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ABSTRACT Beam capture efficiency (BCE) is one key factor of the overall efficiency in a microwave
power transmission (MPT) system. However, excitation errors of transmitting array are inevitable in practice,
which always cause deviation of BCE from the designed one. In this paper, we propose a synthesis method
of transmitting array for optimal MPT by using cooperatively coevolving differential evolution (CCDE)
algorithm while considering excitation errors including amplitude errors and phase errors. Toward this
purpose, a statistical analysis (SA) method is also presented to evaluate the achievable worst BCE in the
presence of excitation errors. The tolerance of BCE against the random excitation errors is simulated by
computer program, and the positions and nominal excitation amplitudes are both simultaneously optimized
to improve the worst BCE. Simulated results show that the worst BCE is improved about 4% from 81%
to 85% based on the SA-CCDE synthesis method for the excitation errors (σδ , σ8) = (0.1,10◦), where δn
denotes the amplitude error in percent and 8n represents the phase error.

INDEX TERMS Microwave power transmission, beam capture efficiency, array synthesis, excitation errors.

I. INTRODUCTION
Microwave power transmission (MPT) technology involves
wirelessly transferring the electrical energy from transmitting
antenna array to receiving antenna array by a microwave
beam [1], [2]. It could be used for supplying high alti-
tude airship, unmanned aerial vehicles, and so on [3], [4].
Beam capture efficiency (BCE) is the ratio of the captured
power by the receiving array to the total radiated microwave
power, and it is one key factor of overall efficiency for
optimal MPT.

The highest dc to dc (dc-dc) overall efficiency of 54% in
the history of MPT was proved by Dr. Brown in 1974 [5].
However, this culmination is hard to be achieved in a long-
range MPT system. In 1975, an S-band MPT experiment at
the range of 1.54 km was shown at the Venus Site of JPL’s
Goldstone Facility. The obtained rectifying efficiency was up
to 80%, whereas the dc-dc efficiency was only 7% due to
poorBCE of 11.7% [6]. AnotherMPT experiment was carried
out by John Mankins in 2008, and the obtained BCE was
less than 1/1000th of 1% since the size of the transmitting
and receiving arrays were too small for efficient transfer over
148 km distance [7]. Therefore, the transmitting array should
be designed to improve BCE, which is of great importance to
efficient operation of MPT systems.

In recent years, many efforts have been devoted to the
transmitting array synthesis for optimal MPTwithout consid-
ering excitation errors or position errors [8]–[17]. The theo-
retical optimal BCE (BCEopt) and the corresponding optimal
distribution across the transmitting array can be achieved by
exploiting the discrete prolate spheroidal sequences [8] or by
solving a generalized eigenvalue problem [9], [10]. To sim-
plify the complexity of the feed network under the condition
of keeping a high BCE, several weighting technologies have
been proposed for the transmitting array including Isosce-
les Trapezoidal Distribution (ITD) [11], ITD with Unequal
spacing [12], stepped amplitude distribution [13], and uni-
form amplitude distribution with unequal spacing [14]. The
unconventional array can also realize the feed network simpli-
fication by clustered exciting strategy [15]. The sparsification
of the transmitting array was also discussed in [15]–[17]
with a high BCE via compressive sensing (CS), convex
programming (CP), and the combination of the aforemen-
tioned two methods, respectively. Unfortunately, random
errors are inevitable due to the accuracy of manufacture,
which always cause deviation of BCE from the designed one.
Nevertheless, [18], [19] just analyzed the tolerance of BCE
against excitation phase errors and position errors, respec-
tively. To the best of the authors’ knowledge, the previous
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array synthesis works for optimal MPTwere focused on ideal
situation.

In this work, we describe a synthesis method of the
transmitting array for optimal MPT by using stochastic
optimization algorithm in the presence of excitation errors
including amplitude errors and phase errors. Toward this
purpose, a statistical analysis (SA)method is also presented to
analyze the tolerance of BCE against excitation errors. Due to
high dimensions of this optimization problem, cooperatively
coevolving differential evolution (CCDE) algorithm is con-
sidered [20]. The outline of this paper is organized as follows.
Section II describes the SA method for tolerance analysis
of BCE against excitation errors. Section III introduces the
synthesis model and the optimization procedure of CCDE
algorithm, and Section IV presents the numerical results.
Finally, section V gives the concluding remarks.

II. TOLERANCE ANALYSIS OF BCE IN THE
PRESENCE OF EXCITATION ERRORS
The formulas of BCE are derived by using SA method while
considering excitation errors. Then based on these formulas,
we can get the upper and lower bounds of BCE.

A. FORMULAS OF BCE WITH CONSIDERING
EXCITATION ERRORS
As shown in Fig. 1, the transmitting array can be an arbitrary
shaped array located in the XOY plane while consisting of
N elements. As the effect of mutual coupling among the
elements is ignored, the ideal array factor is

AF =
N∑
n=1

wn exp [jk (uxn + vyn)] (1)

FIGURE 1. Geometry of MPT system.

where wn and (xn, yn) are, respectively, the complex excita-
tion weight and position of nth element. k = 2π/λ denotes
the wave number, u=sin θcosϕ, and v=sin θsinϕ. Suppose
that the receiving array is in the far region, BCE can be
expressed as

BCE =

∫
9
|AF|2 d9∫

�
|AF|2 d�

=
wRwH

wTwH (2)

where 9 is the receiving region,� is the whole visible range
of transmitting array,w=[w1,w2, . . . ,wN ], R and T are both
N×N matrixes, and superscript ‘‘H ’’ stands for transpose and
complex-conjugate. The elements of R and T are calculated
as discussed in [9].

Rmn =
∫
9

exp [jk (u1xmn + v1ymn)]d9 (3)

Tmn = 4π sin c
(
k
√
1x2mn +1y2mn

)
(4)

where 1xmn = xm − xn, and 1ymn = ym − yn. BCEopt

is the maximum eigenvalue of the generalized eigenvalue
problem [9]

Rwopt
= BCEoptTwopt (5)

in which wopt is the corresponding eigenvector. Considering
the excitation amplitude and phase errors caused by mechan-
ical and electrical errors, the array factor becomes

AF =
N∑
n=1

An (1+ δn) exp [jϕn + jk (uxn + vyn)+ jφn] (6)

where An and ϕn are, respectively, the amplitude and phase of
complex excitation wn. The symbol δn denotes the amplitude
error in percent, and8n represents the phase error. Therefore,
the microwave power flowing through the angular region
S = {9,�} is

PS =
N∑
m=1

N∑
n=1

amnδmnsmn exp [j1φmn] (7)

smn =
∫
S
exp [jk (u1xmn + v1ymn)+ j1ϕmn]dS (8)

where amn = AmAn, δmn = (1+δm)(1+δn),1φmn = φm−φn,
and 1ϕmn = ϕm−ϕn. It’s obvious to find that smn = s∗nm,
in which ‘‘∗’’ stands for complex-conjugate. Assume that
δn and 8n are statistically independent and have a normal
distribution with zeromean and standard deviation σδ and σ8,
respectively, it turns out that (see the Appendix A)

PS =
N∑
m=1

N∑
n=1

amnτ Smn (1+ 2δm + δmδn) (9)

where τ Smn = srmn cos(1φmn) − simn sin(1φmn), s
r
mn and simn

are the real and imaginary part of smn, respectively, and
τ Smn = τ

S
nm. According to Taylor polynomial approximation,

we can get cos(1φmn) ≈ 1 − φ2m/2 − φ
2
n/2 + φmφn and

sin(1φmn) ≈ φm−φn. By substituting the above two formulas
in (9), PS turns out to be the sum of PSA and PSB, the expresses
of which are (see the Appendix B)

PSA =
N∑
m=1

PSAm (10)

PSB =
N∑
m=1

PSBm (11)
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where PSAm = cSAm(1+ 2δm)−φm(1+ δm)(cSBmφm+ 2cSCm)+
cSDmδ

2
m, and P

S
Bm = δmvSAm + φmv

S
Bm + δmφmv

S
Cm + φ

2
mv

S
Dm.

The coefficients in PSAm are given as

cSAm =
N∑
n=1

amnsrmn (12)

cSBm =
N∑
n=1
n6=m

amnsrmn (13)

cSCm =
N∑
n=1
n6=m

amnsimn (14)

cSDm = ammsrmm (15)

and the coefficients in PSBm are

vSAm =
N∑
n=1
n 6=m

[
amnsrmnδn

(
1− φ2n

)
+amnsimn2φn (1+ δn)

]
(16)

vSBm =
N∑
n=1
n 6=m

amnsrmnφn (17)

vSCm =
N∑
n=1
n 6=m

amnsrmn (2+ δn) φn (18)

vSDm = −
N∑
n=1
n 6=m

amnsrmnδn (19)

Thus BCE can be expressed as BCE = (η + P9B /P
�
A)/

(1 + P�B/P
�
A), in which P9 is the receiving power, P� is the

total transmitting power, and η = P9A/P
�
A . In order to get the

upper and lower bounds of BCE, the bounds of η, PSA and PSB
should be obtained in advance.

B. BOUNDS OF PS
A (S = {9,�}) AND η

The mean of PSAm is uSAm = cSAm − σ 2
8c

S
Bm + σ 2

δ c
S
Dm,

and the variance is (σ SAm)
2
= σ 2

δ (2c
S
Am − σ

2
8c

S
Bm)

2
+ 2σ 2

8

(1+ σ 2
δ )[σ

2
8(c

S
Bm)

2
+ 2(cSCm)

2]+ 2σ 4
δ (c

S
Dm)

2. Since PSAn and
PSAm (m 6= n) are statistically independent, the mean and
variance of PSA can be got as

uSA =
N∑
m=1

uSAm (20)

(
σ SA

)2
=

N∑
m=1

(
σ SAm

)2
(21)

and the correlation coefficient between P9A and P�A is

ρ =

N∑
m=1

ρm (22)

where ρm = [σ 2
δ (2c

9
Am − σ 2

8c
9
Bm) (2c�Am − σ 2

8c
�
Bm) +

2σ 2
8(1+σ

2
δ )(σ

2
8c

9
Bmc

�
Bm+2c9Cmc

�
Cm)+2σ 4

δ c
9
Dmc

�
Dm]/σ

9
A σ

�
A .

We define LS as

LS =
1(
σ SA

)4 N∑
m=1

E
[∣∣∣PSAm − uSAm∣∣∣4] (23)

FIGURE 2. LS for Verifying Lyapunov central limit theorem.

where E() returns the expected value. The values of LS are
shown in Fig. 2. In the calculation process, MPT system
has a square transmitting array displaced on a regular lattice
of Ln × Ln and a circular receiving region (u2 + v2 ≤ r20
and r0 = 2/Ln). The complex excitations are set as wopt

in [9]. As a result, the limit of LS as N approaches infinity
is zero. According to Lyapunov central limit theorem (CLT),
PSA becomes a normal distribution. For the confidence level γ ,
the confidence interval is [uSA − β1σ

S
A, u

S
A + β1σ

S
A]. Namely,

the probability that PSA lay within the interval is equal
to γ . For example, β1=1.96 when γ=95%. Thus the lower
bound (PSA)

L is uSA − β1σ
S
A and the upper bound (PSA)

U

is uSA + β1σ
S
A .

The bounds of η are related to the correlation coefficient.
If ρ = ±1, which indicates a linear relationship between P9A
and P�A , it turns out that P

9
A = aP�A + b, a = σ9A /σ

�
A , and

b = u9A − au�A . Then η can be rewritten as η = a + b/P�A .
With the bounds of PSA, we can get η1 = a+ b/(P�A)

L and
η2 = a+ b/(P�A)

U. So the lower bound ηL = min(η1, η2)
and the upper bound ηL = max(η1, η2), where min()
returns the smaller element and max() returns the larger
element. If ρ 6=±1, the joint probability density function
of P9A and P�A is

f1
(
P9A ,P

�
A
)
=

1

2πσ9A σ
�
A

√
1− ρ2

exp

{
−

1

2
(
1− ρ2

)
·

[(
P9A − u

9
A

)2
2
(
σ9A

)2 +

(
P�A − u

�
A

)2
2
(
σ�A

)2
−2 ρ

(
P9A − u

9
A

) (
P�A − u

�
A

)
σ9A σ

�
A

]}
(24)
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then the probability density function of η is

f2 (η) =
∫
+∞

0
f1
(
P�A,P

�
Aη
)
P�Ad

(
P�A
)

(25)

For the same confidence level γ , the bounds of η can be
expressed as [η0 − β2, η0 + β2], in which η0 = ∫10 f2(η)ηdη
and β2 is the solution of γ = ∫

η0+β2
η0−β2

f2(η)dη.

C. BOUNDS OF PS
B (S = {9,�})

Through the similar discussion of PSA, variables v
S
Am, v

S
Bm,

vSCm, and v
S
Dm are all found to be normal distributions with

zero means. Their variances are, respectively, (σ S1m)
2
=

σ 2
δ (3σ

4
8 − 2σ 2

8 + 1)(κSm)
2
+ 4(1 + σ 2

δ )σ
2
8(ϑ

S
m)

2, (σ S2m)
2
=

σ 2
8(κ

S
m)

2, (σ S3m)
2
= σ 2

8(4+σ
2
δ ) (κ

S
m)

2, and (σ S4m)
2
= σ 2

δ (κ
S
m)

2,
in which

κSm =

√√√√√√
N∑
n=1
n 6=m

a2mn
(
srmn
)2 (26)

ϑS
m =

√√√√√√
N∑
n=1
n 6=m

a2mn
(
simn
)2 (27)

Therefore, the confidence intervals are [−β1σ Sqm, β1σ
S
qm]

(q= 1,2,3,4) for the confidence level γ . Define pSB as

pSB = β1
N∑
m=1

pSBm (28)

where pSBm = δmσ
S
1m + φmσ

S
2m + δmφmσ

S
3m + φ

2
mσ

S
4m, and

it is obvious that |PSB| ≤ |p
S
B|. By using the Lyapunov CLT

again, pSB is also a normal distribution, the mean and variance
of which are, respectively

uSB = β1σδσ
2
φ

N∑
m=1

κSm (29)

(
σ S
B

)2
= β21

N∑
m=1

[
σ 2
δ

(
σ S
B1m

)2
+ σ 2

φ

(
σ S
B2m

)2
+ σ 2

δ σ
2
φ

(
σ S
B3m

)2
+ 2σ 4

φ

(
σ S
B4m

)2]
(30)

For the confidence level γ , we can get |pSB| ≤ uSB + β1σ
S
B .

Considering the condition |PSB| ≤ |p
S
B|, the lower and upper

bounds of PSB are −uSB − β1σ
S
B and uSB + β1σ

S
B , respectively.

D. BOUNDS OF BCE
Based on the above sections, we can get the upper
bound of BCE as ςU = [ηU + (P9B )

U/(P�A)
L]/[1 +

(P�B )
L/(P�A)

L] and lower bounds as ςL = [ηL +
(P9B )

L/(P�A)
L]/[1+ (P�B )

U/(P�A)
L]. By considering the prac-

tical situation, the bounds of BCE should be modified as
BCEU=min(ςU, BCEopt) and BCEL=max(ςL, 0), respec-
tively, where BCEopt is the optimal BCE.

E. INCLUSION PROPERTY OF SA-BASED BOUNDS
Here, it should be indicated that the proposed SA method is
not fully inclusive. Namely, not all possible BCE are ana-
lytically included in the SA-based bounds. However, a more
accurate interval can be obtained because of this property. The
following example is given to explain this feature.

Random variable Xn(n = 1, 2, . . . ,N ) is supposed to be
distributed normally with mean un and variance σ 2

n , and Xm
and Xn (m 6= n) are statistically independent. Then Y =
X1 + X2 + . . . + XN is also a normal distribution with mean
uY = u1 + . . . + uN and variance σ 2

Y = σ 2
1 + . . . + σ

2
N .

For the confidence lever γ , the confidence interval of Xn − un
is −βσn ≤ Xn − un ≤ βσn. Therefore, we can get
−βσp ≤ Yn − uY ≤ βσp by inequality rules and −βσY ≤
Yn−uY ≤ βσY by the SAmethod, inwhich σp = σ1+. . .+σN
and σY < σp. We can get a shorter interval by the SAmethod.

Then we discuss the probability of Yn − uY = ±βσp,
defined by pe. If σ1 = . . . = σN = σ , pe= exp(−Nβ2/2)/
(2Nπσ 2)0.5. We give some numerical results with σ = 1 and
β = 3 for different N . For N = 10, pe= 3.6×10−21; for
N = 20, pe= 7.3×10−41. Therefore, Yn − uY is impossible
to reach ±βσp, which are not included in the SA-based
bounds. As a result, the SA-based bounds are better than the
inequality-based bounds.

III. ARRAY SYNTHESIS IN THE PRESENCE
OF EXCITATION ERRORS
Array synthesis has been studied in many works without
considering random excitation errors which are inevitable in
practice and will bring bad influence on the MPT applica-
tions. It can be seen from (8) that simn will be zero when all
elements are excited in-phase for regular receiving region,
such as circular region. This feature is good for decreasing
the variances of PSA and PSB, and then the deviation of BCE
from the designed one will be reduced. So, antenna elements
are considered to be in-phase in the following discussion.

In this paper, the positions and the nominal excitation
amplitudes of antenna elements are optimized simultane-
ously by using CCDE algorithm to improve the worst per-
formance BCEL of transmitting array based on the proposed
SA method. The positions and excitation amplitudes are sup-
posed to be symmetrical about the x-axis and the y-axis,
which could reduce the complexity of feed network and
the problem dimensions. The optimization model can be
established as

Find [x1, . . . , xN1 , y1, . . . , yN1 ,A1, . . . ,AN1 ] (31)

Max · f = BCEL (32)

where N1 = N /4. Variables xn, yn and An(n = 1, 2, . . . ,N1)
are the x position, y position and excitation amplitude of
nth element in the first quadrant. The element spacing is con-
strained by 1x2mn + 1y

2
mn ≥ d2min(m 6= n), xn ≥ dmin/2 and

yn ≥ dmin/2, in which dmin is the minimum spacing between
adjacent elements. Moreover, all elements are confined on a
Dx×Dy aperture, which can be guaranteed by xn ≤ Dx/2 and
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yn ≤ Dy/2. In order to deal with the minimum element spac-
ing constraint in computer program, the three steps are carried
out. Firstly, random positions are generated for each element
by evolutionary algorithm. Secondly, we get the distances
between each position and find all unreasonable distances
which are less than dmin. Thirdly, a penalty according to these
unreasonable distances is added to the fitness function (32).

FIGURE 3. Subpopulations in CCDE algorithm.

CCDE algorithm, namely the combination of cooperatively
coevolving algorithm and differential evolution algorithm,
is used to solve the large-scale optimization problem. The SK
strategy in [21] is considered. As shown in Fig. 3, the 3N1
dimensional population with I individuals is decomposed
into J subpopulations. The ith individual is denoted as pi
(i = 1, 2, . . . , I ), and the jth part of pi is denoted as pij(i =
1, 2, . . . , I , and j = 1, 2, . . . , J ), which is sj dimensional.
In most cases, s1 = s2 = . . . = sJ−1 = s and 0 < sJ < s
(3N1 = (J − 1)s+ sJ ).
The CCDE algorithm will work better if interacting vari-

ables are placed within the same subpopulation. However,
it is not always known in advance how these 3N1 variables
are related. To alleviate this problem, we adopt the random
grouping structure as proposed in [22]. By randomly decom-
pose the 3N1 dimensional population into J subpopulations at
each iteration, the probability of placing two interacting vari-
ables into the same subpopulation becomes higher and higher
over an increasing number of iterations. The pseudocode of
CCDE algorithm is given as

Algorithm 1 Create and Initialize J Subpopulations
while termination criterion is not met do

for each subpopulation j = 1, 2, . . . , J do
for each individual i = 1, 2, . . . , I do
if f (com(pij, pbesti )) > f(pbesti ) then
replace the ith part of pbesti by pij;
if f (pbesti ) > f(pbest) then
replace the pbest by pbesti ;

end for
end for
Mutation operation;
Crossover operation;

end while

where pbesti = (pbesti1 , . . . , pbestij , . . . , pbestiJ ) is the optimal
individual over the history of pi, pbestij is the jth part of
pbesti , and pbest is the optimal individual of the popula-
tion over the iterations. The operator com(pij, pbesti ) returns
(pbesti1 , . . . , pbesti(j−1), pij, p

best
i(j+1), . . . , p

best
iJ ), and f is the fitness

function given as (32).
Here, we adopt DE/Rand/1 strategy in the mutation opera-

tion. Then a mutated individual vi can be generated as

vi(t + 1) = pr1 (t)+ F[pr2 (t)− pr3 (t)] (33)

where t is the current iteration time, r1, r2 and r3 are
three random integrals selected from {1, 2, . . . , I }, and
r1 6= r2 6= r3. The parameterF is a scaling factor within [0,1].
Then the trial individual ui is generated by

uij(t + 1) =

{
vij(t + 1), if rand() ≤ CR
pij(t + 1), otherwise

(34)

where rand() returns a random decimal between 0 and 1,
and CR is the crossover probability. The unchanged time of
pbest is used as a convergence criterion. When pbest is not
changed above 100 iterations, we should stop the CCDE
algorithm.

IV. NUMERICAL RESULTS
In this section, we analyze the tolerance of BCE against exci-
tation errors by computer program. Next, we give analysis
results of an unequal spacing transmitting array.

A. TOLERANCE ANALYSIS
The validity of the proposed SA method is verified in
advance. Accordingly, the minimum confidence level γ is
discussed. And then a set of numerical results are provided
for different excitation errors and for transmitting arrays
different in size. Without loss of generality, MPT system
is supposed to have a square transmitting array of Ln × Ln
positions and a square receiving region (−u0 ≤ u ≤
u0,−v0 ≤ v ≤ v0). The excitation weights across trans-
mitting array are set as wopt [9] which is corresponding to
the BCEopt.

Provided that u0= v0= 0.2 and Ln = 10, BCEopt is
95.4% which agrees well with the result achieved in [9]
(BCE= 96.45%). The following two error cases are con-
sidered: (σδ , σ8)= (0.05,5◦) and (σδ, σ8)= (0.1,10◦). For a
preliminary verification,Q= 105 different random excitation
errors corresponding to (σδ, σ8) have been generated. Hence
every BCEq(q = 1, 2, 3 . . . ,Q) can be calculated. When
γ = 99.9%, the SA-based bounds of BCE are [92.0%,95.4%]
and [81.7%,95.4%], respectively. As shown in Fig. 4, the fact
that all BCEq are within the SA-based bounds fully confirms
the validity of the proposed SA method.

The bounds of BCE are directly related to the confidence
level γ . To discuss about the minimum γ , the width of BCE
is denoted as 1BCE=BCEU − BCEL and the probability
that BCEq lay within the SA-bounds is denoted as pin. The
numerical results of different γ are shown in Fig. 5 for
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FIGURE 4. BCE with random excitation errors and the SA-based bounds.
(a) (σδ, σ8) = (0.05,5◦). (b) (σδ, σ8) = (0.1,10◦).

(σδ, σ8)= (0.1,10◦). As γ increases, BCEU increases and
BCEL decreases. Therefore, pin gradually increases due to the
larger 1BCE. The results show that γ should be larger than
97% to guarantee pin≥99.9%.

Numerical results for different excitation errors are shown
in Fig. 6 with γ = 97%. The maximum deviation of BCEfrom
the optimal oneBCEopt is defined as dBCE =BCEL−BCEopt,
which indicates the worst performance of transmitting array.
Obviously, BCEL and BCEU both decrease when σδ or σ8
increases. As a result, dBCE increases to 12.6%. With these
results, we can do some preliminary predication. For exam-
ple, σδ should not be larger than 0.07 for the case of σ8= 5◦

if the deviation is confined by dBCE<3%.
The next example is concerned with arrays different in

element number (corresponding to Ln). In order to eliminate
the effects of other factors, the BCEopt is constrained to be
95%. The receiving region parameters u0 and v0 are decided
by a bisection method to guarantee the BCE of 95%. With
(σδ, σ8) is fixed as (0.1,10◦), numerical results are shown in
Fig. 7. It can be seen that the deviation of BCE decreases
from 11.8% to 8.7% when the element number varies

FIGURE 5. Effect of confidence level Y . (a) on the bounds of BCE.
(b) on pin and 1BCE .

from 36 to 400. As a result, we can reduce the impact of
random excitation errors by increasing the element number
of transmitting array.

B. ARRAY SYNTHESIS
The unequal spacing planar array (100 elements) in [14]
is considered as a reference array, because it has a BCE
of 89.96% which is 3.5% higher than the optimal one in [9]
(BCEopt= 86.48%). The receiving region is a circular one
(u2 + v2 ≤ r20 and r0= 0.2). However, the BCEL is 81.1%
for the excitation errors (σδ, σ8) = (0.1,10◦), which is 8.9%
lower than the designed one. Based on the SA-CCDE algo-
rithm, the positions and nominal excitation amplitudes are
optimized simultaneous to improve BCEL. The minimum
spacing between adjacent elements dmin is 0.4λ, and the
maximum aperture size is 4.5λ×4.5λ. As a result, the BCEL

is improved by 3.8% from 81.1% to 84.9%. That means we
can guarantee BCE of 84.9% in the presence of excitation
errors (σδ, σ8)= (0.1,10◦). The corresponding positions and
nominal excitation amplitudes are shown in Fig. 8. The circles
indicate element positions, and the values in circles denote the
nominal excitation amplitudes.
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FIGURE 6. Effect of different excitation errors. (a) on the bounds of BCE.
(b) on deviation of BCE from the optimal one.

FIGURE 7. The deviation of BCE for different size transmitting array.

In the next example, the elements are confined on a
6λ×6λ aperture, while the element number, the minimum
element spacing and the receiving region are not changed.

FIGURE 8. The optimized element positions and excitation amplitudes for
4.5λ×4.5λ transmitting aperture.

FIGURE 9. The optimized element positions and excitation amplitudes for
6λ×6λ transmitting aperture.

The optimized positions and nominal excitation amplitudes
are shown in Fig. 9. TheBCEL is improved by 4% from81.1%
to 85.1%, which is close to the one of 4.5λ×4.5λ transmitting
aperture. From the two optimized array and the numerical
results of tolerance analysis, we can find that the BCEL is
sensitive to the element number, not the aperture size.

V. CONCLUSION
In this paper, a SAmethod is presented to evaluate the achiev-
able BCE in the presence of excitation errors. Then based
on the worst BCE obtained by the SA method, we propose
a synthesis method of transmitting array for optimal MPT
by using CCDE algorithm. The tolerance of BCE against the
random excitation errors is simulated by computer program,
and the positions and nominal excitation amplitudes are both
simultaneously optimized to improve the worst BCE. Numer-
ical results indicate the validity of the SA method, and show
that the worst BCE is improved about 4% from 81% to 85%
based on the SA-CCDE synthesis method for the excitation
errors (σδ, σ8)= (0.1,10).
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APPENDIX A
DERIVATION OF (9)
With amn = anm, δmn = δnm, 1φmn = −1φnm, and
smn = s∗nm, (7) can be rewritten as

PS =
N∑
m=1

N∑
n=m+1

amnδmn
[
smn exp (j1φmn)

+ s∗mn exp (−j1φmn)
]
+

N∑
m=1

ammδmmsmm

= 2
N∑
m=1

N∑
n=m+1

amnδmn
[
srmn cos (1φmn)

− simn sin (1φmn)
]
+

N∑
m=1

ammδmmsmm (35)

Due to smm = srmm, P
S can be expressed as

PS =
N∑
m=1

N∑
n=1

amnδmn
[
srmn cos (1φmn)− s

i
mn sin (1φmn)

]
(36)

so

PS =
N∑
m=1

N∑
n=1

amnτ Smn (1+ δm + δn + δmδn) (37)

With τ Smn = τ
S
nm, the third part of P

S can be transformed as

N∑
m=1

N∑
n=1

amnτ Smnδn=
N∑
m=1

N∑
n=1

anmτ Snmδm=
N∑
m=1

N∑
n=1

amnτ Smnδm

(38)

The transform method will be used many times in the follow-
ingAppendix B. Substituting (38) in (37), (9) can be obtained.

APPENDIX B
DERIVATION OF PS

A and PS
B

With the taylor polynomial approximation of cos(1φmn) and
sin(1φmn), (9) can be expanded as

PS =
N∑
m=1

N∑
n=1

amnsrmn (1+δmδn)
(
1−

1
2
φ2m−

1
2
φ2n+φmφn

)

+

N∑
m=1

N∑
n=1

amnsrmnδm
(
2− φ2m − φ

2
n + 2φmφn

)
−

N∑
m=1

N∑
n=1

amnsimn (1+ δmδn) (φm − φn)

−

N∑
m=1

N∑
n=1

amnsimn2δm (φm − φn) (39)

PS turns out to be as follow by using transform method
in (38).

PS =
N∑
m=1

N∑
n=1

amnsrmn (1+ δmδn)
(
1− φ2m + φmφn

)
+

N∑
m=1

N∑
n=1

amnsrmnδm
(
2− φ2m − φ

2
n + 2φmφn

)
−

N∑
m=1

N∑
n=1

amnsimn (1+ δmδn) 2φm

−

N∑
m=1

N∑
n=1

amnsimn2δm (φm − φn) (40)

Therefore, the two parts of PS are

PSA =
N∑
m=1

N∑
n=1

amnsrmn
(
1− φ2m + 2δm − φ2mδm

)
+

M∑
m=1

ammsrmm
(
φ2m + δ

2
m + δmφ

2
m

)
−

N∑
m=1

N∑
n=1

amnsimn2φm (1+ δm) (41)

PSB =
N∑
m=1

N∑
n=1
n6=m

amnsrmn
(
φmφn + δmδn − δmδnφ

2
m

)

+

N∑
m=1

N∑
n=1
n 6=m

amnsrmn
(
2δmφmφn − φ2nδm + δmδnφmφn

)

−

N∑
m=1

N∑
n=1
n 6=m

amnsimn2δm (δnφm − φn) (42)

For PSA,

N∑
m=1

N∑
n=1

amnsrmn =
N∑
m=1

cSAm (43)

N∑
m=1

N∑
n=1

amnsrmn2δm = 2
N∑
m=1

δmcSAm (44)

−

N∑
m=1

N∑
n=1

amnsrmnφ
2
m +

M∑
m=1

ammsrmmφ
2
m

= −

N∑
m=1

φ2mc
S
Bm (45)

−

N∑
m=1

N∑
n=1

amnsrmnφ
2
mδm +

M∑
m=1

ammsrmmδmφ
2
m

= −

N∑
m=1

φ2mδmc
S
Bm (46)
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−

N∑
m=1

N∑
n=1

amnsimn2φm (1+ δm) = −
N∑
m=1

2φm (1+ δm) cSCm

(47)
M∑
m=1

ammsrmmδ
2
m =

N∑
m=1

δ2mc
S
Dm (48)

Substituting (43)-(48) in (41), we can get (10) where PSAm =
cSAm(1 + 2δm) − φm(1 + δm) (cSBmφm + 2cSCm) + cSDmδ

2
m.

For PSB, with smn = s∗nm, the following three parts of PSB can
be expressed as

N∑
m=1

N∑
n=1
n 6=m

amnsrmnδmδnφ
2
m =

N∑
n=1

N∑
m=1
m6=n

anmsrnmδnδmφ
2
n

=

N∑
m=1

N∑
n=1
n 6=m

amnsrmnδmδnφ
2
n (49)

N∑
m=1

N∑
n=1
n 6=m

amnsrmnφ
2
nδm =

N∑
n=1

N∑
m=1
n 6=m

amnsrmnφ
2
mδn (50)

N∑
m=1

N∑
n=1
n6=m

amnsrmn2δmφmφn =
N∑
m=1

N∑
n=1
n 6=m

amnsrmn2δnφmφn (51)

Substituting (49)-(51) in (42), we can get the final expression
of PSB.
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