants. Fortunately,
the majority of new malapps are variants of existing malapps.
Structural features are more suitable to detect these types of
malapps. Crussell et al. [29] proposed a tool using a technique
based on program dependency graphs (PDGs) to acquire
the similarity between the malicious and legitimated apps.
Gascon et al. [30] adopted a method for malapp detection
based on efficient embedding of function call graphs with
an explicit feature map. This method strove to identified
subgraphs of the function call graph representing known
malicious code. Alam et al. [31] used control flow with pat-
terns, and implemented and adapted two techniques including
Annotated Control Flow Graph (ACFG) to reduce the effect
of obfuscations. This method was conducive to detecting the
variants of malapps. By extracting the CFG, Kim et al. [32]
formed structural information of methods in an Android
app called ’4-tuple’ and clustered the apps with the computed
similarity of apps. Dam and Touili [33] constructed API
call graphs by applying a kind of control point reachability
analysis on the CFG, so as to carry out further experiments.

In summary, previous work used either string or struc-
tural features to characterize the Android apps’ behaviors
and accordingly detect malapps. However, many malapps
evade the detection based on only string features through

technologies like code obfuscation or encryption. Whilst
structural features may perform poorly in detecting malapps
from new malicious families. Furthermore, as malapps
have become increasingly polyphomic and sophisticated,
the detection merely based on one type of features cannot
meet the needs. In this work, we propose DroidEnsemble that
considers 6 string features and structural features to improve
the detection performance. In DroidEnsemble, the detection
with string features runs fast and accurately, and the detection
with structural features identifies more specific anomalies
like instruction-level obfuscation. It thus improves the detec-
tion performance with the ensemble of string and structural
features.

III. METHOD
DroidEnsebmle works with four steps, as shown in Fig. 1.
First, we collect a number of apps from four app markets
and malapps in the wild. Second, we extract 6 types of
string features and function call graph as structural features
from each apk. Third, we construct three supervised learning
models to evaluate the performance of our methods with both
types of feature sets. Fourth, we validate the effectiveness of
DroidEnsemble with ensemble of string and structural fea-
tures. Finally, we conduct extensive experiments including:
(1) comparing the performance of our methods with each type
of features; (2) classifier comparison and (3) optimizing the
detection results with ensemble of both types of features.

In this section, we firstly explain in details the string
features and structural features used, and then describe the
machine learning models we employ in this work. We then
describe the methods with the ensemble of both types of
features.

31800 VOLUME 6, 2018



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

A. FEATURE SETS
1) STRING FEATURES
We extract 6 types of string features from each app. All the
features are described as follows.
FS1 (Requested Permissions): If an app needs to execute

some specified operations, it must request corresponding
permissions in the manifest file. Each app contains a manifest
file providing meta-information supporting the installation
and later execution of the app. Valuable information can be
extracted from this file. However, some apps request permis-
sions that are unnecessarily needed in their functions, which
may indicate malicious intents. In another case, the com-
bination of multiple permissions may reflect some harmful
behaviors. For example, if an app applies for network con-
necting permission as well as SMS accessing permission,
the app may acquire users’ SMS information and then spread
it out through the Internet. In this work, we use all the permis-
sions declared in the manifest file, with <uses-permission>
elements, as a feature set. Previous related work [4], [8], [19],
[27], [34]–[36] demonstrated the effectiveness of this feature.
FS2 (Hardware Features): In Android system, hardware

and software requirements indicate the demands of the apps
for system resources. For instance, if an app accesses 4G
and GPS, it may imply that it reports the location of the
user to the attacker, which reveals the malicious behavior
of an app. Hence, we extract the hardware and software
information defined in the manifest file, with <uses-feature>
elements, as the second feature set. There exists related
work [27], [37] that used this type of features.
FS3 (Filtered Intents): Intents handle the communication

between components by sending intent objects on Android.
Intent filters help app components reject the unwanted intents
as well as leave the desired intents. We extract the filtered
intents as another feature set for malapp detection and they
are signal with <intent-filter> elements. Feizollah et al. [19]
evaluated the effectiveness of Android Intents (explicit and
implicit) as the feature for identifying malicious apps and the
detection rate reached 91%.

We extract above three feature sets from the manifest file
with androguard tools and Android Asset Packaging Tool
(aapt). Furthermore, we extract another three static features
from disassemble code (FS4-FS6).
FS4 (Restricted API Calls): The Android permission sys-

tem restricts access to a series of critical API calls, presenting
how an app interacts with Android framework. Restricted
API Calls are protected by permissions. According to the
API-permission mapping provided by PScout, it is easy to
identify which APIs are protected by permissions. We then
define a dictionary that maps the relationship between per-
missions and corresponding restricted API Calls. We scan the
disassembled code of the app samples and record whether
they invoke API calls protected by some permissions to
acquire this feature set.
FS5 (Used Permissions): Requesting a permission does

not mean that the app actually accesses to the corre-
sponding resources. Hence, we extract permissions the app

actually used through the API-permission mappings provided
by PScout [38] as another feature set.
FS6 (Code Patterns): Android system does not pro-

vide valid authentication and protection mechanism for
external loaded resources. Libraries can be malicious for
modification and masquerading. Attackers may thus try
to hide parts of their apps’ malicious functionalities in
libraries. We check whether an app executes shell com-
mands, or whether it dynamically loads external files in this
feature set. Besides, we check whether an app uses Java
reflection techniques or invokes cryptographic functions.

We extract the above 6 types of static features as string
features to detect malapps. In addition, we add function call
graph features as the structural features. Both types of fea-
tures are described in table 1.

TABLE 1. Descriptions of string features and structural features.

2) STRUCTURAL FEATURES
Testing whether two graphs are isomorphic is not easy in
polynomial time. We simplify this process by measuring the
similarity between two graphs by counting the number of
the same subgraphs between two apps’ function call graphs.
In this work, we generate isometric encodings for an app’s
function call nodes based on the Dalvik instructions [39].
We used the method proposed in [30] to identify the benign
and malicious apps by calculating the similarity between two
apps with the number of the same encodings of two apps.
It includes the following three steps.
Step 1: An app is disassembled by apktool [40] and its

function call graphs are extracted with androguard [41]. The
nodes of the function call graph are then labeled in 15-bit
sequence [30].

Formally, the graph is formed as a 4-tuple
G= (N, E, L, l) [30], whereN is the set of nodes and each node
n∈N is associated with one of the app’s functions. E⊆N×N
denotes the set of directed edges, where an edge from a node
n1 to a node n2 indicates a call from the function represented
by n1 to the function represented by n2. L is the multiset of
labels in the graph and l: N→L is a labeling function, which
assigns a label to each node by considering instruction types
of the function it contains [30].

As shown in Table 2 [30], we adopt 15 distinct categories
of instructions based on their functionality by reviewing the
Dalvik specification. Each node can thus be labeled with a
15-bit field, where each bit is associated with one of the

VOLUME 6, 2018 31801



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

TABLE 2. Instruction categories and their corresponding bit in the node
label.

categories. Formally, the function label l can be defined
as follows. The set of instruction categories is represented
as C = {c1, c2, . . . , cm} and the bit is set 1 if this type
of instruction appears in the function, i.e., l(n) = [b1(n),
b2(n), . . . , bm(n)] where

bc(n) =

{
1 if n contains an instruction from category c
0 otherwise

Therefore, the function of each app can be represented by
multiple 15-bit encodings [30] and we thus have the initial
encoding of the app.
Step 2: In general, there are caller and callee among

function nodes. Based on this relationship, for each node,
we compute a neighborhood hash over all of its direct neigh-
bors in the function call graph, as suggested in [30]. This
computationmethod is based on the neighborhood hash graph
kernel (NHGK) [30], [42].

The computation of the hash for a given node n and its set
of adjacent nodes Nn is defined by [30]

h(n) = r(l(n))⊕
(
⊕

z∈Nn l(z)
)

(1)

where⊕ represents a bit-wise XOR on the binary labels and r
represents a single-bit rotation to the left. It is worthy to note
that the computation is conducted in constant time for each
node.

Based on this computation, we update the initial encoding
and compress the relevant structural information of a function
node into a 15-bit encoding [30].
Step 3: With the updated encodings described in Step 2,

we calculate the similarity between two apps by counting the
number of the same encoding between the two apps. The
same encoding indicates that both have the same function
structure. In addition, as Android malicious families usually
have similar malicious functions, we compute the similarity
between the apps with this method and generate the feature
matrix for the subsequent classifications.

B. CLASSIFICATION MODELS
In order to describe the apps’ behaviors for further analysis,
we embed all 6 types of features into a high dimensional
feature vector, and embed each call graph in a feature space,
respectively.

Based upon the two types of features, we construct three
supervised learningmodels, namely, Support VectorMachine
(SVM), k-Nearest Neighbor (kNN) and Random Forest (RF),
as these three methods have been widely used for binary
classification. Our feature sets are theoretically linearly sep-
arable. In practice, SVM performs well for high-dimensional
linear separable classification problems. The matrix gener-
ated by the function call graph is used to measure the similar-
ity between samples. To facilitate performance comparison,
we also kNN and RF for classification.

1) SUPPORT VECTOR MACHINE (SVM)
SVM is a binary classification model that attempts to find
the best linear hyperplane decision boundary that maximizes
the margin between two classes. In general, SVM embeds
the original features to a higher dimensional feature space
using kernel function. In this work, we use linear kernel
function to classify the apps with string features staying
in the original feature space, and adopt pre-computed ker-
nel function to deal with the matrix generated by structural
features.

2) K-NEAREST NEIGHBOR (kNN)
Given a test sample, kNN classifier finds the k training
samples closest to the test sample in the training set based
on distance measures, and then uses the majority voting to
predict which class the test sample belongs to.

3) RANDOM FOREST (RF)
RF is a classifier that contains multiple decision trees where
each tree is learned independently on a randomly selected
subset of training data. A subset for training each decision
tree is selected by randomly sampling from both features and
samples. The final classification is based on the ensemble
learning technique.

C. ENSEMBLE OF FEATURES
As mentioned, each string feature and structural feature have
their own merits and demerits. Accordingly, a number of
malapps can be correctly identified by string features, but not
by structural features, and vice versa.

In order to address this problem, we propose DroidEnsem-
ble that improves the detection performance with ensemble
of both types of features. In this work, we mark the predict
results based on string features as PStr , and the results based
on structural features as PFcg. We define the final detection
results PFinal as

PFinal = PStr ·WStr + PFcg ·WFcg (2)

where WStr and WFcg represent the weights of string fea-
tures and structural features, respectively. As string features
are generally more effective and efficient than structural
features, we assign a weight of 60% to the prediction
result of string features and 40% to the result of structural
features.

31802 VOLUME 6, 2018



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

We judge the detection results through the values of PFinal .
For benign samples, if the PFinal value is equal to −1, our
method regards this app as malicious, which is so-called
False Positive (FP). Likewise, for malicious samples, if the
PFinal value is equal to +1, the app is considered as benign
one, which is False Negative (FN). The rest values are
correspondingly divided into True Positive (TP) and True
Negative (TN).

IV. EVALUATION
A. DATA SET
In the experiments, we collect a number of real-world
Android apps that include benign apps and malicious apps.
We acquired benign apps from four app markets and malapps
from various of sources.

1) BENIGN APPS
We collected benign apps from Google Play and three third-
party app markets, i.e., AnZhi [43], LenovoMM [44], Wan-
doujia [45]. First, we download a large number of apk files
from these markets. Second, we scan these apks with an
online service called VirusTotal [46] that provides detection
service with over 50 antivirus (AV) scan engines. We label
an apk as benign only if all AV scanners identified it as
benign. Otherwise we consider it as malicious. Finally there
are 1386 benign apps remained in our data set.

2) MALICIOUS APPS
In order to ensure the accuracy of our method, we construct
a malicious data set similar to the size of the benign data set.
We collect malapps frommultiple malicious families, such as
FakeInst, Opfake, FakeInstaller, DroidKungFu, GinMaster,
Plankton. Their malicious behaviors cover stealing phone
information, communicating with a C&C, escalating root
privilege, repackaged, sending premium-rate SMS and other
common ones. Finally, we form 1296 malapps as malicious
data set.

B. RESULTS ANALYSIS
We use 6 types of string features and function call graph as
the feature set to carry out the experiments. In order to ensure
the ensemble of the final prediction results, we do not use
the method of n-fold cross-validation. We randomly select
70% of samples to train the SVM, kNN, RF models, and the
rest for prediction. We employ pre-computed kernel of SVM
for training the structural features and Linear SVM for string
features with Python. For kNN and RF, we use tool scikit-
learn [47].

The experiments are run on a Lenovo T468 G7 Server with
four quad-core 3.10 GHz Xeon processors. In the following
Sections, we firstly evaluate the effectiveness of two types
of features based on different classifiers, i.e., string features
and structural features. Secondly we discuss the performance
of these three classifiers. Finally, we analyze and discuss the
performance with the ensemble of these two types of features.

1) FEATURES COMPARISON
In this work, accuracy as well as F-score are employed to
compare the performance with these two types of features
based on different classifiers.

F-score is defined as the harmonic mean of precision and
recall:

F − score =
2 · Precision · Recall
Precision+ Recall

(3)

where Precision is the proportion of True Positive (TP) to all
the positive results, and Recall is also called True Positive
Rate (TPR) defined as the proportion of TP in all the positive
instances. The F-score of an ideal classifier is close to 1,
indicating that the Precision and Recall are both close to 1.
Accuracy is the proportion of true results (both True Positive
and True Negative) to all the instances.

Fig. 2 presents the F-score values of three types of feature
sets with three classifiers. From Fig. 2, it is observed that
(1) string features are more effective than structural features
for malapp detection, as expected; (2) string features achieve
highest F-score based on Random Forest classifier, while
structural features perform well using the pre-computed ker-
nel of SVM; (3) the ensemble of string features and structural
features achieves the best classification performance.

FIGURE 2. Detection performance comparison (F-score) with string
features(String), structural features(FCG) and their ensemble.

In Table 3, we compare the detection accuracy with dif-
ferent classifiers based on the same samples. It is seen from
the Table that compared to single type of features, the detec-
tion accuracy with ensemble of features improves, reaching
over 98%.

TABLE 3. Detection accuracy with different types of features.

The above observations show that string features are
more effective than structural features for detecting malapps.
Meanwhile, structural features make up for the deficiency
of string features. The ensemble of two types of features

VOLUME 6, 2018 31803



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

achieves both highest F-score and accuracy based on SVM
classifier, indicating that it is more reasonable and effec-
tive. Moreover, Android malapps have become increasingly
sophisticated and we need to find more effective features to
characterize their behaviors from different angles and levels.
It’s clear that our proposed DroidEnsemble performs well
in characterizing the static behaviors of apps and detects
Android malapps effectively.

2) CLASSIFIERS’ COMPARISON
In this section, we discuss the performance of three clas-
sifiers. As shown in Fig. 3 and Fig. 4, the Receiver Oper-
ating Characteristic (ROC) curves for the three classifiers
are clearly displayed. It is seen that these three classifiers
perform comparably. Our feature space consists of millions
of features. SVM performs more efficiently than the other
classifiers with small FPR. By analyzing the prediction
results, we also find that kNN performs well in distinguishing
malapps with function call graph features, due to the great
similarity of malapps from the same families. Moreover,
RF outperforms the other classifiers.

FIGURE 3. ROC curves based on SVM, RF and kNN with string features.

SVM is more efficient to address high-dimensional sepa-
rable classification problems. As shown in Table 3, it is seen
that SVMachieves the best results with ensemble of two types
of features compared to kNN and RF. Therefore, we analyze
the detection results generated by the SVM classifier in the
next section.

3) ENSEMBLE RESULTS
In this section, we demonstrate the effectiveness of
DroidEnsemble. We comprehensively analyze the optimized
detection results with SVM.

Fig. 5 shows the superiority of the ensemble of two
types of features with SVM. Compared with the detection
results using the individual type of features, DroidEnsemble

FIGURE 4. ROC curves based on SVM, RF and kNN with structural features.

FIGURE 5. Classification results with different types of features. For
instance, results for ‘‘Ensemble_benign’’ mean that the number of True
Negatives (TNs) for the detection of benign samples with the ensemble of
features is 410 and the number of False Positives (FPs) is 6.

effectively reduces the FPs and FNs. Fig. 6 shows the detec-
tion results with both string features and structural features.
It is seen that 88.1% of the samples are correctly detected
by both types of features and 1.6% are missed. The detec-
tion accuracy with string features is up to 96%. In contrast,
structural features perform noticeably poorer. However, 2.6%
of samples that are not identified by string features can be
identified by structural features. Therefore, we obtain the
final optimal classification results byweighting the respective
detection results with the two types of features.

The detection result PFinal with the ensemble of two types
of features are shown in table 4. It is clear that DroidEnsemble
achieves satisfied detection accuracy, reaching over 98%.

Among the false negatives (FNs), we find that the pro-
gram function of these samples are relatively simple and

31804 VOLUME 6, 2018



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

FIGURE 6. Detection results with both types of features.

TABLE 4. Detection results with ensemble of features.

some of their malicious behaviors are subtle, such as root
exploits, stealing cookies, etc. On the one hand, the detec-
tion results with string features rely on the 6 types of
features. The FNs may not involve many sensitive fea-
tures. Therefore they are falsely considered as benign apps.
On the other hand, in reality some benign apps’ rich func-
tions require many sensitive features, such as SEND_SMS,
ACCESS_FINE_LOCATION, READ_CONTACTS and so
on, which may lead to incorrect classification results.
Unlike string features, structural features adopt the sim-
ilarities between the apps. Malapps’ behaviors are simi-
lar to their malicious families while benign apps’ behav-
iors are diverse. Therefore, structural features can make
up for the deficiency of string features in terms of
malapp detection. For example, the malapp with sha1 value
of 5a1eb830dd953a4cbc3c549ed9736d61ae5add54 is falsely
identified as normal by string features. By examining
the 6 types of features, we find that this app only
uses a few common but sensitive permissions, such
as ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE
and RECEIVE_BOOT_COMPLETED, and no other obvious
malicious features are found in its feature sets. Therefore,
string features easily judge it as a benign app. In con-
trast, structural features can effectively identify it as mali-
cious. The app belongs to the malicious family called
FaceNiff, and its malicious behaviors are similar to the
malicious family. Therefore it is correctly judged as a
malapp with structural features. On the contrary, for
0c80bce773e2afda6802d6f0b2de8de6d1825713.apk, as it
requests and uses all SMS-related permissions and the
restricted API file also shows that it invokes the corre-
sponding functions, the string features easily identify it as

malicious. However, the malicious family ‘‘FakeInstaller’’
has many variants, which may result in a misclassification.
As a consequence, we take advantages of both types of
features and synthesize them for the detection, resulting in
a better detection accuracy as over 98%, which demonstrates
the effectiveness of DroidEnsemble.

V. LIMITATIONS
Although DroidEnsemble has demonstrated its ability to
improve the detection performance with the ensemble of
string and structural features, it still has inevitable limitations.

First, DroidEnsemble is based on static analysis and lacks
the capabilities of run-time analysis, a.k.a. dynamic analysis.
Some malapps make use of anti-decompiling or obfusca-
tion techniques to prevent feature extraction, or load code
dynamically to hinder the static inspection. In order to reduce
the impact of the absence of dynamic analysis and accu-
rately characterize the behaviors of apps, we extract both
string features and structural features from apps. In string
features, we checkwhether an app dynamically loads external
executable files or Linux native code, which may reflect
somemalicious behaviors, althoughwe do not deeply analyze
these codes. In addition, we utilize the structural features
that encode the method’s instruction sequence to resist the
obfuscated code. However, structural features are not valid
for junk code. Furthermore, although the structural features
make up for deficiency of string features, the extraction of
structural feature is very time-consuming.

Second, the accuracy of machine leaning algorithms relies
on the data set used to train the model. The quality of the
data set is thus important to determine whether the detection
models are generally effective. In our experiments, we choose
benign apps from multiple markets to make them as repre-
sentative as possible, and malapps from different families to
ensure the diversity. However, as mentioned, it is not trivial
to choose suitable malicious and benign apps. We need to
scan our samples with VirusTotal to guarantee the pureness
of both malicious and benign apps. However, VirusTotal has
its own limitations. Besides, there are some other factors that
may influence the results, such as the size of apks, the apps
from the same market or the same family, etc.

VI. CONCLUSION
Vetting and detecting malapps help to purify the app markets
and to reduce app failures in Android systems. In this work,
we propose DroidEnsemble that systematically and com-
prehensively characterizes the static behaviors of Android
apps for the detection of malapps with ensemble of string
and structural features. We employ three machine learning
methods, namely, Support Vector Machine (SVM), including
pre-computed kernel for structural features and linear kernel
for string features, k-Nearest Neighbor (kNN) and Random
Forest (RF) in the detection. We compare the detection per-
formance with only string features or only structural features.
The extensive experimental results demonstrate the effective-
ness of DroidEnsemble, showing that (1) string features are

VOLUME 6, 2018 31805



W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

more effective than structural features for detecting malapps;
(2) structural features make up for deficiency of string fea-
tures and thus can be used as complementary features in
the detection; (3) the ensemble of both types of features
outperforms any individual feature, yielding the best accuracy
as 98%.

In our future work, we will investigate how the struc-
tural features and string features can be put into an uniform
feature space so that they can be simultaneously processed
in learning algorithms. As for some sophisticated malapps
that use root, encryption, anti-disassembly, or kernel-level
features to evade the detection, DroidEnsemble may not be
able to detect them. In our future work, we are exploringmore
features, in particular the dynamic features, to better charac-
terize the behaviors of apps from different angles and layers
to improve the detection performance. We are also planing
to collect more qualified app samples to test DroidEnsem-
ble. Meanwhile, due to the fast increase of Android apps,
we are developing semi-supervised learning methods for the
detection.

REFERENCES
[1] Gartner Data Report. Accessed: May 24, 2017. [Online]. Available:

http://www.feng.com/iPhone/news/2017-05-24/IOS-and-Android-global-
share-gap-is-more-bigger_679074.shtml

[2] 360 Security Report. Accessed: Sep. 14, 2017. [Online]. Available:
http://zt.360.cn/1101061855.php?dtid=1101061451&did=210412109

[3] J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan, and L. Wang, ‘‘An inte-
grated static detection and analysis framework for Android,’’ Pervas.
Mobile Comput., vol. 32, pp. 15–25, Oct. 2016, doi: https://doi.org/
10.1016/j.pmcj.2016.03.003

[4] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang,
‘‘Exploring permission-induced risk in Android applications for mali-
cious application detection,’’ IEEE Trans. Inf. Forensics Security,
vol. 9, no. 11, pp. 1869–1882, Nov. 2014, doi: https://doi.org/10.
1109/TIFS.2014.2353996

[5] G. Dai, J. Ge, M. Cai, D. Xu, and W. Li, ‘‘SVM-based malware detec-
tion for Android applications,’’ in Proc. 8th ACM Conf. Secur. Privacy
Wireless Mobile Netw., New York, NY, USA, Jun. 2015, Art. no. 33, doi:
http://doi.acm.org/10.1145/2766498.2774991

[6] S. Sheen, R. Anitha, and V. Natarajan, ‘‘Android based malware
detection using a multifeature collaborative decision fusion
approach,’’ Neurocomputing, vol. 151, pp. 905–912, Mar. 2015, doi:
https://doi.org/10.1016/j.neucom.2014.10.004

[7] K. Xu, Y. Li, and R. H. Deng, ‘‘ICCDetector: ICC-based malware
detection on Android,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 6,
pp. 1252–1264, Jun. 2016, doi: https://doi.org/10.1109/TIFS.2016.2523912

[8] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, ‘‘Detecting Android
malicious apps and categorizing benign apps with ensemble of classi-
fiers,’’ Future Generat. Comp. Syst., vol. 78, pp. 987–994, Jan. 2018, doi:
https://doi.org/10.1016/j.future.2017.01.019

[9] K. Chen, P. Liu, and Y. Zhang, ‘‘Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,’’ in
Proc. 36th Int. Conf. Softw. Eng. ICSE, Hyderabad, India, Jun. 2014,
pp. 175–186, doi: http://doi.acm.org/10.1145/2568225.2568286

[10] F. Wei, S. Roy, X. Ou, and Robby, ‘‘Amandroid: A precise and gen-
eral inter-component data flow analysis framework for security vet-
ting of Android apps,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Scottsdale, AZ, USA, Nov. 2014, pp. 1329–1341, doi:
http://doi.acm.org/10.1145/2660267.2660357

[11] Q. Lin, J. Li, Z. Huang, W. Chen, and J. Shen, ‘‘A short linearly homo-
morphic proxy signature scheme,’’ IEEE Access, vol. 6, pp. 12966–12972,
Feb. 2018.

[12] Q. Lin, H. Yan, Z. Huang, W. Chen, J. Shen, and Y. Tang, ‘‘An id-based
linearly homomorphic signature scheme and its application in blockchain,’’
IEEE Access, vol. 6, pp. 20632–20640, Feb. 2018.

[13] J. Shen, Z. Gui, S. Ji, J. Shen, H. Tan, and Y. Tang, ‘‘Cloud-
aided lightweight certificateless authentication protocol with
anonymity for wireless body area networks,’’ J. Netw. Comput. Appl.,
vol. 106, pp. 117–123, Mar. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804518300031

[14] J. Li, L. Sun, Q. Yan, Z. Li,W. Srisa-an, and H. Ye, ‘‘Significant permission
identification for machine learning based Android malware detection,’’
IEEE Trans. Ind. Inform., to be published, doi: 10.1109/TII.2017.2789219.

[15] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, ‘‘Differentially private
Naive Bayes learning over multiple data sources,’’ Inf. Sci., vol. 444,
pp. 89–104, May 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0020025518301415

[16] Z. Huang, S. Liu, X. Mao, K. Chen, and J. Li, ‘‘Insight of the
protection for data security under selective opening attacks,’’ Inf.
Sci., vols. 412–413, pp. 223–241, Oct. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025517302177

[17] D. Xie, X. Lai, X. Lei, and L. Fan, ‘‘Cognitive multiuser energy harvesting
decode-and-forward relaying system with direct links,’’ IEEE Access,
vol. 6, pp. 5596–5606, 2018.

[18] J. Wu, M. Yang, and T. Luo, ‘‘PACS: Pemission abuse checking system
for android applictions based on review mining,’’ in Proc. IEEE Conf.
Dependable Secure Comput., Aug. 2017, pp. 251–258.

[19] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
‘‘Androdialysis: Analysis of Android intent effectiveness inmalware detec-
tion,’’ Comput. Secur., vol. 65, pp. 121–134, Mar. 2016.

[20] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan,
‘‘PIndroid: A novel Android malware detection system using ensemble
learning methods,’’ Comput. Secur., vol. 68, pp. 36–46, Jul. 2017, doi:
https://doi.org/10.1016/j.cose.2017.03.011

[21] S. Arzt et al., ‘‘FlowDroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps,’’ in Proc. ACM Sigplan
Conf. Programm. Lang. Design Implement., 2014, pp. 259–269.

[22] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, ‘‘Droidminer:
Automated mining and characterization of fine-grained malicious behav-
iors in Android applications,’’ in Proc. Comput. Secur.-ESORICS, 2014,
pp. 163–182.

[23] X. Chen and S. Zhu, ‘‘DroidJust: Automated functionality-aware privacy
leakage analysis for Android applications,’’ in Proc. 8th ACM Conf. Secur.
Privacy Wireless Mobile Netw., New York, NY, USA, Jun.2015, Art. no. 5,
doi: http://doi.acm.org/10.1145/2766498.2766507

[24] S. Feng, ‘‘Android security via static program analysis,’’ inProc. Workshop
MOBISYS Ph.D. Forum, 2017, pp. 19–20.

[25] S. Hou, A. Saas, L. Chen, Y. Ye, and T. Bourlai, ‘‘Deep neural networks
for automatic Android malware detection,’’ in Proc. IEEE/ACM Int. Conf.
ASONAM, Jul. 2017, pp. 803–810.

[26] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of obfuscated
android malware,’’ in Proc. ACM Conf. Data Appl. Secur. Privacy, 2017,
pp. 309–320.

[27] X. Wang, W. Wang, Y. He, J. Liu, Z. Han, and X. Zhang, ‘‘Character-
izing Android apps’ behavior for effective detection of malapps at large
scale,’’ Future Generat. Comput. Syst., vol. 75, pp. 30–45, Oct. 2017, doi:
https://doi.org/10.1016/j.future.2017.04.041

[28] M. Salehi, F. Daryabar, andM. H. Tadayon, ‘‘Welcome to binder: A Kernel
level attack model for the binder in Android operating system,’’ in Proc.
Int. Symp. Telecommun., Sep. 2016, pp. 156–161.

[29] J. Crussell, C. Gibler, and H. Chen, ‘‘Attack of the clones: Detecting cloned
applications on Android markets,’’ in Proc. Eur. Symp. Res. Comput.
Secur., 2012, pp. 37–54.

[30] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, ‘‘Structural detection of
android malware using embedded call graphs,’’ in Proc. ACM Workshop
Artif. Intell. Secur., 2013, pp. 45–54.

[31] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, ‘‘DroidNative: Automat-
ing and optimizing detection of Android native code malware variants,’’
Comput. Secur., vol. 65, pp. 230–246, Mar. 2016.

[32] J. Kim, T. G. Kim, and E. G. Im, ‘‘Structural information based malicious
app similarity calculation and clustering,’’ in Proc. Conf. Res. Adapt.
Convergent Syst., 2015, pp. 314–318.

[33] K. Dam and T. Touili, ‘‘Learning Android malware,’’ in Proc. 12th
Int. Conf. Availability, Rel. Secur., Reggio Calabria, Italy, Sep. 2017,
Art. no. 59, doi: http://doi.acm.org/10.1145/3098954.3105826

[34] M. Leeds, M. Keffeler, and T. Atkison, ‘‘A comparison of features
for Android malware detection,’’ in Proc. Southeast Conf., Apr. 2017,
pp. 63–68.

31806 VOLUME 6, 2018

https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/TIFS.2014.2353996
http://doi.acm.org/10.1145/2766498.2774991
https://doi.org/10.1016/j.neucom.2014.10.004
https://doi.org/10.1109/TIFS.2016.2523912
https://doi.org/10.1016/j.future.2017.01.019
http://doi.acm.org/10.1145/2568225.2568286
http://doi.acm.org/10.1145/2660267.2660357
https://doi.org/10.1016/j.cose.2017.03.011
http://doi.acm.org/10.1145/2766498.2766507
https://doi.org/10.1016/j.future.2017.04.041
http://doi.acm.org/10.1145/3098954.3105826


W. Wang et al.: DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features

[35] N. Milosevic, A. Dehghantanha, and K. R. Choo, ‘‘Machine learning aided
Android malware classification,’’ Comput. Elect. Eng., vol. 61, pp. 266–
274, Jul. 2017, doi: https://doi.org/10.1016/j.compeleceng.2017.02.013

[36] H. A. Alatwi, T. Oh, E. Fokoue, and B. Stackpole, ‘‘Android malware
detection using category-based machine learning classifiers,’’ in Proc.
Conf. Inf. Technol. Educ., 2016, pp. 54–59.

[37] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[38] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, ‘‘PScout: Analyzing the
Android permission specification,’’ inProc. ACMConf. Comput. Commun.
Secur., 2012, pp. 217–228.

[39] Dalvik Bytecode. Accessed: Apr. 20, 2016. [Online]. Available:
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

[40] Apktool. Accessed:May 20, 2015. [Online]. Available: https://ibotpeaches.
github.io/Apktool/

[41] A. Desnos. (2013). Androguard-Reverse Engineering, Malware and
Goodware Analysis of Android Applications. [Online]. Available:
http://code.google.com/p/androguard/

[42] S. Hido and H. Kashima, ‘‘A linear-time graph kernel,’’ in Proc.
9th IEEE Int. Conf. Data Mining, Dec. 2009, pp. 179–188, doi:
10.1109/ICDM.2009.30.

[43] Anzhi Market. Accessed: Apr. 20, 2018. [Online]. Available:
http://www.anzhi.com/

[44] Lenovomm Market. Accessed: Apr. 20, 2018. [Online]. Available:
http://www.lenovomm.com/

[45] Wandoujia Market. Accessed: Apr. 20, 2018. [Online]. Available:
http://www.wandoujia.com/

[46] Virustotal-Free Online Virus, Malware and Url Scanne. Accessed:
Apr. 20, 2018. [Online]. Available: https://www.virustotal.com/

[47] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

WEI WANG received the Ph.D. degree in con-
trol science and engineering from Xi’an Jiaotong
University, in 2006, under the supervision of Prof.
X. Guan. He was a Post-Doctoral Researcher with
the University of Trento, Italy, from 2005 to 2006.
He was a Post-Doctoral Researcher with TELE-
COM Bretagne and INRIA, France, from 2007 to
2008. He was a European ERCIM Fellow with the
Norwegian University of Science and Technology
(NTNU), Norway, and the Interdisciplinary Centre

for Security, Reliability and Trust, University of Luxembourg, from 2009 to
2011. He visited INRIA, ETH, NTNU, CNR, and New York University
Polytechnic. He is currently a Full Professor with the School of Computer
and Information Technology, Beijing Jiaotong University, China. He has
authored or co-authored over 60 peer-reviewed papers in various journals
and international conferences. His main research interests include mobile,
computer, and network security.

ZHENZHEN GAO received the B.S. degree from
Hebei University, China, in 2016. She is cur-
rently pursuing the M.S. degree with the Beijing
Key Laboratory of Security and Privacy in Intel-
ligent Transportation, Beijing Jiaotong University,
China. Her main research interests lie in mobile
security.

MEICHEN ZHAO received the B.S. degree from
Shanxi University, China, in 2016. She is cur-
rently pursuing the M.S. degree with the Beijing
Key Laboratory of Security and Privacy in Intel-
ligent Transportation, Beijing Jiaotong University,
China. Her main research interests lie in mobile
security.

YIDONG LI received the B.Sc. degree from
Beijing Jiaotong University, China, and the M.Sc.
and Ph.D. degrees from The University of Ade-
laide, South Australia. He is currently an Associate
Professor with the School of Computer and Infor-
mation Technology, Beijing Jiaotong University.
He has published over 30 papers in international
journals and conferences. His research interests
include privacy preserving data analysis, social
network analysis, Web mining, and distributed

computing. He serves on the program committee of over 15 international
conferences.

JIQIANG LIU received the B.S. and Ph.D. degrees
from Beijing Normal University in 1994 and 1999,
respectively. He is currently a Professor with the
School of Computer and Information Technology,
Beijing Jiaotong University. He has published over
70 scientific papers in various journals and interna-
tional conferences. His main research interests are
trusted computing, cryptographic protocols, and
privacy preserving and network security.

XIANGLIANG ZHANG received the Ph.D. degree
in computer science from INRIA-University
Paris-Sud 11, France, in 2010. She is currently
an Associate Professor and the Director of the
Machine Intelligence and kNowledge Engineering
Laboratory, Division of Computer, Electrical and
Mathematical Sciences and Engineering, King
Abdullah University of Science and Technology.
She has authored or co-authored over 100 refereed
papers in various journals and conferences. Her

main research interests and experiences are in diverse areas of machine intel-
ligence, knowledge engineering, and their applications, such as information
security and privacy.

VOLUME 6, 2018 31807

https://doi.org/10.1016/j.compeleceng.2017.02.013

	INTRODUCTION
	RELATED WORK
	METHOD
	FEATURE SETS
	STRING FEATURES
	STRUCTURAL FEATURES

	CLASSIFICATION MODELS
	SUPPORT VECTOR MACHINE (SVM)
	K-NEAREST NEIGHBOR (kNN)
	RANDOM FOREST (RF)

	ENSEMBLE OF FEATURES

	EVALUATION
	DATA SET
	BENIGN APPS
	MALICIOUS APPS

	RESULTS ANALYSIS
	FEATURES COMPARISON
	CLASSIFIERS' COMPARISON
	ENSEMBLE RESULTS


	LIMITATIONS
	CONCLUSION
	REFERENCES
	Biographies
	WEI WANG
	ZHENZHEN GAO
	MEICHEN ZHAO
	YIDONG LI
	JIQIANG LIU
	XIANGLIANG ZHANG


