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ABSTRACT The integration of computing and modern wireless communications techniques is enabling
prolific intelligent monitoring and efficient control of electric power systems in the frameworks of smart
grids. In parallel, an enhanced reliance on such technologies has increased the susceptibility of today’s
smart grids to cyber-assaults. Recently, a new type of assault, termed covert cyber deception assault, has
been introduced to infringe upon the integrity of smart grid data. Such assaults are designed and initiated by
hackers who have considerably good knowledge of the power network topology and the security measures
in place, and therefore, these assaults cannot be effectively detected by the bad-data detectors in traditional
state estimators. In this paper, we propose a supervised machine learning–based scheme to detect a covert
cyber deception assault in the state estimation–measurement feature data that are collected through a
smart-grid communications network. The distinctive characteristic of the paper is that we use a genetic
algorithm–based feature selection in our scheme to improve detection accuracy and reduce computational
complexity. The proposed detection scheme is evaluated using standard IEEE 14-bus, 39-bus, 57-bus,
and 118-bus test systems. Through performance analysis, it is shown that the proposed scheme provides
a significant improvement in covert cyber deception assault detection accuracy, compared with existing
machine learning–based schemes.

INDEX TERMS Cyber assaults, feature selection, genetic algorithm, machine learning, smart grids, state
estimation, support vector machines.

I. INTRODUCTION
Rapid growth in human population, increased consumerism,
and induction of renewable energy has multiplied the
challenges for the electric power industry. These challenges
have given birth to the idea of transition from traditional
power grids to a new paradigm of the SG. The concept of the
SG as a complex cyber-physical system is to insert adequate
intelligence to augment control of the traditional electric
power grid and make it more autonomous, fault-tolerant,
reliable, and efficient. Because bulk storage of the generated
electric energy is not possible, generation and consumption
should be closely equated; otherwise, there can be a deviation
in the electrical quantities. Thus, a PCC needs to closely
monitor the power network to make sure that the operation

of the power system is safe and reliable. The SE is a well-
organized method for online monitoring of states in power
networks. The fundamental building blocks, i.e., generation,
transmission, and consumption, of an SG (along with the
communications links) are illustrated in Figure 1. Distributed
sensors, actuators, and meters (referred to as RTUs) are
installed in the electric power grid, mainly in substations,
to collect the measurements, including power injections into
the buses and power flow in the branches. These measure-
ments are combined at the PCC via communications links and
are further used to estimate the states, i.e., voltagemagnitudes
and angles, at buses. These state variables form the basis
for correct decisions by the EMS about AGC and OPF to
maintain the electric power systems in a safe operating zone.
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FIGURE 1. Covert cyber deception assault in a smart grid communications network.

On one hand, the existence of a communications infrastruc-
ture is compulsory for realization of efficient monitoring
and intelligent control in the framework of an SG, but a
communications infrastructure is prone to malicious cyber-
assaults [1]–[3], owing to certain incentives for the attacker,
like fiscal benefits, inserting technical faults resulting in
partial or complete power blackouts, or a combination of
both. A substantial amount of sensed information and control
signals flow on the bi-directional communications network
in SGs. Therefore, it becomes important to study a special
type of malicious user behavior that attempts to violate the
integrity of the measurement data by inserting a deceptive
bias value into the state estimation. Such malicious behavior
is mostly undetectable by the BDD present in the legacy PCC.
We call this kind of attack a CCD assault. Due to its grave,
negative impact on correct decisions in the PCC, detection
and elimination of the susceptibilities injected by a CCD
assault on the measurement data are critical for the safe and
reliable operation of SGs. Normal data that are not affected
by a CCD assault are consistent with electrical laws, like
Kirchhoff’s current and voltage laws, whereas data that are
affected by a CCD assault are inconsistent with these laws.
This fundamental distinction between normal and compro-
mised data inspires ML-based algorithms for detection of
CCD assaults.

Detection mechanisms against the CCD assaults have been
developed along multiple directions. Numerous CCD assault
detection techniques, which are not based upon ML rules,
have been proposed in the literature [4]–[7]. However,
ML-based schemes are gaining the attention of the
researchers due to their effectiveness in classifying the data
that have different underlying distributions. In the context of
CCD assaults on SG, proficient ML-based detection schemes
have been proposed by the researchers [8]–[12]. With the
growing size of power systems, the curse of dimensional-
ity [13] becomes challenging in CCD assault detection using
ML-based algorithms. In summary, the dimensionality issue
has not been addressed in above mentioned works with the
feature selection prospective.

Unlike prior efforts, in this paper we use a GA-based
FS technique to tackle the curse of dimensionality [13]. The
optimal features selected from the SE-MF dataset are then
used as input by an SVM classifier for the detection of a
CCD assault. The feature selection-based method does not
alter the original representation of the data [14]. Contribu-
tions of this paper can be summarized as follows:
• We study the CCD assault on SE-MF dataset, launched
by a hacker who is equipped with knowledge of the
topology of the power system network, and we inves-
tigate how such an attack goes undetected in legacy
systems that use bad-data detectors.

• We propose an ML-based solution to detect the CCD
assault. To tackle the increasing computational com-
plexity with growing sizes of power systems, we use
a GA for the selection of independent and discrimi-
native features from the SE-MF dataset. The selection
of discriminative features leads to lower computational
costs, a shorter time delay, and improved accuracy. Then,
the selected optimal features are used as input to a binary
SVM classifier to detect the presence of compromised
data.

• We use IEEE standard 14-bus, 39-bus, 57-bus, and
118-bus test systems to evaluate the efficiency of
proposed FS-based ML scheme for identification of
CCD assaults. Performance evaluation shows that the
proposed scheme can provide better accuracy in com-
parison to the existing machine learning techniques for
CCD assault detection.

The remainder of this paper is organized as follows.
In section II, we survey some related works, and in section III,
we present both the system model and the construction of
covert cyber-assault vectors. In section IV, we first describe
the proposed GA-based feature-selection scheme, and then
the SVM-based detection scheme to detect a CCD assault.
Simulation results are presented in Section IV. We con-
clude the paper in Section V. The abbreviations and nota-
tions used in this paper are summarized in Table 1 and 2,
respectively.
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TABLE 1. Nomenclature.

TABLE 2. Notations in CCD assaults in SG networks.

II. RELATED WORK
The opportunities and challenges in employing communica-
tion techniques along with legacy power networks have been
extensively surveyed [15]–[19]. Intrusion into a communica-
tions network by a malicious user who is aiming to destroy
the integrity of the data can have a catastrophic impact on the
secure and reliable operation of an SG [20]–[22]. Therefore,
in the context of the security of SGs, understanding the nature
of the assault and identification of compromised data has
been the focus of research in electric power systems. The
conventional state estimator in a PCC utilizes the BDD to
separate bad data for state estimation. However, Liu et al. [23]
demonstrated that a smart attacker who has information on
the network topology can realize the construction of a set
of falsified data that can dodge the legacy BDD. This type
of attack is known as an unobservable (or covert) cyber-
assault, a CSD attack, an FDI attack, a malicious data attack,
an LR attack, data integrity assault, and so on [24].

Numerous schemes considering the construction of intru-
sion assaults against state estimation, and the subsequent
defense measures against them, have been discussed in the
literature [4]–[12], [19]–[26]. Xie et al. [27] demonstrated
that a data integrity assault can methodically result in con-
siderable economic loss in real-time market operations. Sim-
ilarly, Esmalifalak et al. [28] studied the economic impact of
a false data injection attack on electric power market oper-
ations. An encryption-based security mechanism integrated
into power system devices was proposed [6] to improve the
security of the power system against FDI attacks. Li et al. [4]
proposed a decentralized conjunctive rule–based majority
voting algorithm to detect compromised or assaulted phase
measurement units. Huang et al. [5] proposed cumulative sum
hypothesis test-based bad-data detection in a state estimator.

Recently, ML-based techniques have gained the attention
of researchers to identify and eliminate faults, intrusions, and
abnormalities in many fields. Machine learning algorithms
are finding application areas in the field of SG security as
well. Detection of pernicious activity at the network layer
of SG communications using ML schemes is investigated
in [8] and [9]. Ozay et al. [10] employed a variety of
ML-based schemes to detect a CCD assault on SG commu-
nications at the physical layer level. The curse of dimension-
ality [13] becomes crucial with the growing power system.
Ozay et al. in [10] processed the samples in small sizes
by selecting a single measurement vector as a sample and
do not use the FS or FE-based ML schemes to tackle the
dimensionality issue. For growing size of the power system,
however, they only mentioned at high level of abstract, with-
out specifying underlying FS scheme, that the FSmethodmay
be a promising direction for handling the dimensionality issue
in the context of SG security. Wang et al. [11] developed
an ML-based algorithm to detect an attack (dissimilar to
the CCD or FDI assault), termed as time synchronization
attack, in which the adversaries change the time stamps
of the SE measurements. Furthermore, tackling the curse
of dimensionality has not been emphasized in their work.
Esmalifalak et al. [12] proposed a machine learning-based
method for the detection of a stealthy data-injection assault
in SE for SGs. To cope with the problem of dimensionality
using FE, Esmalifalak et al. [12] employed PCA to allow the
transformation of the original SE-MF data to a new repre-
sentation in a low-dimensional space. This new representa-
tion describes most (but not all) of the variance within the
features of SE-MF data. The authors proposed a distributed
SVM based algorithm for the classification of the compro-
mised and normal data samples in SE-MF data.

Unlike the above-mentioned approaches, in this paper,
we focus on feature selection to improve the classifica-
tion accuracy and reduce the computational complexity and
associated time-delay at PCC. Feature selection is a special
method for dimensionality reduction, in which a subset of the
original set of features is selected without any transformation
to a low-dimensional space, i.e., the features in the origi-
nal set that represent measurements of physical quantities
retain their units. Only selected are those features of the
SE-MF dataset that are discriminative and that can be used
to accurately differentiate between compromised and uncom-
promised data. We employ a GA-based FS technique to select
the most discriminative features, and we then employ an
SVM-based ML algorithm on the selected features to detect
CCD assaults. Performance evaluation shows that proposed
scheme results in good accuracy in detecting the presence of
bad data.

III. CONSTRUCTING THE COVERT CYBER
DECEPTION ASSAULT
State estimation at the PCC is the fundamental mechanism to
maintain reliable and efficient operations of SG systems [29].
As illustrated in Figure 1, the measurement data collected
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from RTUs via communications networks are used by the
state estimator to determine the system state over time. The
problem with state estimation is how to approximate power
system state variables δ = [δ1, δ2, δ3, ..., δn]T , based on the
meter measurements Zmeter = [Z1,Z2,Z3, ...,Zm]T where n
and m are positive integers and δi,Zj ∈ R for i = 1, 2, . . . , n
and j = 1, 2, . . . ,m. The measurement data and the state
variables are related through the following AC power flow
observation model:

Zmeter = h(δ)+ e, (1)

where h(δ) is a non-linear relationship between Zmeter and
δ; e = [e1, e2, . . . , em]T is Gaussian measurement noise with
co-variance matrix σ .
Using a linear or DC power flow model, the observation

model in (1) becomes further simplified with a small sacrifice
of accuracy, as follows [30], [31]:

Zmeter = Hδ + e. (2)

In a DC power flow problem, the Jacobian matrix H can be
approximated as follows:

H =
∂h(δ)
∂δ

∣∣∣∣
δ=0
, (3)

where H is composed of topology and impedance data
only. One objective of (2) is to determine the estimated
state, δ̂, that is the best fit for the meter measure-
ments. In other words, we can say that the best esti-
mated value can minimize estimation weighted least square

(WLS) error
(
Zmeter − H δ̂

)T
�
(
Zmeter − H δ̂

)
. By applying

the weighted least square statistical estimation criteria, esti-
mated voltage phase angle is given as follows:

δ̂ = (HT�H )−1HT�Zmeter = EZmeter . (4)

Here E = (HT�H )−1HT� and� is a diagonal matrix where
elements are reciprocals of the variances of meter errors. That
is,

� =


σ−21

.

.

.

σ−2m

, (5)

where σ−2i is the variance of the i-th RTU (1 ≤ i ≤ m).

A. ROLE OF THE CONVENTIONAL BAD-DATA DETECTOR
IN STATE ESTIMATORS AT THE PCC
Environmental or medium noise in wireless communications,
erroneous meters, or malicious user behavior (like CCD
assaults) can be potential reasons for bad data in estimated
measurements. Current power systems use a residual-based
detector for BDD to protect state estimation [32]. The differ-
ence between observed meter measurements Zmeter and esti-
mated measurements Ẑ is the residual, R, and it is expressed
as follows:

R = Zmeter − Zestimated = (I −M )Zmeter . (6)

The expected value and the co-variance of the residual are

E(R) = 0,

cov(R) = (I − A)R. (7)

The detection of false data or outliers is performed in BDD
using the largest normalized residual (LNR) test proposed
by Monticelli [32] with a predefined threshold. Therefore,
the hypothesis of not being attacked is accepted if we have

max
i
|Ri| ≤ λ, (8)

where Ri is the component of residual vector R and λ is the
threshold.

B. THE COVERT CYBER DECEPTION ASSAULT CAN
CIRCUMVENT THE CONVENTIONAL BDD
Malicious users can launch an assault if they are familiar
with the topology of H . With knowledge of the H matrix,
an attacker can alter the value of the meter measurement
data. Let Zassault = Zmeter + a where a ∈ Rm×1 denotes
the malicious data injected into the meter measurement data
vector. If the malicious user constructs vector a as follows:

a = Hc, (9)

where c ∈ R,m×1 is any arbitrary non-zero vector, the legacy
BDD cannot detect such an assault. The reason is as follows:
Let δ̂asssault denote the estimate of state variables using
assaulted meter measurements Zassault , i.e.,

δ̂asssault = EZmeter + Ea = δ̂ + EHc = δ̂ + c. (10)

Now, the L2 norm for the assaulted measurement Zassault
residual is as follows:

‖Rassault‖2 = ‖Zassault−Hδassault‖2
=

∥∥∥(Z + a)−H (δ̂+c)
∥∥∥

=

∥∥∥(Z − H δ̂)+ (a− Hc)∥∥∥
2
=

∥∥∥(Z−H δ̂)∥∥∥
2

= ‖R‖2. (11)

The assaulted measurement residual calculated here is the
same as that without compromised data. Hence, Zassault will
be able to deceive the BDD if original meter measurements
Zmeter can pass the BDD. The compromised measurements
are modeled as

Zassault = H (δ +1δ)+ e. (12)

Equation (12) shows that assaulted or corrupted meter mea-
surement data results in the addition of1δ to estimated state.
Because the residual of the assaulted measurements is the
same as the one without any assault, the BDD statistical test
given in eq (8) will be futile to detect the assault which will
change the system states affecting crucial operational failures.
This sort of assault is termed an unobservable or covert
assault [23] and [24]. Under these assumptions, the obser-
vation model in the presence of the CCD assault can be
described as the following:

Zassault = Hδ + a+ e, (13)

where a is the non-zero assault vector.
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IV. MACHINE LEARNING–BASED BAD DATA DETECTION
In this section, we discusses the proposed ML-based scheme
to detect CCD attacks. The proposed methodology for clas-
sification of the assaulted and unassailed SE-MF dataset is
illustrated in Figure 2. The fact that normal or unassailed
data follow Kirchhoff’s law, and the assaulted data do not
follow any physical law, suggests that both types of data will
have different distributions and will therefore tend to form
different clusters. These clusters would be distinguishable in
a feature space of suitable dimensions. Furthermore, if the
data are supplemented with class labels, then a classifier can
be trained to distinguish between the two clusters (assaulted
and unassailed). The curse of dimensionality [13] becomes
challenging when the size of measurement features grows
with an increase in the size of the power system, which
results in greater computational complexity. Nonetheless, not
all SE-MF dataset attributes would be equally supportive
in leading to plainly distinguishable clusters in the feature
space; this can have a negative impact on the classifier’s
performance. In this paper, we utilize GA-based FS scheme to
select an optimal subset of features that would result in more
tightly packed and distinctly separable clusters of vectors of
chosen features in the resulting subspace. Thus, the predic-
tive performance of the classifier is improved. Furthermore,
FS reduces the measurement and storage requirements,
as well as the training and prediction times [33]. In this paper,
a two-level scheme for the detection of CCD assaults in the
SE-MF dataset is proposed. First, the GA is used to select the
optimal-feature subset from the SE-MF dataset. The selected
optimal features are then employed to train an SVM-based
classifier that can detect CCD assaults on the SE-MF dataset.
In the following subsections, we explain the GA and support
vector machine-based classification.

FIGURE 2. The main flowchart of the proposed machine learning-based
covert cyber deception assault detection scheme.

A. DIMENSIONALITY REDUCTION USING GENETIC
ALGORITHM-BASED FEATURE SELECTION
Feature size in the SE-MF dataset increases as the power
system’s size grows, and dimensionality reduction becomes

an obvious necessity in data mining to reduce the compu-
tational costs and improve the efficiency of the classifier,
which can be affected by irrelevant and redundant features.
Esmalifalak et al. [12] used a PCA-based approach for dimen-
sionality reduction, which transforms the original features
from a high dimensional space to a low dimensional pro-
jection space. This transformation of features to a lower
dimensional space may result in some loss of information.
On the other hand, feature selection is the process of selecting
the best subset of features from among all the features that
are useful in discriminating between the two classes. In other
words, the goal of FS is to choose a subset of features
from a given set of features that yields minimum classifica-
tion error. Many research works on dimensionality reduction
reveal that FS approaches preserve data characteristics for
interpretability. In addition, FS approaches also reduce the
overfitting due to less redundant data, and improve model-
ing accuracy [34]–[38]. Janecek et al. [34] studied the rela-
tion between several dimensionality reduction approaches
(including feature subset selection, and feature extraction
with different flavors of PCAmethods) and empirically tested
the effects of these methods on classification accuracy on
two different types of datasets email data and drug discov-
ery data. Results revealed that feature transformation using
PCA is highly sensitive to the type of data. Many meth-
ods have been proposed by researchers for FS. In general,
FSmethods can be divided into three categories: filters, wrap-
pers, and embedded/ hybrid methods [14], [39]. In this paper,
we use a filter-based FSmechanism that is independent of any
learning algorithm or classifier. Working as a preprocessor,
it selects features by considering their scores in different sta-
tistical tests for correlation with the outcome variable. We use
GA to select the subset of features of the SE-MF dataset that
is the best at discriminating compromised data from normal
data. The GA emulates biological evolution and Darwinian
selection [40]. The evolution mechanism of living beings is
believed to follow natural selection, i.e., living species that
are better suited to their environment thrive, whereas species
that are at a disadvantage in their environment go extinct.
Following the same principle, a GA improves a given solution
by incrementally choosing better possible solutions, while
eliminating menial solutions. The quality of each solution
is calculated using a fitness value function based on the
objective function. The m-dimensional set of SE-MF vector
data in Rn is given as input to the GA as follows:{

X (m)
1 , X (m)

2 , . . . ,X (m)
k

}
where

Xi(m) =
[
x1 x2 , . . . , xm−1 xm

]
, ∀i ∈ {1, 2, . . . , k}.

(14)

The GA yields a set of n-dimensional vectors in subspaceRn,
described as {

X (n)
1 , X (n)

2 , . . . , X (n)
k

}
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where

Xi(n) =
[
x1 x2 , . . . , xn−1 xn

]
, ∀i ∈ {1, 2, . . . , k}.

(15)

It is notable that the GA reduces the dimensionality of each
vector in the set without affecting the cardinality of the set of
vectors in Eq. (14), i.e., n� m . The selected dimensions are
chosen to optimize the fitness function. Hence, X (n)

i denotes
an instance of the feature vector in the subspace that optimizes
the fitness function. Fitness function F which is adopted in
the paper is given as Eq.(16):

F =
C̄

S̄
. (16)

In (16), C̄ is the mean compactness of classes and it is
expressed as follows:

C̄ =
1
L

L∑
i

Ci, (17)

where the mean separability, denoted by S̄ in (16), is the
separation between any two classes in an L-class problem,
given as follows:

S̄ =
2

L (L − 1)

L∑
i 6=j

Sij. (18)

In the paper, we are dealing with a binary classification prob-
lem such that we have L = 2, i.e., assaulted and unassailed
SE measurement data. The GA finds a feature subspace that
would minimize the ratio of the mean values of inter-class
separability and intra-class compactness.
• Inter-class separability to measure how well separated
two different clusters are from each other.

• Intra-class compactness to measure how well clustered
the sample vectors are for a given class.

Two dimensional representation of inter-class separability
and intra-class compactness is illustrated in Figure 3. Tomea-
sure the compactness of a given class, the GA calculates the
mean or centroid µ(i) of class i as follows:

µ =
1
N
(X1 + X2 + ...+ XN ), (19)

where N is the total number of samples of class i. After that,
the compactness of class i is determined by finding the mean
value of the Euclidean norm as follows:

Ci =
1
N

N∑
j=1

∥∥∥Xj − µ(i)
∥∥∥. (20)

The Euclidean distance between the centroids of the two
classes describes the separability between the two classes i
and j. It is determined as follows:

Sij =
∥∥∥µ(i)

− µ(j)
∥∥∥ . (21)

FIGURE 3. The concept of intra-class compactness and inter-class
separability in a two-dimension feature space.

The GA encodes the SE-MF into chromosomes, which are
going through the crossovers andmutations. Thus, new gener-
ations of chromosomes are yielded, which substitutes for their
parents, provided they are healthier, i.e., their fitness or objec-
tive function value is higher. This process is iterated for
many generations until there is no further improvement in
the fitness function [33]. A binary encoding scheme is used
to represent the features or attributes of the SEMF dataset as
chromosomes. A chromosome is simply a string of binary 1’s
and 0’s, where 1 indicates that a certain SEMF feature is
selected, and 0 means it is rejected. The index of each
1 and 0 in the chromosome corresponds to a distinct SEMF
attribute. In the beginning, the GA randomly selects different
subsets of the SEMF. In other words, a primary popula-
tion of chromosomes (a string of 1’s and 0’s) initiates the
algorithm. A new population of chromosomes is created by
subjecting the primary (parent) chromosomes to the crossover
and mutations. Two parent chromosomes exchange informa-
tion or swap fragments at randomly chosen crossover points
during the crossover process. However, during the mutation
process, the bits are flipped at randomly selected positions in
a chromosome. Then, based on their respective fitness func-
tion value, chromosomes are ranked in the evaluation process.
Finally, the chromosomes that minimize the proposed fitness
function are selected to produce new chromosomes. This pro-
cess is repeated for many generations until there is no further
decrease in the value of the proposed fitness or objective
function.

B. SVM-BASED CCD ASSAULT DETECTION
Originally established by Vapnik [41], the concept of SVMs
is grounded in the theory of statistical learning and struc-
tural risk minimization. This machine learning method has
provided accurate performance in classification and predic-
tion problems and finds its application in the expanse of
the detection field as well. In this subsection, we propose
SVM-based CCD assault detection in the SE-MF dataset,
which is a binary classification problem i.e., classification
of assaulted and unassailed data. The binary classification
problem is solved by the SVM by determining the hyperplane
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with the largest margin that disconnects the two classes in
the feature space of the training data. The sign of the hyper-
plane function is employed to determine the labels of the test
samples from the assaulted and unassailed data. In this study,
we use the Gaussian radial basis function as a kernel function.
Bymeans of Lagrange multipliers, the SVM algorithm can be
condensed to solve the following optimization problem:

argmax

∑αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi, xj)

,
s.t

N∑
i=1

αiyj = 0, 0 ≤ αi ≤ C ∀i = 1, 2, . . . ,N . (22)

Here xi and yi denote samples from the training dataset, αi’s
are the Lagrangian multipliers, and C is the penalty variable
for regulating the generalization performance of the SVM,
and its value should be fine-tuned. K (xi, xj) is the kernel
function for the SVM derived by Mercer’s Theorem [42].
The corresponding decision or classification function for the
SVM is obtained as follows:

F(x) = sgn {f (x)},

where f (x) =
N∑
i=1

α∗i y
∗
i K (x∗i , x)+ b. (23)

The Lagrange multiplier corresponding to the support vector,
x∗i , is denoted by α∗i . Function value f (x) has a range from
−∞ to +∞ and represents the signed distance of unknown
data sample from the decision boundary. A positive decision
value for a class indicates that x is predicted to be in that class
(an unassailed sample), whereas a negative value indicates
otherwise [43]. The similarity between two input samples is
measured using the kernel measures. As a kernel function for
the SVM, the Gaussian radial basis function (RBF) kernel
was used in this research. The RBF kernel is ordinarily used
for linearly non-separable data and can be calculated as fol-
lows:

k(xi, xj) = exp
(
−ω

∥∥xi − xj∥∥2), (24)

where ω = 1
2σ 2

and σ is an adjustable parameter to be
carefully selected. The exponential is linear when σ is small
and the higher-dimensional projection drops its non-linear
potential. Conversely, the decision boundary becomes very
sensitive to noise during training, when σ is large, due to the
lack of regularization.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed
FS-based CCD assault detection scheme. We have performed
the simulations usingMATLAB2017b. The proposed scheme
is evaluated through experiments using the standard 14-bus,
39-bus, 57-bus, and 118-bus IEEE test systems. To compare
the proposed scheme with existing ML-learning algorithms,
we have employed IEEE 118-bus system. Figure 4 illustrates
the IEEE 39-bus system, also known as the new England

FIGURE 4. Standard IEEE 39-bus (New England 10-Machine) System [45].

10-machine system [45]. Because of space limitations,
figures for other IEEE bus systems employed for testing in
this work are not included. To simulate the operation of the
power network, we have used the MATPOWER 6.0 tool-
box [44] to generate the configuration of these test sys-
tems especially, the Jacobian matrix H . We employed the
AC power flow model and used DC power flow analysis to
approximate the state vectors and measurement vectors. In a
B-bus system, state variable vector δ ∈ Rn is composed of
(B−1) bus voltage phase angles, and the meter measurement
vector consists of active power injections into the buses and
branch active power flows. To perform a fair comparison with
a real-world power network scenario, we have used stochastic
loads with uniform load distributions, as employed in [12].
In these simulations, the active power measurement features,
including the active power injections into the buses and active
power flows on the branches, are input to the GA for feature
selection.

A. GA-BASED FEATURE SELECTION
In this paper, the number of chromosomes in each population
is 100 and the maximum number of generations is set to 80.
Because the GA randomly selects different subsets of the
SE-MF dataset to create a primary population of chromo-
somes, we iterate the GA for 30 times and choose only
those features which are selected for more than 70% in these
iterations. Table 3. illustrates an average number of selected
features with the application of GA with 30 iterations to
SE-MF dataset for various IEEE standard systems.

TABLE 3. Average number of features selected by GA.
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B. THE OPTIMAL CHOICE OF PENALTY VARIABLE (C)
AND ADJUSTABLE PARAMETER (σ )
The selected optimal features by the GA are then inserted
as input to the SVM for detection of compromised data
in the SE-MF dataset. In this paper, using four-fold cross-
validation, we employ 75% of the historical SE-MF dataset
as a learning dataset and tested the accuracy of the fitted
decision boundary on the remaining 25 % of the dataset.
In addition, we use the radial basis function, which is given
in Eq. (24). The selection of the optimal values for penalty
parameter C in (22) and σ will help to improve the efficiency
of the SVM in detecting compromised data for the cross-
validation set. The parameter determines the smoothness of
the decision boundary between the two classes, whereas
the parameter σ determines the influence of a single train-
ing example. Both parameters affect the generalization per-
formance of the SVM. Using Bayesian optimization and
choosing from a wide range of values, i.e., between 10−5

and 105, we search for optimal values for the parameters C
and σ . The optimal values for C and σ yield the minimum
detection error. Figures 5(a), 5(b), 5(c), and 5(d) show the
detection error with respect to different values of C and σ for
standard IEEE 14-bus, 39-bus, 57-bus, and 118-bus systems,
respectively. Basic performance metrices used in this work
i.e., accuracy, F1-score, and ROC curves are shown in the
following subsections.

C. ACCURACY
Calculating accuracy is a standard way to evaluate learning
algorithms. It is a single-number summary of the perfor-
mance of the proposed algorithm and can be calculated as
follows:

Accuracy =
(∑

TP+
∑
TN

TotalPopulation

)
, (25)

where true positive (TP) corresponds to the samples that the
proposed algorithm detects as positive samples and that are,
in fact, positive. Similarly, true negatives (TNs) are the points
that the proposed algorithm detects as negative samples and
that are, in fact, negative. Figure 6 illustrates the accuracy
of the proposed FS-based CCD assault detection scheme in
various standard IEEE bus systems according to the number
of training samples. The proposed schemewas also compared
with the numerous ML schemes such as ADAB, MLP [10]
and FE-based SVM [12]. As a result, it can be seen that
the proposed FS-based SVM with optimal C, σ , and RBF
kernel outperforms other schemes and requires few number
of training samples to achieve a higher accuracy. In addi-
tion, the ADAB and MLP [10] exhibit good CCD assault
detection accuracy, and corresponding performance improves
gradually with increasing number of training samples. How-
ever, both ADAB and MLP have slow training speed and
hard to tune. The FE-based SVM [12], has lower detec-
tion accuracy compared to the proposed scheme. It is also
clear that a large number of training samples are required to
train the model to achieve good accuracy. The figure also

FIGURE 5. Optimal choice of C and σ for the employed IEEE systems.
(a) Optimal C and σ for IEEE 14-bus system. (b) Optimal C and σ for IEEE
39-bus system. (c) Optimal C and σ for IEEE 57-bus system. (d) Optimal C
and σ for IEEE 118-bus system.

shows that KNN is more sensitive to feature size and has
a low detection performance for the growing size of the
power system. Finally, the NB scheme shows poor detection
performance.
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FIGURE 6. Accuracy of the feature selection-based support vector
machine (SVM) in comparison with existing machine learning schemes.

D. F1 Score
Next, we consider the F1 score as another metric of detection
accuracy. The F1 score is considered a measure of the precise
detection or classification of the subject dataset. The F1 score
is obtained as follows:

F1 = 2
(
Pr × Re
Pr + R

)
, (26)

where Pr is termed precision and is calculated as
follows:

Pr =
(
TruePositive
ActualPositive

)
. (27)

The true positive corresponds to the samples that the pro-
posed algorithm detects as positive samples, and that are,
in fact, positive. Predicted positives are sample points that
may include both compromised and normal ones, but the
algorithm detects them all as positive. Re is termed recall and
is calculated as follows:

Re =
(
TruePositive
ActualPositive

)
. (28)

The actual positives in (27) are all the positive points in the
dataset. Generally, the F1 score can be up to 1. In general,
the closer the value is to 1, the more accurate the classifier
is considered. Figure 7 shows that the proposed FS-based
SVM with optimal C, σ , and RBF kernal performs well
in comparison to other schemes and requires few number
of training samples to achieve a higher F1 score. It can be
seen from the Figure 7 that the FE-based SVM scheme [12]
requires many historical samples from the SE-MF dataset for
learning in order to achieve a higher F1 score. The ADAB and
MLP (FS-based) have good CCD assault detection accuracy
which improves gradually with increasing number of training
samples.

However, both ADAB and MLP have slow training speed
and hard to tune. Additionally, they need a large amount of
data to train the model, which may require additional storage
space at PCC. The figure also shows that the KNN is more
sensitive to feature size and has a low detection performance
for the growing size of the power system. It can be seen

FIGURE 7. F1 score of the proposed FS-based support vector
machine(SVM) in comparison with existing machine learning
schemes.

FIGURE 8. F1 score of the proposed FS-based CCD assault detection
scheme when the number of compromised load profiles changes
from 24 to 60.

from the figure that Naive Bayes scheme also has poor detec-
tion performance. Next, to investigate the impact of several
compromised load profiles on the F1 score, we considered
different numbers of compromised load profiles, i.e., 24, 30,
36, 40, 45, and 60. The SE-MF dataset load profiles consist
of 360 samples that are collected through sensors or RTUs at
regular intervals of four minutes for 24 hours. We utilize 75%
of the data for training and the rest of the samples for testing.
Figure 8 shows the F1 as a measure of the accuracy of the pro-
posed FS-based proposed detection for various standard IEEE
14-, 39-, 57- and 118-bus systems. The proposed FS-based
scheme has above 90% performance for all the employed test
systems. Furthermore, the average performance of our detec-
tion scheme in comparison to existingmachine learning based
schemes is presented using the confusion matrix in Table 4.
It is evident from Table 4, that average accuracy for detecting
a CCD assault is more than 90% for all the test cases. Further,
the accuracy of our detection scheme improves as the system
size grows.

E. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE
Figure 9 illustrates the receiver operating characteristic
curves of the proposed FS-based detection scheme for
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TABLE 4. CCD assault detection accuracy comparison between proposed FS-based SVM and existing ML schemes.

FIGURE 9. ROC curve for the proposed FS-based CCD assault detection scheme for IEEE 14, 39, 57, and
118-bus test systems. (a) IEEE 14-bus system. (b) IEEE 39-bus system. (c) IEEE 57-bus system.
(d) IEEE 118-bus system.

standard IEEE 14-bus, 39-bus, 57-bus,and 118-bus systems.
The ROC curve is obtained by plotting the false positive rate
(FPR) versus the true positive rate (TPR). FPR is defined
as the probability that normal data are identified as compro-
mised. It is used as a measure of specificity in our detection
scheme. The sensitivity of our scheme is defined as the
probability that compromised data are identified as assaulted.
TPR is used as a measure of sensitivity. From the figure 9,
we can see that the area under the curve is approximately
equal to 1 in all cases. This means that the detection accuracy
of our proposed scheme is nearly equal to 1, which validates
its good performance.

VI. CONCLUSION
In this work, we propose an FS-based ML mechanism for
the detection of CCD assaults in SG communications net-
works. We employ a GA for the selection of discriminative
and distinctive features. The selected optimal features are
used as input to an SVM for the detection of bad data,
which are inserted into the SE-MF dataset by hackers who
have knowledge about the power network topology. The
SVM automatically learns the decision boundary that
achieves the maximum geometric deviation between unas-
sailed and compromised data points by observing the
SE-MF dataset under normal and assaulted circumstances
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and then classifies test data as either compromised or uncom-
promised. To validate the performance of the proposed
scheme, we use standard IEEE 14-bus, 39-bus, 57-bus, and
118-bus systems. The simulation results show that the pro-
posed FS-based SVM scheme (with optimal C, σ , and
RBF kernel) has reasonably good detection accuracy in
comparison with the existing schemes under the occasional
operational environment. AdaBoost and MLP perform well
with growing power system size while requiring huge his-
torical SE-MF dataset samples for achieving a good accu-
racy. We also observe that the KNN has low detection
efficiency and is more sensitive to system size. Subsequently,
the FS-based SVM is preferred for detection of CCD assault
in SG communications network with growing size of power
systems.

Finally, it would be one of the further works to consider
diverse attack scenarios and to identify the compromised
meters utilizing the detected compromised measurements.
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