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ABSTRACT Device caching has emerged as a promising solution to alleviate backhaul overload in future
wireless networks with mixed cooperative and selfish devices. The behaviors of these devices actually
represent the inherent social-network characteristics of their users, i.e., people treat each other differently
according to the closeness of their social relationships. In this paper, the concept of social selfishness is
adopted to capture the social characteristics in mobile device caching. Devices can be cooperative or be
selfish in dynamic content sharing environments according to their social tie strengths, just like their users
tend to cooperate with their friends and show selfishness to strangers. Based on social selfishness, a novel
device caching game model is proposed to analyze the limited resource and privacy issues in a typical mobile
caching scenario. Then, a local optimal caching algorithm with social selfishness (LOCASS) is developed to
address these challenging problems. Analytical results show that LOCASS can approach Nash equilibrium
of the game, and therefore, achieving the best caching strategy for mixed cooperative and selfish devices.
Further, extensive simulation results show that LOCASS offers much better performance, in terms of average
offloading ratio and resource utilization, than traditional random, Most-popular-content and Greedy caching
algorithms. Besides, under LOCASS, devices with low degrees are most likely to store popular contents,
while devices with high degrees are more willing to store those comparatively unpopular contents and fetch
popular ones from their cooperative-devices.

INDEX TERMS Device caching, social selfishness, offloading ratio, Nash equilibrium.

I. INTRODUCTION
Over the past decade, mobile data traffic has been increas-
ing dramatically due to the explosive growth of the mobile
devices and services [1]. According to the Cisco report [2],
the global mobile traffic is expected to continue to grow at a
compound growth rate of 47 percent from 2016 to 2021. Such
explosive data has exerted a heavy burden on current network
structure [3], and the capacity of cellular networks should be
enhanced by adopting new technologies [4].

Recently, caching at devices with device-to-device (D2D)
communication is considered to be a promising solution to
copewith the explosive data [6].With device caching, popular
contents can be proactively stored in local devices’ caches

during off-peak time and shared directly with D2D links
during the peak time, which can offload base stations’ traffic
and alleviate backhaul overload simultaneously [1], [3]. With
a denser distribution of mobile devices [5], [8], larger cache
space can be accessed nearby and a greater proportion of
requests can be satisfied. By utilizing D2D communication
technology, spatial reuse gain can be also achieved by con-
structing multiple direct links simultaneously [9]. Although
significant performance can be achieved by device caching,
there are also great challenges in terms of:
* Limited resource: due to the resource constraints, e.g.,

limited battery and cache capacity [7], devices are
unlikely to sacrifice their own resources to serve others.
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So that devices’ caching strategy tends tomaximize their
own profit rather than that of the system. Hence, such
strategy may deviate from network-wide optimal policy
and significantly degrade the system performance.

* Privacy: cached contents in individual devices can be
viewed as one kind of privacy, similar with individuals’
interest and mobility information. The private informa-
tion should be known only by others who have the
right to access. This leads to incomplete information
being utilized when each device makes its own caching
strategy.

Traditional device caching technologies, such as fully cooper-
ative caching and fully selfish caching [11], [14]–[19], cannot
effectively cope with the above challenges. For example: in
the fully cooperative caching mechanism, each device altru-
istically shares its cached contents with others, and complete
information is utilized to make caching strategy, which con-
sumes a large quantity of resources for content sharing and
have a risk of privacy exposure; in the fully selfish caching
mechanism, each device makes caching strategy just to max-
imize its own profit based on individual private information,
which poses poor system performance.

Normally, devices of interest are carried and controlled by
humans so that devices of interest are naturally equipped with
inherent social characteristics, which open up a new avenue
for device caching design and facilitating the solution of
caching strategies. There have been lots of works introducing
social characteristics to save the limited resource in device
caching. In [20], compared with accessing contents from oth-
ers with a close relationship, devices should pay higher bids
for strangers. Wang et al. [21] divided the local cache space
of a device into its own space and the space for friends where
caching strategy for the latter is just related to the interest of
its friends, while the strategy of preferentially storing and for-
warding the content to friends was proposed in [18]. In [22],
device can be chosen as a cache node to serve its physical
and social neighbors. However, the aforementioned works
considered less in protecting individuals’ private information,
including cached content, interest and mobility information,
which are visible to all devices, especially for strangers.
Although privacy is an important issue in device caching [12],
limited works focus on privacy protection in device caching.
Jung and Park [24] propose a privacy-preserving architecture
to protect devices’ location information. In [25], a privacy-
preserving protocol is proposed to render such a caching
system well protected against all kind of internal or external
privacy breaches. Most works like [23]–[25] adopt virtual
central servers to collect all devices’ private information and
make the caching strategy. Those virtual centralized servers
don’t have any social relationship and trust with devices,
which also poses a risk of privacy exposure.

In order to address the challenges imposed by limited
device capacities and privacy issue, this paper adopts the
concept of ‘‘social selfishness’’ [13] and proposes a novel
device caching game to achieve the optimal caching strategy
for mixed cooperative and selfish devices. Social selfishness

can be viewed as a mixture of cooperation and selfishness
behaviors of a device, i.e., it provides different levels of
trust and service to others according to the closeness of their
social relationship. Similarly, in a human society, people tend
to cooperate and show trust to their friends, but to act in
an opposite way to strangers who have no or weak social
relationships with them.

Specifically, our main contributions are as follows:
* A device caching game with social selfishness is pro-

posed to address the limited resource and privacy issues
in a typical scenario with mixed cooperative and selfish
devices. Only cooperative-devices trust and cooperate
with each other, i.e., they share their information, capac-
ities and contents for saving time, energy and space in
local services. On the other hand, selfish-devices do not
share any resources or information for protecting their
privacies.

* Based on the device caching game, a Local Optimal
Caching Algorithm with Social Selfishness (LOCASS)
is developed for achieving the best caching strategy for
mixed cooperative and selfish-devices. By introducing
social-related factors, LOCASS can effectively share
resources and contents among cooperative-devices,
while protecting privacies between selfish-devices.

* Theoretical analysis proves the existence of Nash
Equilibrium in LOCASS. In addition, extensive simu-
lation results show that LOCASS can offer much bet-
ter performance, in terms of average offloading ratio
and resource utilization, than traditional random, Most-
Popular-Content (MPC) andGreedy caching algorithms.

The remainder of this paper is organized as follows. The
device caching game is proposed in Section II. In Section III,
the existence of pure Nash Equilibrium is proved in this
game and a caching algorithm is proposed subsequently. The
evaluation results are given in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
We consider a wireless caching network consisting of a set
of M cache-enabled devices M = {1, 2, . . . ,M}. Those
devices request contents from the library with F contents
F = {1, 2, . . . ,F}. The request probability of device m for
the content f is pm,f . Each devicem is equipped with a certain
cache space with size sm. And each content f ∈ F has a size
rf , which can be divided into multiple segments to store in
those cache-enabled devices. Each pair of devices (m,m′) is
equipped with a social tie strengthwm,m′ which range in inter-
val [0,1]. Social tie strength is utilized to measure the close-
ness of social relationship for any pair of device. Each device
cares more about those cooperative-devices with a larger tie
strength and there is a larger probability to contribute its own
cache space to store contents for them. The value of social
tie strength is related to the relationship in the real life. For
example, the social tie strength between family members is
usually larger than that of colleagues. The social tie strength
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FIGURE 1. An illustration of system model, where each pair of cooperative-devices is equipped with a social tie strength larger than 0.

of M devices are specified by the social tie strength matrix
WM×M . If wm,m′ > 0 and wm′,m > 0, they are considered
as cooperative-devices with each other. Otherwise, they are
considered as selfish-devices. The number of cooperative-
devices for the device m is considered as its degree which is
represented by Nm [10]. Here, we assume that it doesn’t exist
wm,m′ = 0 and wm′,m > 0 for any pair of devices (m,m′).
Each pair of cooperative-devices is likely to cooperate and
show trust with each other while each pair of selfish-devices
is not. If each pair of cooperative-devices in proximity, D2D
links can be established to share their cached contents before
deadline time TD. The system scenario is shown in Fig.1.
In this section, we propose a device caching game with the
concept of social selfishness for the mixed cooperative and
selfish devices.

B. SOCIAL SELFISHNESS-BASED UTILITY
We firstly adopt an inter-contact mobility model [15] to
capture devices’ probabilistic mobility. Within a time unit,
the number of contacts between the device m and the
device m′ obeys the Poisson process with parameter λm,m′ .
So, within the deadline time TD, the expected number of con-
tacts between the device m and the device m′ is TDλm,m′ . For
the device m and the device m′, we assume that the expected

duration is θm,m′ for a single contact. Within deadline time
TD, the expected whole D2D communication duration Tm,m′
between the device m and the device m′ can be expressed as
follows:

Tm,m′ = TDλm,m′θm,m′ . (1)

With the transmission rate rm,m′ between the device m′

and the device m, the device m can receive at most
Tm,m′rm,m′ segments from the device m′ within deadline
time TD.
Content f can be recovered if the device m collects at least

rf segments within deadline time TD. Otherwise, the device
m will request the remaining segments from remote content
server via the base station and the backhaul.Within TD, for the
devicem, the expected amount of the segments of the content
f that collected from the devicem′ is specified by the notation
om,m′,f which can be written as:

om,m′,f = min
{
Tm,m′rm,m′ , cm′,f

}
, (2)

where cm′,f is the cached number of segments for the con-
tent f in the device m′. Obviously, the collected number of
segments should not be greater than the number of segments
cached in the device m′.
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For the devicem, the amount of segments collected through
device caching can be expressed as:

om,f = min

{ ∑
m′∈M

om,m′,f , rf

}
. (3)

In this equation, om,f should not be greater than rf , which
means that the device m only collect the segments that just
recover the content f . Next, we introduce the concept of
offloading ratio to reflect the percent of traffic which can
be offloaded from the base station via device caching. The
offloading ratio of the device m can be represented as:

Om(c)=
∑
f ∈F

pm,f om,f

=

∑
f ∈F

pm,f
1
rf

min

{ ∑
m′∈M

min
{
Tm,m′rm,m′ , cm′,f

}
, rf

}
.

(4)

The offloading ratio Om is also considered as the individ-
ual utility of the device m. From the system’s perspective,
the average offloading ratio is defined as:

O (c) =
1
M

∑
m∈M

Om (c). (5)

Average offloading ratio represents the percent of requests
which can be offloaded from the base station and served
locally via device caching rather than base station from the
system view.

Next, we introduce the social selfishness-based utility on
mobile device caching. As a mixture of selfishness and coop-
eration, social selfishness-based utility involves two major
aspects, the access admission mechanism and the social
group utility mechanism.

Access admission mechanism denotes that only
cooperative-devices can be admitted to access the cached
contents of a device via D2D links, while selfish-devices
cannot. With the access admission mechanism, no content
sharing services are provided to selfish-devices, which can
save the limited resources. Meanwhile, devices with social
selfishness are more likely to trust with their cooperative-
devices rather than selfish-devices. Each device only allows
its cooperative-devices to access its cached contents, which
can also prevent such private information of cached contents

from the potential exposure to selfish-devices. For example,
in Fig.1, device m1 and device m3 are cooperative-devices
with each other, and they can share cached contents through
D2D link. Device m1 and device m2 are selfish-devices with
each other, and they cannot construct D2D links for sharing.
So the offloading ratio of the device m with the access
admission mechanism can be redefined as follows:

Om(c)

=

∑
f ∈F

pm,f
1
rf

min

 ∑
m′∈Nm∪m

min
{
Tm,m′rm,m′ , cm′,f

}
, rf

,
(6)

where the device m can only access cached contents from
cooperative-devices set Nm. Here, Nm, the number of ele-
ments inNm, is also considered as the degree of the devicem.
For example, in Fig.1, Nm1 , the degree of device m1 is 2.
Commonly, devices with a high degrees have lots of
cooperative-devices and a high social statue. The social den-
sity of cooperative-devices in the system can be shown as
follows:

η =

∑
m∈M

Nm

N (N − 1)
. (7)

Larger ηmeans that there are more cooperative-devices in the
system. When η = 0, there are no cooperative-devices in the
system, and each device cannot access cached contents from
any other devices. When η = 1, each pair of devices can
access cached contents from any other devices. For example,
in Fig.1, the social density η is 0.4.

To future motivate devices to store contents for
cooperative-devices, we introduce social group utility mech-
anism [26]. Social group utility mechanism contains two
components, i.e., individual utility and cooperative utility.
The cooperative utility of the device m is the weighted sum
of the individual utilities of the cooperative-devices in Nm.
As mentioned before, the individual utility of device m can
be regarded as the offloading ratio Om (c).

Combining the social selfishness-based access admission
mechanism and the social group utility mechanism, the social
selfishness-based utility of the device m can be in Eq.(8),
as shown at the bottom of this page. For the device m, taking

Um(c) = Om(c)︸ ︷︷ ︸
individual utility

+

∑
m′∈Nm

wm,m′Om′ (c)︸ ︷︷ ︸
cooperative utility

=

∑
m′∈Nm∪m

wm,m′
∑
f ∈F

pm′,f
1
rf

min

 ∑
m′′∈Nm′∪m′

min
{
Tm′,m′′rm′,m′′ , cm′′,f

}
, rf


=

∑
m′∈Nm∪m

wm,m′
∑
f ∈F

pm′,f
1
rf

min

Tm′,mrm′,m, cm,f , rf − ∑
m′′∈Nm′\m

min
{
Tm′,m′′rm′,m′′ , cm′′,f

}. (8)
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the cooperative utility into consideration, social selfishness-
based utility can motivate devices to store contents for
cooperative-devices. Social tie strength w is utilized to mea-
sure the closeness of social relationship for any pair of device.
Each device cares more about those cooperative-devices with
a larger tie strength and there is a larger probability to con-
tribute its own cache space to store contents for them. The
value of social tie strength is related to the relationship in
the real life. For example, the social tie strength between
family members is usually larger than that of colleagues.
Considering the cooperative-devices with different social tie
strengths, device m cares more about those cooperative-
devices with a larger tie strength and there is a larger prob-
ability to contribute its own cache space to store contents
for them. For example, in Fig.1, device m1 more cares the
requests of device m4 than that of device m3 due to the
reason that w1,4 > w1,3. Meanwhile, without taking selfish-
devices’ utilities into consideration, the social group utility
mechanism can also save the limited caching capacity just
for cooperative-devices’ requests. To avoid exposing private
information to selfish-devices, when the device m makes
caching strategy decision cm, only the mobility information
Tm′,m and the request information pm′,f for ∀m′ ∈ Nm,
f ∈ F about cooperative-devices can be accessed by the
device m. Additionally, in our proposed model, the private
information about cooperative-device m′′ ∈ Nm′ will not
be exposed to the device m ∈ Nm′ . A content requester
m′ ∈ Nm just need to send the quantity of required segments
to the devicem, i.e., rf −

∑
m′′∈Nm′\m

min
{
Tm′,m′′rm′,m′′ , cm′′,f

}
,

rather than the exact cached content information about the
cooperative-device m′′ for ∀m′′ ∈ Nm′\m. For example,
in Fig.1, the device m4 won’t leak the private information of
the device m2 to the device m1.
Therefore, with the access admission mechanism and

social group utility mechanism, the proposed social
selfishness-based utility can effectively cope with the limited
resource and privacy issues.

C. DEVICE CACHING GAME FORMULATION
With the social selfish-based utility, we propose a device
caching game

9 =
{
M, {Cm}m∈M, {Um}m∈M

}
. (9)

The devices setM also represents the player set in the game.
Cm depicts the caching strategy action space for the player m
that complies with the cache space size sm. And Um is the
social selfishness-based utility of the player m. In this game
9, each device m chooses its own caching strategy cm ∈ Cm
aiming at maximizing its social selfishness-based utility Um.
The concept of Nash Equilibrium (NE) is introduced below.
Definition 1 (Nash Equilibrium): Let c∗ 1=

[
c∗1, c

∗

2, . . . , c
∗
M

]
be the solution for the game 9. Then the point c∗ is a Nash
Equilibrium for the proposed game 9 if for any cm ∈ Cm,

the following condition is satisfied:

Um(c∗m, c
∗
−m) ≥ Um(cm, c

∗
−m), ∀m, cm ∈ Cm. (10)

The caching strategy of the device m can be specified by
the vector cm = [cm,1, cm,2, . . . , cm,F ] where cm,f represents
the amount of the segments cached in the device m for the
content f . c∗−m is the caching strategies of all devices except
device m. Considering the constraint on the cache size sm,
the caching strategy space of the device m can be written as:

Cm =

cm|∑
f ∈F

cm,f ≤ sm

. (11)

In this game, each device m chooses its own caching
strategy c∗m to maximize its social selfishness based
utility Um:

c∗m = arg max
cm∈Cm

Um(cm, c∗−m) (12)

III. LOCASS: LOCAL OPTIMAL CACHING ALGORITHM
WITH SOCIAL SELFISHNESS
In this section, we propose a local optimal caching algorithm
with social selfishness for the device caching game. To design
the algorithm, we first prove the existence of Nash Equilib-
riums. We also prove that each device’s social selfishness-
based utility is a piecewise concave function. For optimizing
the piecewise concave function, we employ the concept
of right derivative. With the right derivative, we propose
the local optimal caching algorithm with social selfishness.
Devicem ∈M takes its own caching strategy cm to maximize
its own social selfishness based utility Um.
Lemma 1: for ∀m ∈M, Um is a concave function on c.
Proof: : The detailed proof is appended in Appendix.

Proposition 1: There exists pure Nash Equilibrium for the
device caching game.

Proof: Obviously, each caching strategy cm is a closed
bounded convex set. Meanwhile, according to the Lemma 1,
for the device m, the utility function Um is a concave func-
tion on c. The utility function Um is also continuous in c.
Therefore, the caching game is a concave game [28]. By the
Schauder fixed-point theorem [29], the existence of Nash
equilibrium in caching game is proved.

The social selfishness based utility of the device m can be
rewritten as

Um{cm, c−m) =
∑
f ∈F

∑
m′∈Nm∪m

{
wm,m′pm′,f

1
rf

×min
{
Bm′,m,f + Tm′,mrm′,m,Bm′,m,f + cm,f , rf

} }
, (13)

where Bm′,m,f =
∑

m"∈Nm′∪m′\m
min

{
Tm′,m"rm′,m", cm",f

}
rep-

resents the quantity of the content f that device m′ can access
from the cooperative-devices set Nm′ or from itself except
the device m before reach the deadline TD. When the device
m takes its own caching strategy cm to maximize its utility
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(
ufm
)
′
+(cm,f , c−m,f )

= lim
c0m,f→cm,f +

wm,m′pm′,f
1
rf

∑
m′∈Nm∪m

Lmm′
(
c0m,f , c−m,f

) (
Bm′,m,f + c0m,f

)
−

∑
m′∈Nm∪m

Lmm′
(
cm,f , c−m,f

) (
Bm′,m,f + cm,f

)
c0m,f − cm,f

=

∑
m′∈Nm∪m and Lm

m′(cm,f ,c−m,f )=1

(
wm,m′pm′,f

1
rf

)
. (17)

ufm(cm,f , c−m,f ) =



ufm(0, c−m,f )+
(
ufm
)
′
+

(
0, c−m,f

)
cm,f , 0 ≤ cm,f < crank1m,f

. . .

ufm(c
ranki−1
m,f , c−m,f )+

(
ufm
)
′
+

(
cranki−1m,f , c−m,f

) (
cm,f − c

ranki−1
m,f

)
, cranki−1m,f ≤ cm,f < crankim,f

. . .

ufm(c
rankRm,f
m,f , c−m,f ), c

rankRm,f
m,f ≤ cm,f ≤ rm,f

(20)

function Um(cm, c−m), and Bm′,m,f is a constant. The utility
of the content f for the device m is defined as

ufm(cm,f , c−m,f ) =
∑

m′∈Nm∪m

{
wm,m′pm′,f

1
rf

×min
{
Bm′,m,f + Tm′,mrm′,m,Bm′,m,f + cm,f , rf

} }
. (14)

Thus, the right derivative of ufm on cm,f is denoted as

ufm
′
+(cm,f , c−m,f )

= lim
c0m,f→cm,f +

ufm(c0m,f , c−m,f )−u
f
m(cm,f , c−m,f )

c0m,f − cm,f
, (15)

where
(
ufm
)
′
+ reflects the utility improvement if an addi-

tional unit amount of the content f is stored in the
device m.

To optimize the social selfishness-based utility, we first
introduce the function

Lmm′
(
cm,f , c−m,f

)
=

{
1, if cm,f <Tm′,mrm′,m or cm,f <rf − Bm′,m,f
0, otherwise

(16)

The value of this function equals to 1 when the amount
of cached segments cm,f can be successfully transmitted
between the device m and the device m′ within the dead-
line or help the device m′ to successfully retrieve the con-
tent f . Additionally, when Lmm′ equals to 1, additional unit
amount of the content f stored in the device m could bring
utility improvement. We can also find Lmm′

(
cm,f , c−m,f

)
is

non-decreasing and right continuous on cm,f . So, given the

definition of Lmm′ ,
(
ufm
)
′
+ can be reformulated in Eq.(17), as

shown at the top of this page.
Because Lmm′

(
cm,f , c−m,f

)
is a non-increasing function on

cm,f ,
(
ufm
)
′
+(cm,f , c−m,f ) is a non-increasing function on

cm,f as well. We then denote the set of the turning point
Qm,f (c−m,f ) below:

Qm,f (c−m,f )

=

{
cm,f = min{Bm′,m,f + Tm′,mrm′,m, rf } − Bm′,m,f

×|min{Bm′,m,f +Tm′,mrm′,m, rf }−Bm′,m,f >0,∀m′∈Nm

}
.

(18)

We then rank the elements in Qm,f in a non-decreasing
order

Qm,f (c−m,f ) =
{
crank1m,f , c

rank2
m,f , . . . , c

rankRm,f
m,f

}
, (19)

where Bm,f represents the number of elements in set

Qm,f (c−m,f ) and 0 ≤ crank1m,f ≤ c
rank2
m,f ≤ . . . ≤ c

rankRm,f
m,f ≤ rf .

Then, ufm(cm,f , c−m,f ) can be divided into (Rm,f + 1)
parts according to Qm,f (c−m,f ). So that ufm(cm,f , c−m,f ) can

be reformulated by introducing the left deviate
(
ufm
)
′
+ in

Eq.(20), as shown at the top of this page. From the equa-
tion, combined with Lemma 1, we can easily find that
ufm(cm,f , c−m,f ) is a continuous and non-decreasing concave
piecewise linear function on cm,f .
Based on the above theoretical analysis, a Local Optimal

Caching Algorithm with Social Selfishness (LOCASS) is
proposed to solve the device caching game. The main idea of
our algorithm for the caching model is to choose devices one
by one and maximize the social selfishness-based utility for
each of them accordingly until the system reaches the Nash
Equilibrium. In detail, for optimizing the social-selfishness
based utility, we firstly choose and store the part with the
largest right derivative. Then, the system updates the con-
tent’s right derivative to the next part and repeat the previous
step until the cache is full. The detail of the Local Opti-
mal Caching Algorithm with Social Selfishness(LOCASS) is
listed in the Algorithm 1.
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Algorithm 1 LOCASS: Local Optimal Caching Algorithm
with Social Selfishness
1:Repeat:
2: Randomly choose one device m
3: For ∀f ∈ F
4: cm,f = 0
5: compute Qm,f (c−m,f )
6: countf = 1

7: Am,f =
(
ufm
)
′
+(0, c−m,f )

8: End for
9: f = argmax

f ′∈F
Am,f ′

10: If
∑

f ∈F\f
cm,f + c

rankcountf
m,f < sm

11: cm,f = c
rankcountf
m,f

12: countf = countf + 1

13: Am,f =
(
ufm
)
′
+(rankcountf , c−m,f )

14: repeat step 9
15: Else
16: cm,f = sm −

∑
f ′∈F\f

cm,f ′

17: End If
18:Until all devices won’t change their own caching strategy
19:Obtain the Nash equilibrium of caching strategy.

IV. SIMULATION RESULTS
In this section, we investigated the performance of the our
proposed algorithm LOCASS. In the LOCASS, we set social
density η = 0, 0.3, 0.6, 0.9, 1 respectively. Specifically,
LOCASS with social density η = 1 can be considered as the
full cooperation case where each device altruistically devote
its cache space to maximize the system performance, specifi-
cally the average offloading ratio. LOCASS with social den-
sity η = 0 can be considered as the full selfishness case where
each device just stores contents only for itself and has no right
to access others’ cache space. We compared the performance
of LOCASS with other three caching algorithms: the Most
Popular Content (MPC) caching, the Random caching and
Greedy caching. In the MPC caching, each device just stores
the most popular contents according to its individual request
probability. In the Random caching, each device randomly
chooses contents to store until its own cache space is full.
The greedy caching starts with an empty set; at each step,
it adds one content with the highest marginal average offload-
ing ratio to the set until cache is full. In this part, we only
shown the performance of those three caching algorithms
when social density η = 0.3.
We adopt two types of social graph model for depicting the

social relationship among devices:

* Erdos-Renyi(ER) graph model [30]: Each pair of
devices has a fixed probability of being cooperative-
devices or not. All devices are likely to have simi-
lar degrees.

* Scale-free(SC) graph model [31]: The degree of devices
follows power law distribution where only a few of
devices are equipped with high degrees and the rest of
them are equipped with low degrees.

Then, we generated the number of contacts within unit time
λ for each pair of devices according to a Gamma distribution
0 (4.43, 1/1088). Additionally, we assumed that the content
request probability follows the Zipf distribution with parame-
ter α, i.e., pm,f =

(f )−α∑
f ′∈F

(f )−α
,∀m, f . Other baseline simulation

parameters were shown in Table 1.

TABLE 1. Baseline simulation parameters.

FIGURE 2. Average offloading ratio as the virtual cache size space
changes in ER model. (a) Average offloading ratio v.s Device number.
(b) Average offloading ratio v.s Cache size.

A. THE EVALUATION RESULTS IN THE
ER SOCIAL GRAPH MODEL
1) THE IMPACT OF VIRTUAL CACHE SPACE
Virtual cache space is a set of individual cache space which
is associated with the device number and the individual
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cache size. Fig. 2 shows the performance of the caching
algorithms by increasing the individual cache size and the
device number respectively. As the virtual cache space
increases, the average offloading ratio of all the three algo-
rithms increases except for the MPC with social density
η = 0.3 and the LOCASS with social density η = 0.
The increasing of average offloading ratio is because more
content copies can be stored and shared via D2D links as the
virtual cache space increases. In the MPC with social density
η = 0.3, each device stores the same content so that no per-
formance improvement can be achieved with the increasing
device number. In the LOCASS with social density η = 0,
each device is fully selfish and cannot access other devices’
cache space, so the average offloading ratio doesn’t change
with the increasing device number. In addition, in terms of
average offloading ratio, the LOCASS always outperform the
MPC caching, the Random caching and the Greedy caching
no matter how the device number or cache size changes. The
greed caching outperforms the MPC and Random caching
when the virtual cache space is small. And the Random
caching outperforms theMPC caching when the virtual cache
space is large.

With the increasing social density η, each device can access
more cache space, and its requests can be taken into consider-
ation by more cooperative-devices. So the average offloading
ratio of LOCASS improves with larger social density η. From
the Fig. 2, with the increase of social density η, LOCASS
utilizes the virtual cache space in a less effective way in that
the same size of accessible virtual cache space can achieve
a lower average offloading ratio. For example, when the
cache size is 50M and the device number is 200, each device
of LOCASS with social density η = 0.3 can access 30%
of virtual cache space and the average offloading ratio is
40.64%. Each device of LOCASS with η = 1 can access
100% of the virtual space, and the average offloading ratio
is 72.73%. In Fig. 2, we can also find that the gap between
different cases of LOCASS becomes larger with the increase
of virtual cache space before the average offloading ratio
reaches to 1.

2) THE IMPACT OF ZIPF PARAMETER
In the Zipf distribution pm,f =

(f )−α∑
f ′∈F

(f )−α
,∀m, f , a larger

α means a steeper request probability distribution where
the majority of requests probably concentrate on the lim-
ited number of popular contents. Fig.3 depicts the simu-
lation results of the average offloading ratio of the three
algorithms with the change of the Zipf parameter α. With
the increase of the Zipf parameter α, the average offload-
ing ratio of three algorithms increases except for Random
caching. In addition, the LOCASS outperforms the MPC
caching, Random caching and Greedy caching no matter how
α changes. Greedy caching outperforms the Random caching
when α is large. And the Random caching outperforms
the MPC caching when α is small. Considering the rising
speed with the increase of the Zipf parameter α, the average

FIGURE 3. Average offloading ratio as the Zipf distribution parameter α

changes.

offloading ratio of LOCASS rises slower with the increase of
social density η. Because, devices can access limited virtual
cache space, only a few number of popular contents can be
stored (see Fig. 5b). With the increase of social density η,
the number of the popular contents increases. The sum of
the probability of those popular contents being requested
increases slowly, thus smaller performance improvement can
be achieved when α increases. Therefore, LOCASS is more
sensitive to the change of the content request probability
distribution with the decrease of social density η.

FIGURE 4. Average offloading ratio as the social tie strength w changes
in ER model.

3) THE IMPACT OF SOCIAL TIE STRENGTH
Fig. 4 depicts the effect of social tie strength on the
average offloading ratio. With the increase of social tie
strength, the average offloading ratio of LOCASS improves
except when social density η = 0, 1. The increasing
of average offloading ratio is because the cooperation
between devices is enhanced, and devices are more likely
to store contents for cooperative-devices. As the social tie
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strengthw increases, those contents with comparatively lower
popularity have large chance to be cached and increase
devices’ social selfishness-based utilities. In the LOCASS
with social density η = 0, each device cannot access
cached contents from other devices so that social tie strength
w has no impact on the average offloading ratio. Besides,
in terms of average offloading ratio, LOCASS outperforms
MPC caching, Random caching and Greedy caching no mat-
ter how social tie strength w changes when social density
η = 0.3. We can also find that the average offloading ratio of
LOCASS converges faster with the increase of social density
η. In the Fig. 4, the average offloading ratio of LOCASS with
social density η = 0.3, 0.6, 0.9, 1 converges when w > 0.5,
0.2, 0.2 and 0.1 respectively. When the average offload-
ing ratio converges, it also means that the cached content
distribution will not change. Therefore, when the social tie
strength w is large enough, a large scale of rearrangement
of content won’t happen if the social tie strength changes a
little. Larger η means more cooperative-devices and larger
cooperative utility for each device. Smaller social tie strength
w can pose the same effect on the average offloading with
the increase of social density η. Therefore, the increase of
social tie strength w can enhance the cooperation of devices
and improve the average offloading ratio in LOCASS. With
more cooperative-devices, i.e., larger social density η, social
tie strength w poses less impact on the average offloading
ratio.

4) THE IMPACT OF SOCIAL DENSITY η
Larger social density η means more cooperative-devices for
each device. In another word, more virtual cache space can
be accessed and more devices will take the requests of device
m into consideration. We investigated the evolution result
with the increasing of parameter social density η in Fig.5.
In Fig. 5a, the average offloading ratio of LOCASS outper-
forms the MPC, Random caching and Greedy caching no
matter how social density η changes. In addition, the average
offloading ratio of four caching algorithms improves with
the increase of social density η except MPC caching. For
the LOCASS, the increasing speed reduces due to the fact
that more cache space is utilized to store those comparatively
unpopular contents, which is shown in Fig. 5b. Small perfor-
mance improvement can be achieved if those comparatively
unpopular contents are stored. Thus, the increasing speed
of the average offloading ratio decreases as social density η
grows.

Fig. 5b depicts the cumulative distribution function (CDF)
of the virtual cache space volume for each content with differ-
ent ranks in LOCASS. The content rank is sorted by content
request probability in descending order. The content with a
smaller rank is equipped with a larger request probability.
If some new contents are requested, whether a large scale of
rearrangement of content will happen depends on the rank
of those new contents. If new contents are with small ranks,
a large scale of virtual cache space will be utilized to store,
and a large scale of rearrangement will happen. Respectively,

FIGURE 5. The performance as the social density η changes in ER model.
(a) Average offloading ratio as the social density η changes in ER model.
(b) Cached content distribution as the social density η changes for the
LOCASS in ER model.

if the ranks of new contents are large than 100, those contents
have no chance to be stored so that the rearrangement of
content won’t happen. As shown in the Fig. 5b, the whole
cache space is mainly occupied with the small-rank contents.
Besides, with the increasing social density η, each individual
cache space can be accessed by more devices, so fewer of
copies can achieve similar performance. Devices with a larger
η are likely to store the popular contents as well but tend
to store those comparatively unpopular contents. This can
further improve the system performance. Therefore, a larger
social density η means more cache space of sharing via D2D
links, and devices are encouraged to store diverse contents to
avoid duplicate caching.

B. THE EVALUATION RESULTS IN THE REAL TRACE
To further validate the performance of LOCASS, we utilized
the real trace of the Infocom06 dataset [32] to conduct a
trace-driven simulation. The Infocom06 dataset contains the
contact logs among 79 candidates in a period of 337417 sec-
onds [32]. In the LOCASS, we applied two social graph
model to construct social ties among these candidates: ER
model and SC model. We assumed that the sum of social
ties for the two models were equal. We set social density
η = 0.3. For each tie, the social tie strength w was gen-
erated randomly in the interval [0,1]. Here, we just show
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FIGURE 6. Average offloading ratio as the deadline time TD changes in
Infocom06 dataset.

the cached content distribution of devices with different
degrees.

Fig. 6 shows the evolution result for the four cases
(i.e., LOCASS η = 0, 0.3, 1 with ER model and LOCASS
η = 0.3 with SCmodel) with the change of deadline time TD.
Except for the LOCASS η = 0 with ER model, the average
offloading ratios of the other three cases grow along with the
increase of deadline time TD. That is because a larger TD
means more contacts between each pair of devices, and more
cached segments can be transmitted via D2D links. In the
case of LOCASS η = 0 with ER model, devices cannot
access any other’s cache space, so the average offloading
ratio doesn’t change with the increase of TD. If there is same
social density η, when TD is small, the average offloading
ratio of SC outperforms that of ER. Since, in the ER model,
all devices’ degrees are low, and the cooperative utilities
of devices with small TD are comparatively small. With a
small cooperative utility, there is a lack of cooperation with
their cooperative-devices and poor performance can be posed.
However, in the SC, there are a few of devices equipped with
high degrees, and their cooperative utility is comparatively
large. With the large cooperative utility, those devices with
high degrees have a strong motivation to cooperate with their
cooperative-devices. Therefore, the average offloading ratio
of SC outperforms that of ER when TD is small. In the
Fig. 6, when TD exceeds 800s, for each pair of cooperative-
devices, almost all of the cached contents can be transmitted
before reaching the deadline time. In such situation, a large
part of the virtual cache space in the LOCASS with SC is
utilized to store unpopular contents for cooperative-devices
with high degrees, which achieve only a limited performance
improvement. However, in the ER, all devices have similar
degrees and tend to store popular contents, which will achieve
a great performance improvement. Therefore, in terms of
average offloading ratio, the LOCASS with ER outper-
forms the LOCAS with SC when the deadline time TD is
large.

FIGURE 7. The cached content distribution in Infocom06 dataset.

Fig. 7 shows how cache spaces are occupied by differ-
ent contents, represented by a CDF graph. From the sys-
tem perspective, the LOCASS-SC utilizes more cache space
to store contents with a small rank than the LOCASS-ER.
This is because of the devices in the SC equipped with
low degrees, in that only a small part of virtual space can
be accessed by each of them. Devices with a low degree
can access few segments from their cooperative-devices
and have to store popular contents for themselves. There-
fore, compared to the LOCASS-ER, the LOCASS-SC uti-
lizes a larger part of cache space to store popular contents.
Considering the diversity of degrees in the SC, we also
show the cache space occupied by different contents of our
solution in the situation of devices with high degrees and
low degrees which is called as high degree-SC and low
degree-SC respectively. The former seletced five devices with
highest degrees, and the latter evaluated five devices
with lowest degrees in SC. As shown in the Fig. 7, devices
with low degrees in SC tend to store popular contents, a.k.a.,
the contents with a small rank. In addition, devices with high
degrees in LOCASS with SC tend to store comparatively
unpopular contents and access popular contents from their
cooperative-devices.

V. CONCLUSION
In this paper, with the social selfishness which can be viewed
as a mixture of cooperation and selfishness, we formulate
a device caching game. We also design a Local Optimal
Caching Algorithm with Social Selfishness (LOCASS) to
prove the existence of Nash equilibrium and solve the game.
Simulation results are provided to demonstrate the valid-
ity of LOCASS. The results show that LOCASS can offer
much better performance, in terms of average offloading
ratio, than traditional Random,Most-Popular-Content (MPC)
and Greedy caching algorithms. Besides, as the social tie
strength and social density increases, the cooperation among
cooperative-devices is enhanced, and the average offloading
ratio of LOCASS also improves. Additionally, in LOCASS,
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devices with low degrees are likely to store popular con-
tents, and devices with high degrees tend to store those
comparatively unpopular contents and fetch popular content
from their cooperative-devices. Nowadays, devices’ mobil-
ity and request forecast are becoming more previously by
adopting new technologies, such as big data. Each device
transmits and receives the information on the mobility and
request forecast of its cooperative-devices and makes its
own caching strategy decision according to our proposed
caching algorithm LOCASS. During off-peak time, con-
tents are proactively distributed to the devices cache space
and satisfy the requests via D2D links at peak time. In
our future work, we will focus on the dynamic social
relationship in the system, where social tie strength can
be strengthened if they share cached contents to each
other.

APPENDIX
Proof: Firstly, min

{
Tm′,m"rm′,m", cm",f

}
is concave [27]

on c. Because, for ∀c′m",f and c′′m",f , where c
′

m",f ≥ c′′m",f ,
there exists (21), as shown at the top of this page. And, (22),
as shown at the top of this page.

Then, the following condition is satisfied:

min
{
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′
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}
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}
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{
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′′
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And min
{
Tm′,m"rm′,m", cm",f

}
is also concave on c.

Similar with the above proof,

min

 ∑
m"∈Nm′∪m′

min
{
Tm′,m"rm′,m", cm",f

}
, rf

 (24)

is a concave function on c.

Because non-negative weighted sum of concave function
remains to be a concave function,

Um(c) =
∑

m′∈Nm∪m

{
wm,m′

∑
f ∈F

pm′,f

×
1
rf

min
{ ∑
m"∈Nm′∪m′

min
{
Tm′,m"rm′,m", cm",f

}
, rf

}}
(25)

is also a function on c.
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