
Received April 3, 2018, accepted May 8, 2018, date of publication May 10, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2835304

Semi-Supervised Deep Fuzzy C-Mean Clustering
for Software Fault Prediction
ALI ARSHAD 1,2, SAMAN RIAZ1,2, LICHENG JIAO3, (Fellow, IEEE), AND APARNA MURTHY4
1School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2School of International Education, Xidian University, Xi’an 710071, China
3Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education of China, International Joint Collaboration Laboratory of Intelligent
Perception and Computation, International Research Center of Intelligent Perception and Computation, Xidian University, Xi’an 710071, China
4Professional Engineers Ontario, Toronto, ON M2N 6K9, Canada

Corresponding author: Ali Arshad (alli.arshad@gmail.com)

This work was supported in part by the National Basic Research Program (973 Program) of China under Grant 2013CB329402, in part by
the National Natural Science Foundation of China under Grant 61573267, Grant 61473215, Grant 61571342, Grant 61572383, Grant
61501353, Grant 61502369, Grant 61271302, Grant 61272282, and Grant 61202176, in part by the Fund for Foreign Scholars in University
Research and Teaching Programs (111 Project) under Grant B07048, and in part by the Major Research Plan of the National Natural
Science Foundation of China under Grant 91438201 and Grant 91438103.

ABSTRACT Software fault prediction is a consequential research area in software quality promise. In this
paper, we propose a semi-supervised deep fuzzy C-mean (DFCM) clustering for software fault prediction,
which is the cumulation of semi-supervised DFCM clustering and feature compression techniques. Deep is
utilized for the feature-basedmulti clusters of unlabeled and labeled data sets along with their labeled classes.
In our approach, for the training model, we simultaneously deal with the unsupervised data and supervised
data to exploit the obnubilated information from unlabeled data to labeled data to support the construction
of the precise model. We utilize DFCM clustering to handle the class imbalance problem and withal fuzzy
theory logic is very akin to human logic and it is facile to comprehend. We further ameliorate the prediction
performance with the coalescence of feature learning techniques-feature extraction and feature selection
(using random-under sampling) to generate good features and remove irrelevant and redundant features to
reduce the noisy data for classification. However, by the performance of the model results, the amalgamation
of deep multi clusters and feature techniques work better due to their ability to identify and amalgamation
essential information in data feature. The classification model is predicted on the maximum homogeneous
between the features of labeled and unlabeled data, the model is trained on the un-noisy data set obtained
by the deep coalescence of multi clusters and feature techniques. To check the efficacy of our approach,
we chose data sets from real-world software project (NASA& Eclipse), and then we compared our approach
with a number of latest classical base-line methods, and investigate the performance by using performance
measures such as probability of detection, F-measure, and area under the curve.

INDEX TERMS Semi-supervised learning, fuzzy C-Mean clustering, feature learning, software fault
prediction.

I. INTRODUCTION
Fault prediction is an paramount practice to ameliorate relia-
bility and quality of software entities. It aims at understanding
the co-dependencies among variables and processing. The
intricacies of software are incrementing day by day for sundry
reasons incrementing authoritative ordinances of infusion of
incipient technologies, reliability, and security by the users.
One possible way to deal with this problem is to prognos-
ticate consequential software quality features during prema-
ture phases of software development such as fault-proneness,
reliability, testability, endeavor, and maintainability. Identifi-
cation of software faults afore they authentically make the

software fail is kenned as software fault prediction. Many
researchers have addressed this problem and sundry software
techniques are available for fault prediction [1], [2], [3], [4],
[5], [6] and [7].

Supervised learning models are one of the best choices
for software fault prediction if only labeled data are pro-
vided for training model. Intuitively for the better accuracy
of prediction, we required large size of the labeled data for
training set [8], [9]. The performance of the prediction could
be dramatically reduced with a size of the training set is max-
imum decrementing. Consequently, for better accuracy one
drawback of supervised learning is that the size of training

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

25675

https://orcid.org/0000-0003-1842-8040


A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

FIGURE 1. Process of Software Fault Prediction.

data set should be large as possible, but it is expensive and
time-consuming.

Supervised learning models use class labeled data rep-
resented as known fault data during the training phase.
However, there are cases when previous known faults data
are not inordinate available for training model, then to handle
this challenging problem, the semi-supervised approach can
be applied in these case. Fig 1 is a semi-supervised learning
approach because in the training phase uses labeled data rep-
resented as known faults data and unlabeled data represented
as unknown faults data

Bennett and Demiriz [10], Joachims [11],
& Belkin et al. [12] have proposed the semi-supervised
approach for classification. However, few researchers have
been used simultaneously to exploit the obnubilated infor-
mation from unlabeled data to labeled data [13], [14],
[15] & [16]. Many semi-supervised approaches are used for
fault prediction. However, most of them have been dealing
with balanced classes [9].

The reason of class imbalance problem occur where
some classes are highly underrepresented compared to other
classes. In these cases, classifier tends to make more errors on
small classes and may even ignore the complexity, although
minority class is alwaysmore of interest. This problem affects
the performance of the model. This problem has gained more
attention of researchers, lately. The K-nearest neighbor clas-
sifier (KNN) [17], [18] is one of the most popular learning
algorithms for imbalance classes. An object is assigned to the
class which is most frequent among the K-nearest neighbor.
At the time, numerous changes in KNN have been proposed
for improvement [19], [20]. There are many Fuzzy set theory
based algorithms [21], [22], [23], and [24] are proposed for
imbalanced classes.

This paper is the extension of our previous work [25],
in our previous work; we focused on the preprocessing data
technique by feature extraction for the classification of two
classes. However, the performance of the classification accu-
racy is affected with imbalanced classes.

In our approach, the aim to develop the new semi-
supervised approach in which both supervised data and unsu-
pervised data are utilized simultaneously during clustering
process, in which the obnubilated information is exploited
from unlabeled data to support the construction of good clas-
sifier. In the field of pattern recognition, the coalesce analysis
of labeled data and unlabeled data is very useful.

However, to the best of our knowledge, very few
researchers have utilized multi clusters to handle the class
imbalance problem [26], in which Germain Forestier, pro-
posed a semi-supervised learningmethod to produce new fea-
tures derived from the first step of data clustering by utilizing

supervised and unsupervised data. They used unsupervised
classification to create new features to describe the labeled
samples by creating clusters that tend to maximize intra-
cluster similarity and intra-cluster dissimilarity. In our paper,
we utilized Deep Fuzzy C-Mean multi clustering to handle
the class imbalance problem and withal fuzzy logic are very
akin to human logic and it is facile to comprehend.

The prosperity of prediction model depends strongly on
the feature/attributes that are utilized as an input to design
the predictor. It is commonly believed, more features do
not indispensably avail identification of systems based on
input-output data. Utilization of many features convention-
ally increases the time and cost, and sometime it may result in
more hazard by making the system complex. Hence, dimen-
sionality reduction of feature that is usually done by two
ways, one is by feature extraction [27], [28] and second is
by feature selection [29], [30]. However, few researchers
have cumulated feature extraction and feature selection to
ameliorate data quality in software fault prediction.

Our main objective is to utilize this coalescence of fea-
ture reduction techniques to generate the good features from
clusters of all the subsets of supervised and unsupervised
data along with labeled classes. Feature selection (Random
under-sampling (RUS)) [31] is used to handle the problem of
imbalance number of the features in the subset of labeled and
unlabeled data set and also remove irrelevant and redundant
features to reduce the noisy data for classification. Feature
extraction through clustering techniques leads to many issues
such as explicated in [32], [33], and [34]. We could handle
these issues by feature selection (RUS) technique.

In this paper, we utilized ‘‘Deep’’ because of two reasons,
one is used for deep correlation between supervised and
unsupervised data with multi clusters and second for the
deep correlation between Deep Fuzzy C-Mean clustering and
feature techniques to find the best input data for the classifier.
To best of our knowledge, the development of classifier is
based on human-understandable rules depend on the similar-
ity between the features of unlabeled and labeled along with
the labeled classes.

Feature technique is utilized to generate a good feature
and remover irrelevant and redundant features to reduce noisy
data for classification.

The main motivation of DFCM for the classification
of software fault prediction on the pre-processing step of
semi-supervised multi-clustering to create new features with
inhibited labeled data and abundant unlabeled data. A semi-
supervised data creates two clusters into unsupervised and
supervised that tend to maximize intra-cluster class and intra-
cluster features by using FCM clustering.

The contribution of the proposed method can be concluded
as follow.

1) To the best of our knowledge, we proposed the new
semi-supervised approach, which simultaneously deals
with the supervised data and unsupervised data during
clustering to exploit the hidden information from unla-
beled data.

25676 VOLUME 6, 2018



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

2) We proposed a novel algorithm using both Deep
Fuzzy C-Mean clustering and coalesce feature
selection techniques. Deep multi-clustering for the
class imbalanced problem and combine feature selec-
tion techniques redundancy control for classification.

This paper is organized as follows. In section II, we will pro-
vide a review of related work, Section III, deals with imple-
mentation strategy of the algorithm, Section IV, describes
experiment and results, section V, provides with the threats
to validity and section VI, provides with the conclusion.

II. RELATED WORK
In this section, we briefly introduce the background of
software fault prediction, semi-supervised learning, class-
imbalance problem, feature learning and sampling technique.

Software fault prediction is very auxiliary to predict the
fault of softwaremodules.Many researchers have used awide
variety of machine learning techniques such as decision trees,
clustering and SVM [1], [3] & [4].

Semi-supervised learning is a machine learning technique
to improve the performance of the model; the model is trained
by utilizing few labeled with abundant unlabeled data. Semi-
supervised approach for software fault prediction is studied
by Nigam et al. [35], the algorithm utilized in speech process-
ing computational linguistics. Here, a set of untagged data
is used and steps of collocation labeling. Using this labeled
data is trained for partitioning, iteratively on the probability of
co-occurrence till the data grows and reduces the untagged
set. Once the grouping is complete, then classifier is used. The
algorithm is dependent on the collocational list of entries [35].

Liu et al. [7] proposed a two-stage data preprocessing
approach for software fault prediction. It is a two-stage
data preprocessing approach, which integrates both feature
selection and instance reduction, to improve the quality of
software fault prediction. He proposed NTC (NB) (Novel
threshold-based clustering algorithm using Naïve Bayes clas-
sification model), which involves both reliance analysis and
redundancy control. He also applies random under-sampling
technique to keep the balance between the faulty and non-
faulty classes.

Riloff et al. [36] proposed the modification of self-training
algorithm for the semi-supervised approach for software fault
prediction. It is a two-step process one is a utilization of Mul-
tidimensional Scaling (MDS) and other is semi-supervised
learning algorithm for fitting the confidence intervals to fit
the estimated values.

Li et al. [37] proposed Constraint FCM method novel
semi-supervised fuzzy c-means algorithm. It uses data that
contain labeled tag and finds cluster center and optimize the
objective function of fuzzy c-mean of the labeled data using
EM algorithm.

Lu et al. [38] invested the performance of an iterative semi-
supervised software defect prediction approach on different
size of labeled rate, they approved if the rate of labeled data
is greater than 5% then the proposed approach performs better
than supervised learning approach

In feature learning Coates et al. [39], apply several
off-the-shelf feature learning algorithms, by the analysis of
this results the clustering algorithms is extremely fast and
easy to implement with achievable high accuracy.

Lu et al. [40] proposed the semi supervised learning
approach for the defect prediction, embedded a preprocessing
strategy, Multi-dimension scaling (MDS), they shows that
the integration of the Fitting–the-confident-Fits (FTcF) with
MDS performs better than supervised learning algorithm.

Catal [41] analysis the performance of fault prediction
by compared four semi-supervised classification method for
including Class Mass Normalization (CMN) methods, Low-
Density Separation (LDS), Support Vector Machine (SVM)
and Expectation-Maximization (EM-SEM). According to
this comparison, when the data size is large, LDS algorithm
performs better compared to SVM.

Zhang et al. [42] used Non-negative Sparse Graph-
based Labeled Propagation approach (NSGLP) for soft-
ware defect classification and prediction. According to this
result, NSGLP performs better than LDS when the dataset is
unbalanced.

According to our knowledge, there have few researchers
used fuzzy set theory to software fault prediction been a few
attempts to use fuzzy set theory to predict software faults.
Pandey and Goyal [43] first constructed a decision tree using
ID3 and then from decision tree they generate ‘‘if-then rules,
which are used as fuzzy rules’’. Chatterjee and Maji [44] also
use fuzzy if the fault in software requirement analysis phase.

It is known that good modeling tool is the cognation
between a learning method and feature representation learn-
ing. Dimensionally reduction in feature learning is usu-
ally done in two broad ways by feature extraction (gener-
ation of incipient features from subsisting ones) [27], [28]
and features selection [29], [30]. The data preprocessing
plays important role to improve the quality of software
datasets [45], [46], [47] which include feature selection and
reduction (or sampling). Khoshgoftaar et al. [51] combined
filter based feature ranking methods and random under-
sampling for improved the data preprocessing.

Gabry’s and Petrakieva [48] or Bouchachia [49], they pro-
posed the method to ameliorate the classification accuracy
with very few labeled and abundant unlabeled samples are
available, they used semi-supervised approach in which dur-
ing the clustering process they deal with labeled and unla-
beled data simultaneously.

Cai et al.[15] proposed ‘‘A simultaneous learning frame-
work for clustering and classification’’ to fuse the advan-
tages of classification learning and clustering learning into
the single framework with inhibited labeled and abundant
unlabeled data by optimizing the clustering centers in the
objective function, both the classification learning and clus-
tering learning can be realized simultaneously. In his work,
they used an evolutionary technique called modified particle
swarm optimizer (PSOm) to find optimal clustering centers.

Here, we used Fuzzy C-Mean with deep multi clus-
ters for feature extraction utilizing both labeled and

VOLUME 6, 2018 25677



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

unlabeled data, simultaneously, during clustering process.
For the imbalanced number of features in the labeled set and
unlabeled set, we used random under-sampling [51].

III. SEMI-SUPERVISED DEEP FUZZY-C
MEANS CLUSTERING
In this section, we present a human-interpretable learning-
based model for software fault prediction, which cumulates
the DFCM clustering with multi-feature techniques and clas-
sification based on similarity among the selected features of
labeled data with their classes and unlabeled data. The aim
of the proposed method is to get a best classification model
with few labeled data with imbalanced classes, which would
improve the performance of fault prediction.

FIGURE 2. Flowchart of Deep Fuzzy C-Mean Clustering (DFCM).

A. FRAMEWORK OF OUR APPROACH
Fig 2 gives the framework of our DFCM clustering
approach. In this framework, after normalization of semi-
supervised data using min-max approach, the data converted
into two subsets of labeled and unlabeled datasets (supervised
and unsupervised) in the first layer. In the second layer,
the supervised set split into two subsets based on the classes
(true and false) along with their features. In the next step,
two supervised subsets and one unsupervised set split into

Algorithm 1 Membership and Centroid of DFCM
Input:
The data set X = {x1, x2 . . . , xn, l},
X = XTL ∪ XFL ∪ XUN , where
XTL = {x1, x2 . . . , xT } ∈ True class,
XFL = {xT+1, xT+2 . . . , xl} ∈ False class,
l ∈ {True,False},
XUN = {xF+1, xF+2 . . . , xn} ∈ Unlabeled class,
Where l is the labeled classes and k is the feature clusters,
fuzziness m=2, with ε is objective threshold and tis number
of iterations.
Output:
UTL ,UFL&UUN Membership matrices
V (k)
TL ,V

(k)
FL&V

(k)
UN Set of k centroid.

1. Construct membership matrices UTL ,UFL&UUN with
random decimal fraction.

2. Compute cluster center V (k)
TL ,V

(k)
FL&V

(k)
UN using formula of

cluster center of FCM [32].
3. Update UTL ,UFL&UUN using formula of membership of

FCM [37].
4. Repeat step 2 & 3 until

∥∥J(t) − J(t−1)
∥∥ < ε for all labeled

and unlabeled subsets separately.

k-clusters based on features, we have total k (2+1) clusters
in the third layer, calculate DFCM membership and DFCM
centroid by algorithm 1.

In next step feature extraction of k (2+1) cluster byDFCM.
Before the classification, we select s features by RUC [51]
based on ranking to balance the number of features between
supervised and unsupervised subsets, where s is the minimum
number of features in any subsets. The detail of the feature
extraction and classification are going to be discussed in next
section. Examples of clusters and classification are given
in figure 3.

B. FEATURE EXTRACTION
Use of many features customarily increases the data acqui-
sition cost and time. Therefore, it is always desirable for
classification that the number of features reduce the accu-
mulated the design for decision-making system. There are
two main broad ways to reduce the feature space i.e. feature
selection [24], [30] and feature extraction [27], [28].

But in our proposed method, we used both methods to
design good prediction system by generating good features
and removing irrelevant and redundant features to reduce the
noisy data for training classification model.

For the feature extraction, we apply DFCM clustering to
learn k centroids from the labeled and unlabeled datasets.
Given the learned centroids V (k), we choose non-linear map-
ping for feature mapping.

fk (x) = max (0,µ (z)− zk ) (1)

Where zk =
∥∥x − V (k)

∥∥
2 and µ (z) is the mean of the

elements of z. If the output 0 of any feature fk , where the

25678 VOLUME 6, 2018



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

FIGURE 3. Example of clustering and classification 1 Labeled data class1/true,© Labeled data class2/false, x unlabeled data. (a) Shows, k is the
number of features and every feature make one cluster. Every feature has three more clusters (labeled data class1/true, labeled data class2/false, and
unlabeled data). (b) Shows, ‘‘s’’ is the number of selected features/clusters by (RUS) from all three subsets (labeled data class1/true, labeled data
class2/false, and unlabeled data), In pre-classification the unlabeled data belong to labeled class1 or labeled class2 according to the maximum
similarity between the features. (c) Shows, final classification is the re-union of the clusters which is based on the maximum average of the maximum
similarity between all selected features (clusters).

Algorithm 2 Feature Extraction of DFCM
Input:
The data set X = {x1, x2 . . . , xn, l},
X = XTL ∪ XFL ∪ XUN ,
Set of centroid V (k)

TL ,V
(k)
FL&V

(k)
UN

Output:
fTLk (xTL) , fFLk (xFL)&fUNk , sets of features of True class,
False class and unlabeled dataset.
1. Calculate ZTLk ,ZFLk&Zunk , using formula

Where,
ZTLk =

∥∥∥xTL − V (k)
TL

∥∥∥,
ZFLk =

∥∥∥xFL − V (k)
FL

∥∥∥ &

ZUNk =
∥∥∥xUN − V (k)

UN

∥∥∥.
2. Calculate µT (ZTL), µF (ZFL)&µT (ZUN ) are the means of

the elements ZTL ,ZFL&ZUN .
3. fk (x) = max (0, µ (z)− zk)∀TL,FL&UNfeatures
4. Update all the features of all data sets fTLk , fFLk&fUNk .

distance to the centriod V k is ‘‘above average’’. In practice,
this means that roughly half of the feature will be set 0.

After the feature extraction by algorithm 2, to balance the
number of features between all subsets of labeled classes and
unlabeled dataset, select ‘‘s’’ features from each subset by
feature selection RUS (Random under-sampling) suggested
by Khoshgoftaar et al. [51], where ‘‘s’’ are the number of
minimum features in any subset. To measure the similarity
between the pair of features of labeled classes and unlabeled
data set. We choose the Euclidean distance between ‘‘s’’
cluster centers of labeled classes and unlabeled data points
with s features.

max Simj
(
x,V (s)L

)
= min

∣∣∣xi − V (s)
jL

∣∣∣ , j ∈ True&False

(2)

Where xi ∈ XUN , VjL is the set of the centroid of
labeled class1 (True) and label class2 (False) and ‘‘s’’ is
the number selected features in all subsets. With every
selected feature clusters, find the maximum similarity by
using equation 2 between the features of unlabeled data and

Algorithm 3 Classifier of DFCM
Input:
The data set X = {xF+1, xF+2 . . . , xn, l}, with s selected
features, V (s)

TL ,V
(s)
FL&V

(s)
UN , l ∈ [T ,F].

Output:
Predicted labeled data Y = {yl+1, yl+2 . . . , yn
1. Y = ∅
2. For i = l + 1ton&j = T ,F do

Computing maxSimj
(
x,V (s)L

)
by using equation 1,

3. If max_avg_max Simj
(
x,V (s)L

)
∈ class True

4. Adding xi into class True otherwise
5. Adding xi into class False.
6. Updating all rest data points in X into Y
7. returnY.

labeled data (class1 or class2). In the final classification
step, followed by algorithm 3. Find the maximum average
of the maximum similarity between the selected features of
unlabeled data and labeled data. Then, unlabeled data point
corresponding to maximum average adding in the particular
labeled class (True or False).

IV. EXPERIMENT
A. DATA PREPARATION
In this paper, MATLAB 2016a [50] is used as the program-
ming tool. In order to verify the clustering performance
of the DFCM algorithm on ten NASA datasets (cm1, jm1,
kc1, kc3, mc2, mw1, pc1, pc3, pc4, and pc5) [52], [53]
and three Eclipse dataset (Eclipse 2.0, Eclipse 2.0 and
Eclipse 3.0) [54], [55], are used to test the experiment.
All datasets with 10%, 20%, and 30% rate of labeled data and
contain 2 classes true and false. We select objective threshold
0.1 which is used to stop the iteration for updating new cluster
centers for all datasets, and degree of fuzziness m = 2.

Table 1 shows the benchmark NASA and Eclipse dataset
that illustrates brief properties of thirteen datasets that will
include the number of samples, number of features, number
of faulty modules, number of non-faulty modules, and num-
ber of classes.

VOLUME 6, 2018 25679



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

TABLE 1. NASA and eclipse dataset.

TABLE 2. Fault prediction confusion matrix.

B. PERFORMANCE MEASURE
In table 2, Confusion matrix is used to evaluate the perfor-
mance by ROC-curve of the model by using area under the
curve (AUC). n(TP), n(FN), n(FP), and n(TN) are the number
of true faulty modules, the number false non-faulty modules,
the number of false faulty modules and the number of true
non-faulty modules respectively.

We use three evaluationmeasures to check the performance
on different compared methods, namely Probability of detec-
tion (Pd), F-measure, and AUC. They are defined as follows.

1 Pd = n(T P)/(n(T P) + n(FN)).
2 Precision = n(T P)/(n(T P) + n(FP)).
3 F − measure = 2(Pd)(precision)/ (pd + precision)
In machine learning, AUC are widely used to check the

performance evaluation spatially for imbalanced classes.

C. EXPERIMENTAL DESIGN
In this section, we design experiments to demonstrate the
efficacy of our proposed approach (DFCM) for software fault
prediction. This study seeks to understand.

1. The benefit of utilizing supervised data and unsuper-
vised data simultaneously during the multi-clustering
to create the new features to train the classification
model.

2. Impact of deep multi clustering on imbalanced classes.
3. Impact of feature extraction and feature selection for

classification.
Semi-supervised data prediction into supervised (labeled)

and unsupervised (unlabeled) in the first layer. In second layer
supervised data split into two subsets for each class (True
and False). k clusters are created for each class of supervised

TABLE 3. Details of selected features.

data and unsupervised data. In the third layer, calculate the
centroid and membership for each cluster of all subsets of
supervised and unsupervised by using DFCM. In the fourth
hidden layer using algorithm 2 as activation function for fea-
ture extraction. From the results of the experiment in table 3,
we can conclude that by this activation function almost half of
the original features are selected except on some datasets. For
balance, the number of features in all subsets of supervised
and unsupervised date, select ‘‘s’’ features, where ‘‘s’’ is the
minimum number of features extracted in any subset. On the
classification stage based the unlabeled data is predicted as
labeled on basis of similarity between the features of labeled
classes (true and false) and unlabeled data sets.

To investigate the performances of our approach on
thirteen data sets by using three performance measures
(Pd, F-measure, and AUC), each result is the average
of 100 runs. We compare our approach with five methods,
which are proposed in the last five years that are FTF [38],
LDS [41], [57], CMN [41], [58], NTC (NB) [7], and
NSGLP [42]. Brief analysis of DFCM and other compared
methods are shown in next section.

D. EXPERIMENTAL RESULTS AND ANALYSIS
We show the performances of our method with other methods
on the basis of thirteen datasets, all results are the average
of 100 runs.

Table 4, 5, and 6, summarizes the result of Pd of DFCM
with other approaches on thirteen datasets with 10%, 20% and
30% labeled rates, we examine that the DFCM approach has
the best improvement over other algorithms on all datasets
although the labeled rate is low.

In figure 4, the comparison of the Pd of DFCM approach
with other approaches on the average of thirteen datasets.
From the multiple bar charts, we can observe that the results
of NSGLP and DFCM are higher on the average of ten
datasets with all labeled rates. We can analyze that the per-
formance of algorithms can be improved by utilizing super-
vised data and unsupervised data simultaneously for training
model.

25680 VOLUME 6, 2018



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

TABLE 4. Pd of DFCM with compared methods using NASA And eclipse
dataset at labeled rate = 0.1.

TABLE 5. Pd of DFCM with compared methods using NASA and eclipse
dataset at labeled rate = 0.2.

TABLE 6. Pd of DFCM with compared methods using NASA and eclipse
dataset at labeled rate = 0.3.

Table 7, 8, and 9, shows the F-measure values of DFCM
and other approaches on thirteen datasets with all labeled
rates. The result shows that DFCM virtually outperforms the
other approaches for software fault prediction. The average
of F-measure of DFCM is highest with all labeled rates.

In figure 5, we can observe from the comparison of
F-Measure by multiple bar-charts that the performance of

FIGURE 4. Comparison of Pd of DFCM with other algorithms.

TABLE 7. F-measure of DFCM with compared methods using NASA and
eclipse dataset at labeled rate = 0.1.

TABLE 8. F-measure of DFCM with compared methods using NASA and
eclipse dataset at labeled rate = 0.2.

DFCM is better than other studied models. From the lowest
results of CMNapproach, we can analyze that the class imbal-
anced problem cannot be ignored for the higher accuracy of
classification.

Table 10, 11, and 12 are the results of AUC to check the
performance of the model on the class-imbalanced dataset.
According to the results, the average of AUC is highest than
other approaches.

VOLUME 6, 2018 25681



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

TABLE 9. F-measure of DFCM with compared methods using NASA and
eclipse dataset at labeled rate = 0.3.

FIGURE 5. Comparison of F-Measure of DFCM with other algorithms.

TABLE 10. AUC of DFCM with compared methods using NASA and eclipse
dataset at labeled rate = 0.1.

Fig 6 is the comparison of DFCM with other algorithms.
We can analyze that DFCM outperforms other proposed
approaches with all labeled rates. The results are almost same
as F-Measure, Hence the class imbalanced problem affects
the AUC results.

We conclude three facts from the above results.

1) By comparing DFCM, NTC (NB) and NSGLP with
CMN (ignoring class imbalance problem), we observe

TABLE 11. AUC of DFCM with compared methods using NASA and eclipse
dataset at labeled rate = 0.2.

TABLE 12. AUC of DFCM with compared methods using NASA and eclipse
dataset at labeled rate = 0.3.

FIGURE 6. Comparison of AUC of DFCM with other algorithms.

that due to ignoring the class imbalance problem,
the performance of CMN is worse than DFCM,
NTC (NB) and NSGLP.

2) By comparing FTF with other approaches, the perfor-
mance of FTF is worse because FTF is using supervised
data for training model. By this comparison, we can
conclude that semi-supervised data for training model
increases the value of performance measure.

25682 VOLUME 6, 2018



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

3) By using feature reduction (feature extraction and fea-
ture selection) increases the accuracy of classification.

E. STATISTICAL ANALYSIS
We carried out one way ANOVA test to determine the statis-
tical significance to observed performance results. The test
was applied at α = 0.05 significance level.
The testing hypotheses are
Ho : The performance is same among the six algorithms

across the datasets.
Ha : At least one of the algorithms performances is signifi-

cantly better than the other algorithms.

TABLE 13. ANOVA test for Pd at 10% labeled data.

In table 13, an example of one way ANOVA test for the Pd
with 10% labeled data. The classification results between ten
different datasets of experiments that use only one algorithm.
An immense F-value denotes that the outcome of different
approaches varies more than the outcomes of any concrete
algorithm. The p-value is a probability of observing a test
statistic as extreme as the one authentically observed. The
more minute the p-value, more vigorously the tests reject the
null hypothesis.

In our example, the p-value 1.1102 e-16 is much smaller
than α, the result is null hypothesis Ho is rejected. We can
conclude that there is at least one approach amongst six
approaches as significantly outperforms the others.

TABLE 14. P-Value of ANOVA test for all performance measures.

In table 14, the overall results of all performance mea-
sure (Pd, AUC, and F-measure) of ANOVA test on all size
of labeled data are presented. Those outcomes are signifi-
cant where the p-value is less than the significance level,
these values are presented in bold font. We observed that all
p-values of three performance measures are less than the
significance level (across all thresholds) at least one of the
proposed approaches significantly outperforms the others of
correct classification in fault detection.

Next for analysis the significance comparison between
all proposed approaches, we performed the post-hoc test
using Turkey Honestly Significantly Difference (HSD)
method [49]. For AUC and F-measure, except with 30%
of labeled data we did not obtain a significant difference

TABLE 15. Significance comparison of Pd.

between all discussed approaches. Hence, we will only focus
on the probability of detection (Pd) with 10%, 20% and 30%
labeled rates. Table 15 shows the results of Turkey’s HSD
pairwise comparison among discussed approaches. If the
intersection between the two modeling approaches indicates
‘‘All’’ this designates that there are significant prediction
performance differences for all size of labeled rate. The result
‘‘None’’ has inverse meaning. We can analyze which algo-
rithm is performing better from the result reported in table
15, but the ascendancy of DFCM is quite apparent.

From table 15, we can observe that DFCM significantly
outperforms FTF, LDS, CMN, NTC (NB), and NSGLP for
all size of the labeled rate except NSGLP for 20% labeled
rate. We achieve better performance for different size of
the labeled rate because our approach incorporates simul-
taneously labeled data and unlabeled data in the learning
process.

V. THREATS TO VALIDITY
Our experimental results might be affected by some threats to
validity.

A. CONSTRUCT VALIDITY
These threats refer to the approximateness of our evaluation
measure. A first threat to the validity of our work is that we
assume that all the faults that we utilized in the experiment
had same weights. We make utilization of Probability of
detection (Pd), F-measure and AUC to evaluate the software
fault prediction (SFP). AUC has lower variance, and is more
reliable to indicate the predictive potential of the methods
when compared with other performance measure, such as
precision, recall or F-Measure. Finally Post-hoc test using
Turkey Honestly, significantly difference (HSD) method [49]
to further validate the significance of the differences in
performance.

B. INTERNAL VALIDITY
These threats refer to experimater biases. To avoid this
type of threat, all the implementation is cross-checked by
our researcher group. Withal, we perform our experiment
100 times and report the average performance over 100 runs.
Moreover, the datasets are carefully examined, whether non-
numeric features are eliminated. Thus, we believe there are
minimal threats to internal validity.

VOLUME 6, 2018 25683



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

C. EXTERNAL VALIDITY
These threats refer to the generalizability of our experimental
results. To ensure the representativeness of our experiment,
we used NASA and Eclipse dataset which are commonly
used for software fault prediction. In addition, we choose
Fuzzy C-Mean clustering as a base method and random
under-sampling for feature selection, which are widely used
in software fault prediction, to ensure the soundness of the
results.

VI. CONCLUSION
In this paper, we provided a deep approach, DFCM which
incorporate the semi-supervised Deep Fuzzy C-Mean clus-
tering and feature compression technique to amend the qual-
ity of software dataset utilized by classification model for
software fault prediction with imbalanced classes. In this
paper, we presented how ‘‘Deep’’ multiple clusters can be
amalgamated with feature reduction techniques and how it
can avail to incorporate simultaneously unlabeled data and
labeled data into the training process and withal handle the
class imbalance problem.

Coalescence of feature reduction techniques, we can
design good prediction system by generate good features
and remove irrelevant and redundant features to reduce the
noisy data for training classification. In our experiment,
we compared our approach with several state-of-the-art semi-
supervised software fault prediction approaches. Experiment
results demonstrate the potential of our approach in enhanc-
ing prediction performance on ten NASA and three Eclipse
data sets. The proposed method has the best Pd values and
withal the average of both AUC and F-Measure values sig-
nificantly improved. The post-hoc test using Turkey’s (HSD),
experiment result shows that the difference between DFCM
and compared approaches are statistically significant.

In our future work, we plan to extend our approach in
several ways. First, investigate the inter-relations between
the feature techniques. Second, study how the characteristic
of the multiple clustering results utilized to find the new
features in the method influence the classification accuracy.
Determinately, empirical studies of our approach with other
classification methods to authenticate the generalization of
the approach.

REFERENCES
[1] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code

attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[2] N. Nagappan and T. Ball, ‘‘Static analysis tools as early indicators of pre-
release defect density,’’ in Proc. Int. Conf. Softw. Eng., St. Louis, MO,
USA, 2005, pp. 580–586.

[3] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
2008.

[4] B. Turhan and A. Bener, ‘‘Analysis of Naive Bayes’ assumptions on
software fault data: An empirical study,’’ Data Knowl. Eng., vol. 68, no. 2,
pp. 278–290, 2009.

[5] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,’’ Inf.
Sci., vol. 179, no. 8, pp. 1040–1058, 2009.

[6] P. Singh, N. R. Pal, S. Verma, and O. P. Vyas, ‘‘Fuzzy rule-based approach
for software fault prediction,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 47, no. 5, pp. 826–837, May 2017.

[7] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen, ‘‘Empirical studies
of a two-stage data preprocessing approach for software fault prediction,’’
IEEE Trans. Rel., vol. 65, no. 1, pp. 38–53, Mar. 2016.

[8] T.M. Khoshgoftaar and N. Seliya, ‘‘Fault prediction modeling for software
quality estimation: Comparing commonly used techniques,’’ Empirical
Softw. Eng., vol. 8, pp. 255–283, Sep. 2003.

[9] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[10] K. P. Bennett and A. Demiriz, ‘‘Semi-supervised support vector
machines,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 11. 1999,
pp. 368–374.

[11] T. Joachims, ‘‘Transductive inference for text classification using support
vector machines,’’ in Proc. Int. Conf. Mach. Learn., 1999, pp. 200–209.

[12] M. Belkin, P. Niyogi, and V. Sindhwani, ‘‘Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples,’’
Mach. Learn. Res., vol. 7, pp. 2399–2434, Jan. 2006.

[13] X. Ao et al., ‘‘Combining supervised and unsupervised models via uncon-
strained probabilistic embedding,’’ Inf. Sci., 257, pp. 101–114, Feb. 2014.

[14] S. Basu, A. Banerjee, and R. J. Mooney, ‘‘Semi-supervised clustering by
seeding,’’ in Proc. Int. Conf. Mach. Learn., 2002, pp. 27–34.

[15] W. Cai, S. Chen, and D. Zhang, ‘‘A simultaneous learning framework
for clustering and classification,’’ Pattern Recognit., vol. 42, no. 7,
pp. 1248–1286, 2009.

[16] N. V. Chawla and G. J. Karakoulas, ‘‘Learning from labeled and unlabeled
data an empirical study across techniques and domains,’’ J. Artif. Intell.
Res., vol. 23, no. 1, pp. 331–366, 2005.

[17] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York, NY, USA: Wiley, 1973.

[18] S. Vluymans, D. S. Tarragó, Y. Saeys, C. Cornelis, and F. Herrera, ‘‘Fuzzy
rough classifiers for class imbalanced multi-instance data,’’ Pattern Recog-
nit., vol. 53, pp. 36–45, May 2016.

[19] V.Wu, ‘‘Top 10 algorithms in datamining,’’Knowl. Inf. Syst., vol. 14, no. 1,
pp. 1–37, 2008.

[20] R. Jensen and C. Cornelis, ‘‘Fuzzy-rough nearest neighbor classification,’’
in Transactions on Rough Sets XIII, J. Peters, A. Skowron, C. Chan,
J. Grzymala-Busse, and W. Ziarko, Eds. Berlin, Germany: Springer, 2011,
pp. 56–72.

[21] R. Bhatt andM. Gopal, ‘‘FRCT: Fuzzy-rough classification trees,’’ Pattern
Anal. Appl., vol. 11, no. 1, pp. 73–88, 2008.

[22] R. Jensen and C. Cornelis, ‘‘Fuzzy-rough nearest neighbour classification
and prediction,’’ Theor. Comput. Sci., vol. 412, no. 42, pp. 5871–5884,
2011.

[23] E. Ramentol et al., ‘‘IFROWANN: Imbalanced fuzzy-rough ordered
weighted average nearest neighbor classification,’’ IEEE Trans. Fuzzy
Syst., vol. 23, no. 5, pp. 1622–1637, Oct. 2015.

[24] R. Yager, ‘‘On ordered weighted averaging aggregation operators in
multicriteria decisionmaking,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. SMC-18, no. 1, pp. 183–190, Jan./Feb. 1988.

[25] A. Arshad, S. Riaz, L. Jiao, and A.Murthy, ‘‘A semi-supervised deep fuzzy
C-mean clustering for two classes classification,’’ in Proc. IEEE 3rd Inf.
Technol. Mechatron. Eng. Conf. (ITOEC), Chongqing, China, Oct. 2017,
pp. 365–370.

[26] G. Forestier and C. Wemmert, ‘‘Semi-supervised learning using multiple
clusterings with limited labeled data,’’ Inf. Sci., vols. 361–362, pp. 48–65,
Sep. 2016.

[27] N. R. Pal and V. K. Eluri, ‘‘Two efficient connectionist schemes for
structure preserving dimensionality reduction,’’ IEEE Trans. Neural Netw.,
vol. 9, no. 6, pp. 1142–1154, Nov. 1998.

[28] N. R. Pal, V. K. Eluri, and G. K. Mandal, ‘‘Fuzzy logic approaches to
structure preserving dimensionality reduction,’’ IEEE Trans. Fuzzy Syst.,
vol. 10, no. 3, pp. 277–286, Jun. 2002.

[29] N. R. Pal and K. K. Chintalapudi, ‘‘A connectionist system for feature
selection,’’ Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359–382, 1997.

[30] D. Chakraborty and N. R. Pal, ‘‘A neuro-fuzzy scheme for simultaneous
feature selection and fuzzy rule-based classification,’’ IEEE Trans. Neural
Netw., vol. 15, no. 1, pp. 110–123, Jan. 2004.

[31] C. Cardie, ‘‘Using decision trees to improve case-based learning,’’ in Proc.
10th Int. Conf. Mach. Learn., Amherst, MA, USA, 1993, pp. 25–32.

25684 VOLUME 6, 2018



A. Arshad et al.: Semi-Supervised DFCM Clustering for Software Fault Prediction

[32] K. Pal, R. K. Mudi, and N. R. Pal, ‘‘A new scheme for fuzzy rule based
system identification and its application to self-tuning fuzzy controllers,’’
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 4, pp. 470–482,
Aug. 2002.

[33] N. R. Pal and S. Saha, ‘‘Simultaneous structure identification and fuzzy
rule generation for Takagi–Sugeno models,’’ IEEE Trans. Syst. Man,
Cybern. B, Cybern., vol. 38, no. 6, pp. 1626–1638, Dec. 2008.

[34] R. Nikhil, K. Pal, J. C. Bezdek, and T. A. Runkler, ‘‘Some issues in system
identification using clustering,’’ in Proc. Int. Conf. Neural Netw., vol. 4.
Jun. 1997, pp. 2524–2529.

[35] K. Nigam, A. K.McCallum, S. Thrun, and T.Mitchell, ‘‘Text classification
from labeled and unlabeled documents using EM,’’Mach. Learn., vol. 39,
nos. 2–3, pp. 103–134, 2000.

[36] E. Riloff, J. Wiebe, and T. Wilson, ‘‘Learning subjective nouns using
extraction pattern bootstrapping,’’ in Proc. Conf. Natural Lang. Learn.,
2003, pp. 25–32.

[37] K. Li, Z. Cao, L. Cao, and R. Zhao, ‘‘A novel semi-supervised fuzzy
c-means clustering method,’’ in Proc. Chin. Control Decision Conf.,
Guilin, China, 2009, pp. 3761–3765.

[38] H. Lu, B. Cukic, and M. Culp, ‘‘An iterative semi-supervised approach to
software fault prediction,’’ in Proc. 7th Int. Conf. Predictive Models Softw.
Eng., 2011, Art. no. 15.

[39] A. Coates, H. Lee, andY. AndrewNg, ‘‘An analysis of single-layer network
in unsupervised feature learning,’’ in Proc. 14th Int. Conf. Artif. Intell.
Stat. (AISTATS), vol. 15. 2011, pp. 215–223.

[40] H. Lu, B. Cukic, and M. Culp, ‘‘Software defect prediction using semi-
supervised learning with dimension reduction,’’ in Proc. 27th IEEE/ACM
Int. Conf. Autom. Softw. Eng., Sep. 2012, pp. 314–317.

[41] C. Catal, ‘‘A comparison of semi-supervised classification approaches for
software defect prediction,’’ J. Intell. Syst., vol. 23, no. 1, pp. 75–82, 2014.

[42] Z. W. Zhang, X. Y. Jing, and T. J. Wang, ‘‘Label propagation based semi-
supervised learning for software defect prediction,’’ Autom. Softw. Eng.,
vol. 24, no. 1, pp. 47–69, 2017.

[43] A. K. Pandey and N. K. Goyal, ‘‘Predicting fault-prone software module
using data mining technique and fuzzy logic,’’ Int. J. Comput. Commun.
Technol., vol. 2, nos. 2–4, pp. 56–63, 2010.

[44] S. Chatterjee and B. Maji, ‘‘A new fuzzy rule based algorithm for estimat-
ing software faults in early phase of development,’’ Soft Comput., vol. 19,
pp. 1–13, Jun. 2015.

[45] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, ‘‘Choosing software
metrics for defect prediction: An investigation on feature selection tech-
niques,’’ Softw.-Pract. Exper., vol. 41, no. 5, pp. 579–606, 2011.

[46] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, ‘‘Reducing features
to improve code change-based bug prediction,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 4, pp. 552–569, Apr. 2013.

[47] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[48] B. Gabrys and L. Petrakieva, ‘‘Combining labelled and unlabelled data
in the design of pattern classification systems,’’ Int. J. Approx. Reason.,
vol. 35, no. 3, pp. 251–273, 2014.

[49] A. Bouchachia, ‘‘Learning with partly labeled data,’’ Neural Comput.
Appl., vol. 16, no. 3, pp. 267–293, 2007.

[50] Statistics Toolbox Release 2016a, MATLAB, The MathWorks, Inc.,
Natick, MA, USA, Mar. 2016.

[51] T. M. Khoshgoftaar, C. Seiffert, J. V. Hulse, A. Napolitano, and A. Folleco,
‘‘Learning with limited minority class data,’’ in Proc. Int. Conf. Mach.
Learn. Appl., 2007, pp. 348–353.

[52] PROMISE Software Engineering Repository. Accessed: Dec. 2017.
[Online]. Available: http://promise.site.uottawa.ca/SERepository

[53] Tera-PROMISE Repository. Accessed: Dec. 2017. [Online]. Available:
http://openscience.us/repo/defect/

[54] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,’’
in Proc. IEEE Int. Conf. Softw. Eng., May 2008, pp. 181–190.

[55] D. J. Hand, Construction and Assessment of Classification Rules.
Chichester, U.K.: Wiley, 1997.

[56] S. Dowdy, S. Wearden, and D. Chilko, Statistics for Research, 3rd ed.
Chichester, U.K.: Wiley, 2004.

[57] O. Chapelle and A. Zien, ‘‘Semi-supervised classification by low den-
sity separation,’’ in Proc. 10th Int. Workshop Artif. Intell. Stat., 2005,
pp. 57–64.

[58] X. Zhu, Z. Ghahramani, and J. D. Lafferty, ‘‘Semi-supervised learning
using Gaussian fields and harmonic functions,’’ in Proc. 20th Int. Conf.
Mach. Learn. (ICML), 2003, pp. 912–919.

ALI ARSHAD received the B.S. degree in com-
puter science from Iqra University, Pakistan,
in 2008, and the M.S. degree in software engi-
neering from International Islamic University,
Pakistan, in 2012. He is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology, Xidian University, China. His
research interests include machine learning, semi-
supervised learning, and fuzzy c-mean clustering.

SAMAN RIAZ received the M.Sc. and M.Phil.
degrees in applied mathematics from Quaid-i-
Azam University, Pakistan, in 2006 and 2008,
respectively. She is currently pursuing the Ph.D.
degree with the School of Computer Science
and Technology, Xidian University, China. Her
research interests include machine learning and
probability.

LICHENG JIAO (SM’89–F’16) received the
B.S. degree from Shanghai Jiaotong University,
Shanghai, China, in 1982, and the M.S. and Ph.D.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 1984 and 1990, respectively. Since
1992, he has been a Professor with the School of
Electronic Engineering, Xidian University, Xi’an,
where he is currently the Director of the Key Labo-
ratory of Intelligent Perception and Image Under-
standing, Ministry of Education of China. He is in

charge of about 40 important scientific research projects. He has authored or
co-authored over 20 monographs and 100 papers in international journals
and conferences. His research interests include image processing, natural
computation, machine learning, and intelligent information processing.

APARNA MURTHY received the B.E. and
M.Tech. degrees in electronics and communica-
tion engineering from the BMS Engineering Col-
lege, Bengaluru, India, in 1995 and 2005, respec-
tively. She was a Lecturer with the Department
of Electronics and Communication Engineering,
BMS Engineering College, from 1998 to 2010.
She was involved in the field of programming
using C/C++ and MATLAB platform. She is
currently with Professional Engineers Ontario,

Canada, as an Engineering Intern.

VOLUME 6, 2018 25685


	INTRODUCTION
	RELATED WORK
	SEMI-SUPERVISED DEEP FUZZY-C MEANS CLUSTERING
	FRAMEWORK OF OUR APPROACH
	FEATURE EXTRACTION

	EXPERIMENT
	DATA PREPARATION
	PERFORMANCE MEASURE
	EXPERIMENTAL DESIGN
	EXPERIMENTAL RESULTS AND ANALYSIS
	STATISTICAL ANALYSIS

	THREATS TO VALIDITY
	CONSTRUCT VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY

	CONCLUSION
	REFERENCES
	Biographies
	ALI ARSHAD
	SAMAN RIAZ
	LICHENG JIAO
	APARNA MURTHY


