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ABSTRACT Graph-based methods have been widely adopted to detect salient objects in images. However,
there are two limitations of these methods. First, only one kind of query is employed for saliency propagation
on the graph. Second, these methods only represent pairwise relations between vertices and thus give
an incomplete representation of the relationships between image regions. In this paper, we propose a
foreground- and background-queries-based hypergraph optimization framework for salient region detection.
In this framework, both foreground queries and background queries are explicitly exploited to uniformly
highlight the salient foreground and suppress the non-salient background. Furthermore, to include both the
pairwise and the higher-order relations among two or more vertices, a probabilistic hypergraph is constructed
based on local spatial correlation, global spatial correlation, and color correlation to represent the relations
among image regions from different views. Extensive experimental results demonstrate the effectiveness of

the proposed framework.

INDEX TERMS Hypergraph, queries, optimization framework, salient region detection.

I. INTRODUCTION
Visual saliency detection has attracted a great deal of atten-
tion and achieved major progress during the past few years
due to its application to computer vision tasks, including
image compression [1], image quality assessment [2], image
segmentation [3], object recognition [4], and content based
image retrieval [S]-[7].

The literature of visual saliency detection is vast [8]-[18].
It can be roughly categorized into unsupervised methods
and supervised methods. While supervised methods are able
to automatically combine various features and in general
achieve better performance than unsupervised approaches,
a large amount of sample data with pixel-wise ground truth
annotations are needed and it is very expensive to carry out
the training process. A fast saliency detection technique can

be an important preprocessing step for many computer vision
tasks.

In recent years, unsupervised graph-based saliency detec-
tion methods have gained much popularity. These meth-
ods model each input image as a graph and propagate
saliency information via weighted edges of the graph con-
necting image regions. The graph-based saliency propagation
approaches achieve competitive performances. At the same
time, they do not require labor-intensive annotated samples
and expensive training processes. However, there are two
major limitations of these methods. Firstly, only one kind
of query is explicitly employed in one optimization step.
Since salient region detection aims to separate the salient
object foreground from the non-salient background, both the
foreground queries and the background queries are critical
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for the final saliency detection result. Secondly, represent-
ing the relations among image regions in a pairwise simple
graph gives an incomplete representation of the image. It is
important to consider not only the pairwise relation between
two vertices but also local grouping information among
two or more vertices [19]. These higher-order relations can
be represented by a hypergraph, a generalization of a simple
graph [20]. In a hypergraph, hyperedges are used to describe
complex relations among any number of vertices.

In this work, we introduce a novel foreground- and
background-queries-based hypergraph optimization frame-
work to compute the saliency values (the likelihood belong-
ing to the salient foreground) of different image regions
for salient region detection. In the optimization framework
we represent similarity relationships among image regions
in multiple feature spaces and explicitly employ both the
foreground queries and the background queries to uniformly
highlight all of the salient regions and suppress the non-
salient background. These two kinds of queries are acquired
based on a hypergraph-based ranking algorithm using the
boundary prior of visual saliency and the local grouping
information among multiple vertices.

Our second contribution is constructing a probabilistic
hypergraph for an input image. In the proposed probabilistic
hypergraph, vertices are defined as homogeneous regions in
the input image and different correlations defined based on
the distances between regions (in image space or feature
space) are used to model local grouping information among
various image regions and compute the probability that an
vertex belongs to a hyperedge. The probabilistic hypergraph
is constructed according to three different kinds of corre-
lations: local spatial correlation, global spatial correlation,
and color correlation, representing the relations among mul-
tiple vertices from different views through multiple types
of hyperedges. According to local spatial correlation, each
vertex in the hypergraph serves as the centroid for a local
spatial hyperedge which connects the centroid vertex to its
local spatial neighbors which share a boundary with the cen-
troid vertex in the input image. According to global spatial
correlation, each vertex serves as the centroid of a global
spatial hyperedge which connects the centroid vertex to the
global border vertices which are located on the four borders
of the input image. Based on color correlation, each vertex
serves as the centroid of a color hyperedge which connects
the centroid vertex to its neighbors in the color space. In our
work, the probability that a vertex belongs to a hyperedge
is defined to be the similarity between this vertex and the
corresponding centroid vertex of the hyperedge.

As we will demonstrate in experiments, the proposed
hypergraph optimization framework outperforms state-of-
the-art methods on various databases. The remainder of
this paper is organized as follows: related works are intro-
duced in Section II; the foreground- and background-queries-
based hypergraph optimization framework is described in
Section III; Section IV describes how we construct a
probabilistic hypergraph for an input image; Section V
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elaborates the method to acquire the foreground and back-
ground queries; Section VI illustrates our testing procedure
and experimental comparison. Finally, the conclusion of the
paper is made in Section VII.

Il. RELATED WORK

Our work is related to graph-based ranking methods as in [12]
and [16], hypergraph-based approaches as in [21], boundary
prior modeling as in [22], and queries acquisition as in [12].

A. SUPERVISED VS. UNSUPERVISED

Unsupervised saliency detection methods [12], [16], [21],
[23] aim at separating the salient foreground objects from
the non-salient background based on visual cues from the
input image only. Various visual cues have been proven to
be useful for salient region detection, including contrast [10],
background prior [24], objectness [25], etc. Without the need
for training, unsupervised saliency detection methods can be
conveniently integrated into various computer vision applica-
tions. By comparison, supervised methods [25]-[28] acquire
knowledge from the pixel-wise ground truth annotations.
Recent progress in deep learning methods show promising
saliency detection results using supervised methods on public
benchmark databases. However, it is very expensive to set up
the learning framework, collect the hand-marked images and
operate the training procedure.

B. GRAPH-BASED

In recent years, graph-based saliency detection methods
have increased in popularity [12]-[16], [18]. These meth-
ods do not need manually-annotated image samples and
overcome a major flaw of classical pixel-level saliency
detection methods: namely, these methods tend to highlight
object boundaries instead of object interiors. Graph-based
methods [12]-[16], [18] employ a pairwise simple graph to
represent the relationships between two image regions. In a
simple graph, image regions are defined as vertices and
two related vertices are connected by an edge, reflecting
the similarity between regions. Yang et al. [12] propagate the
saliency information first with background queries and then
with foreground queries via a graph-based ranking algorithm.
In this algorithm, a smoothness term is used to include the
relations between pairs of vertices and a fitting term is used to
constrain the result to be close to the queries. Gong et al. [14]
propagate saliency information via the graph first to easily-
classified image regions and then to more ambiguous regions.
Li et al. [22] improve the graph-based methods by generating
pixel-wise saliency detection results based on a regularized
random walk ranking algorithm. Zhang et al. [18] propose
a salient object detection method which integrates simple
graphs and incorporates a popular cognitive property about
visual saliency, namely visual rarity, into the graph-based
optimization framework. In the above graph-based meth-
ods, one kind of queries (foreground queries or background
queries) is explicitly exploited in one step.
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C. HYPERGRAPH-BASED

Hypergraphs have been shown to be effective in computer
vision applications [19], [20], [29]. Based on hypergraph,
a ranking algorithm was proposed [20] for classification and
further applied to image retrieval [19]. In the hypergraph-
based ranking algorithm, a smoothness term includes the
relations among multiple vertices and a fitting term constrains
the final result to be close to the queries. Li et al. [21] has
successfully adopted the hypergraph in the saliency detection
field. In this work, binary hypergraphs at multiple scales
are constructed for an input image using a clustering algo-
rithm and describe the binary relations between vertices and
hyperedges, i.e. whether a vertex is contained in a hyperedge.
Liet al. then propose a hypergraph modeling approach to
capture the contextual information of image regions and the
final saliency map is essentially the mean of saliency detec-
tion results from multiple scales.

D. CENTER VS. BOUNDARY PRIOR

Human observers freely viewing natural scenes show a bias
to attend to the center of the image [30]-[32]. Multiple
works [32]-[34] have attempted to employ the central bias for
saliency detection. This center prior helps when the salient
objects are near the center of the input image. More recent
saliency detection methods prefer to use a boundary prior,
which assumes that pixels on the image boundaries are more
likely to be part of the background. This boundary prior is
more robust and effective than the center prior because the
foreground object rarely intersects all four image borders.
In the work of Yang et al. [12], the image borders are chosen
as the background queries to perform saliency propagation.
Jiang et al. [35] choose the virtual boundary nodes as the
absorbing nodes and formulate saliency detection in an image
via an absorbing Markov chain.

lIl. FOREGROUND- AND BACKGROUND-QUERIES-BASED
HYPERGRAPH OPTIMIZATION FRAMEWORK

Let V denote a finite set of vertices in a hypergraph. Let E
denote a set of hyperedges, which is a family of subsets of V
such that | J,.z = V. A hypergraph can be represented by a
|V| x |E| incidence matrix H(v;, ¢;) where v; € V is a vertex
and ¢; € E is a hyperedge.

1 ifviee o

0 otherwise

H(vj, ¢)) = {

If a vertex v; is contained in a hyperedge ¢; (i.e. v; € ¢)),
then the corresponding incident value H(v;, ej) equals to 1;
otherwise, the incident value equals to 0. By this definition,
the incidence matrix H indicates different hyperedges in a
hypergraph and each column of the incidence matrix contains
the composition information of a hyperedge.

The weights of different hyperedges can be recorded in
a diagonal matrix W, where each hyperedge e has a posi-
tive weight W(e). Based on the incidence matrix H and the
hyperedge weight matrix W, the degree of each vertex D, (v;)
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which is recorded in a diagonal matrix D, can be defined
as D,(v;) = Ze]_eE W(ej)H (v;, ¢j), and the degree of each
hyperedge D, (e;) which is recorded in a diagonal matrix D,
can be defined as D.(ej) = Zv,-ev H(v;, ¢)).

A ranking algorithm based on a hypergraph was pro-
posed [20] for classification. In this algorithm, a smoothness
term represents the relations among multiple vertices and a
fitting term constrains the final classification result to be close
to the queries. This hypergraph-based ranking algorithm is
appropriate for the case where there is only one kind of
specific queries, e.g. image retrieval [19]. However, salient
region detection aims to separate the salient object foreground
from the non-salient background. Thus, both the foreground
queries and the background queries are vital for salient region
detection in images.

In this paper, we propose a novel hypergraph-based opti-
mization framework which considers both the foreground
queries and the background queries to compute the saliency
values (the likelihood belonging to the salient foreground)
of different vertices for salient region detection. One goal
of the proposed optimization framework is to group similar
regions (parts of the same object or surface) and assign
them to the same saliency class, which is accomplished by a
smoothness term. Besides, the proposed optimization frame-
work aims to make use of heuristics about the likelihood of
different regions being foreground or background. This is
accomplished by two terms which separately represent the
foreground and background constraints. By considering the
smoothness constraint, the foreground fitting constraint and
the background fitting constraint, an optimal saliency vector
S : V = R, which assigns a saliency value S(v;) to each
vertex v; can be computed.

S*

1
arg mSin(ESZ + AW + Ap®), where

Q— Z Z Wer)

Hi, e)H(©j, ex)(SWi) — S1)
ex<E vi,vj€ey De(ex) 7 )i

U= Z Or () ||S(vi) — Ly H2

i=1

n
® = 0 IIS) — Lyl® 6)
i=1
In the term Q of the above optimization function, S(v;)
and S(v;) are the saliency values of the vertices v; and v;
respectively. H (v;, ex) and H (vj, ey) indicate whether v; and v;
belong to the hyperedge ex. W(ex)/D.(ex) can be interpreted
as the normalized weight of the hyperedge ex. Thus, Q2 is a
smoothness term which represents the smoothness constraint
as it is defined in a hypergraph: if two vertices v; and v;
are frequently members of the same hyperedge and these
hyperedges have high weights, then v; and v; should have
similar saliency values. This reflects the fact that nearby,
similar-looking image regions are very likely to be parts of the
same object or surface, and should therefore have the same
saliency values.
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In the term W, Ly is the label of the salient foreground,
which indicates the class of the salient foreground and is set
to 1 in our paper. Or(v;) indicates whether the vertex v; is a
salient foreground query: if v; is a salient foreground query,
Or(v;) can be assigned a value of the probability to be a
foreground query; otherwise, Oy (v;) equals to 0. Thus, ¥ can
be understood as a foreground fitting term, which encourages
avertex v; which is a foreground query to take a saliency value
close to the foreground label.

Similarly, the term @ can be interpreted as a background
fitting term. L, indicates the label of the non-salient back-
ground, which indicates the class of the non-salient back-
ground and is set to -1 in our paper. Qp(v;) indicates whether
the vertex v; is a background query: if v; is a background
query, Qp(v;) can be set to a value of the probability to be
a background query; otherwise, Qp(v;) equals to 0. Thus term
® encourages the saliency value of a vertex v; to be close
to the label of the background if this vertex is a background
query.

In this work, we obtain the foreground and background
queries based on the boundary prior and similarity rela-
tionships among image regions in multiple feature spaces.
It should be biased to mark regions dissimilar to the image
borders as salient foreground queries and regions similar to
the image borders as background queries. The implementa-
tion details can be seen in Section V.

In the above optimization function of Formula 2, A¢ and
Ap are the weighting parameters, which specify the relative
balance of three terms: €2, W and ®. By setting the derivative
of the optimization function to be zero, the saliency values of
different vertices can be calculated. The normalized saliency
value of each vertex indicates the probability that the vertex
belongs to the salient foreground.

S*=(Dy—HWD; "H" 41 Q5 + 1p0p) ' (i O — 10p)
3)

From the result, we can see that there are two critical
factors for our foreground- and background-queries-based
hypergraph optimization framework in determining the final
saliency values: the constructed hypergraph represented by
the incidence matrix H and the hyperedge weight matrix W
for the smoothness constraint term €2; and the foreground
queries Oy and the background queries Q) for the fitting
constraint terms W and &. In Section IV, we explain how
we construct the hypergraph based on multiple features for
salient region detection. And in Section V, we describe how
we compute the foreground queries Oy and the background
queries Qj based on the boundary prior and our constructed
hypergraph.

IV. PROBABILISTIC HYPERGRAPH CONSTRUCTION

In the work of Li et al. [21], a binary hypergraph which mod-
els the binary relations between the vertices and the hyper-
edges is used to detect salient objects in images. However,
the binary relations between the vertices and the hyperedges
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which treat all the vertices in a hyperedge equally is unable
to represent information about similarity relationships within
the hyperedge. In our work, we construct a probabilistic
hypergraph which captures not only the binary relations but
also the probability that a vertex belongs to a hyperedge to
better capture the grouping information in an input image. If a
vertex v; is contained in a hyperedge e;, the corresponding
incident value H(v;, ;) is equal to p(vile;), i.e. the prob-
ability that v; belongs to ej; otherwise, the incident value
is 0.

pWile)) ifv; e
0 otherwise

H(v;, ej) = { @

We first employ the Simple Linear Iterative Cluster-
ing (SLIC) algorithm [36] to over-segment an input image /
into n homogeneous superpixels, as in many previous graph-
based salient object detection methods [12], [14], [22], [37].
We define these homogeneous superpixels of an image as
the vertices of our probabilistic hypergraph. In this work,
the number of the superpixels in each image is set to 300.
For each superpixel, we compute its mean in the CIELab
color space and the image spatial coordinate space sepa-
rately, producing a color feature and a spatial feature for each
superpixel.

A. HYPEREDGES

In addition to the vertices, we need to identify the hyperedges
and compute the probabilities that the vertices belong to
these hyperedges to create a probabilistic hypergraph. The
above information can be recorded in an incidence matrix H.
In this paper, given a finite set of vertices V, we choose
different hyperedges according to three kinds of correlations:
local spatial correlation, global spatial correlation, and color
correlation. For each vertex v;, three hyperedges are cho-
sen: a local spatial hyperedge, which contains v; itself as
a centroid vertex and its immediate spatial neighbors (ver-
tices which share a boundary with the centroid vertex in
the input image); a global spatial hyperedge, which contains
v; as a centroid vertex and the global boundary vertices on
the four borders of the input image; and a color hyperedge
which contains v; as a centroid vertex and its neighbors in
the CIELab color space. We further compute the probabil-
ity that a contained vertex belongs to a hyperedge as the
similarity between this vertex and the centroid vertex of the
hyperedge.

Let Ry, R, and R3 denote the above three rules based on
three feature correlations. We define a n x n adjacency matrix
A: If two vertices v; and v; are spatially adjacent in the input
image, then A(v;, v;) = A(v;, v;) = 1, otherwise A(v;, vj) =
A(vj, v;) = 0. In addition, let a n * n similarity matrix SIM
encode the similarities between each pair of vertices and
B € V denote a list of boundary vertices on the four sides
of the image. Then the hyperedge set E = {E}, E», E3} and
the corresponding incidence matrix H = [H1, Ha, H3] can be
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produced as follows:

Ri:WweV, E\W={ eV =vor Aw,V) =1}
H\( E|(v) = SIM(v, )

Ry:YeV, Ew={( eV =vorV e B}
Hy(V', Ex(v)) = SIM(v, V)

Ry :YweV,E5(v) ={V e VIV =vor D.(v,V) < ¢}
H3(V', E3(v)) = SIM(v,V') %)

The first rule enables the hypergraph to make use of the
proximity of spatial neighbors. The second rule effectively
utilizes the global spatial correlation. The third rule helps to
group image regions with similar appearances into the same
class, which is particularly useful in images with multiple
salient objects or a single object with complex patterns. For
the third rule, we use Euclidean distance to compute the color
distance between two vertices D.(v, V') and the parameter ¢ is
set to 0.15 in our work. Our method to compute the similarity
between two vertices is given in Section I'V-C.

B. HYPEREDGE WEIGHTS

In addition to the hyperedges described by the incidence
matrix H, the hyperedge weights in the diagonal matrix W
are also important for salient region detection. For efficiency
and simplification, we compute the hyperedge weights based
on the constructed incidence matrix H and the similarity
matrix SIM. The weight of each hyperedge w(e;) is defined
as follows.

wiej) = Y Hvi, )SIM(vi, ve;) (6)

vi€ej

In the above formula, Ve, denotes the centroid vertex of the
hyperedge e;. If all vertices contained in a hyperedge e; have
a high probability to be part of the hyperedge and have a close
similarity to the centroid vertex, this hyperedge has high inner
group similarity and thus should be assigned a high weight;
otherwise, this hyperedge should be assigned a low weight.

C. SIMILARITY MATRIX
The n % n matrix SIM used in Formula 5 and Formula 6
indicates the similarity between each pair of the vertices.
In this work, we compute this matrix based on both the color
distance and the spatial distance between pairs of vertices.
oD (i, vi) + (1 = p)Ds(vi, vj)
> ) ()
o
The parameter p balances the weights of the color distance
and the spatial distance. A larger p will put more emphasis on
the color distance. The scale parameter o controls the strength
of the combined distance. If o has a small value, only vertices
with close color features and spatial positions would make a
contribution. If o has a larger value, then vertices with larger
distances would also have a strong influence on each other.
The parameters p and o are set as 0.35 and 0.05 respectively.
D.(v;, v;) represents the color difference between vertices
v; and v;, while Dy(v;, v;) represents the spatial distance

SIM (v;, vj) = exp(—
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between those vertices. We use the Euclidean distance to
compute the color distance D(v;, v;) and employ the sine spa-
tial distance proposed in our previous work [38] to compute
the spatial distance Dg(v;, v;), as shown in Formula 8.

Dy(vi. vj) = (sinGr - — x D)2 HGsinGr - yi — 3D (®)

In the above formula, x; and y; represent the horizontal
and vertical image coordinates of a vertex v;, which have
been normalized to be in the range [0, 1]. Experimental
comparisons in previous work [38] have shown that the sine
spatial distance helps to uniformly suppress the non-salient
background.

V. FOREGROUND AND BACKGROUND

QUERIES ACQUISITION

In this section, we describe how we obtain the foreground
and background queries using the boundary prior and our
constructed hypergraph. According to the boundary prior,
the vertices on the four borders of the image are very likely
to be part of the background. We use each of the four image
sides as the initial background queries separately to get four
background maps based on the following hypergraph-based
ranking algorithm.

1
B* = argmBin(EQ + aA), where

w
2=3 3 DEEZ’;))HM,ek)H<v,-,ek)(B<vi)—B(v,->)2
ey €E vi,vi€e
A =" IBw) — 0wyl ©)

i=1

In the above formula, O(v;) indicates whether a vertex
v; is an initial background query which is on one of the
four image borders. If a vertex v; is on the image border,
O(v;) = 1 indicating that this vertex is a background vertex;
otherwise, O(v;) = 0. Each of the four background maps
is computed based on the smoothness constraint defined by
our constructed hypergraph and one of the image borders.
By setting the derivative of the above formula to be zero,
the background map can be computed as:

B* = a(D, — HWD;'HT +al)"'0 (10)

According to Formula 10, the vertices which have the
smoothness constraint with the image borders would have a
value close to 1, and otherwise would have a value close to
0. Using the four image boundary sides (Osop, Odown» Olefr
and Oyign) separately, we can create four background maps
(Biop» Bdown» Blefr and Byigp;). We then combine them to get
an initial saliency map based on the following formula.

T=(1- Btop)- * (1 — Baown)- * (1 — Bleft)- * (1 — Bright)
(11)

In this formula, we use node multiplication to combine
different background maps. The final foreground queries and
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\- J Optimization
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background queries )
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FIGURE 1. Diagram of our foreground- and background-queries-based hypergraph optimization method for salient region detection. The original
image is first over-segmented into superpixels, which are the vertices of our probabilistic hypergraph. Each vertex forms hyperedges based on local
spatial correlation, global spatial correlation and color correlation. In the diagram, the centroid vertex of a hyperedge is marked with a small red star.
Each of the four image borders is set as the initial background queries separately to get four background maps. An initial saliency map is obtained by
combining these background maps and then further thresholded to get the final foreground queries and background queries. Both the probabilistic
hypergraph and the queries are incorporated into the hypergraph optimization framework to detect salient objects.

background queries are obtained from this initial result T
using different thresholds th; and thy:

N T() ifTW) = th

Orvi) = {O otherwise (12)
N 1=T@y) ifTW;) <th

Qovi) = {O otherwise (13)

If a vertex v; has a value T'(v;) > thy, then this vertex is
a foreground query and the probability to be a foreground
query is set as T(v;). If a vertex v; has a value T'(v;) < thy,
this vertex is a background query and the corresponding
probability is set as 1 — T'(v;). The complete procedure of our
proposed foreground- and background-queries-based hyper-
graph optimization framework for salient region detection is
summarized in Algorithm 1 and Figure 1.

VI. EXPERIMENTAL COMPARISON

A. EXPERIMENTAL SETUP

1) DATABASES

We evaluate the performance of our framework on five
public databases: MSRA10K [10], ECSSD [39], SOD [40],
iCoseg [41] and PASCAL-S [42]. The MSRA10K database
contains 10,000 images with a variety of image contents.
Most of the images have a single salient object. The ECSSD
(Extended Complex Scene Saliency Database) contains

26734

1,000 natural images with complex foreground and back-
ground patterns. The iCoseg database contains 643 images
and many of them contain multiple foreground objects. The
SOD database contains 300 challenging images, originally
from the Berkeley segmentation database [43]. In the SOD
database, many images contain multiple foreground objects
and complex patterns. The PASCAL-S database contains
850 natural images with object masks labeled by 12 subjects.
We threshold the masks at 0.5 to obtain binary ground truth
as suggested by [42].

2) EVALUATION CRITERIA
We evaluate performance using precision-recall (PR)
curves [44], max F-measure [45] and S-measure [46]. The
precision-recall curve of a saliency map is computed by
converting a continuous saliency map to a binary map using
each threshold in the range [0:1:255] and comparing this
binary map against the ground truth. The precision-recall
curve of a database is obtained by averaging the precision-
recall values over saliency maps of all images in the database.
As a measure of overall performance, we also report the
max F-measure values on different databases. The F-measure
is defined as Fg = (1;2’_3 )precision-recall oo e B2 is set
precision—+recall
to 0.3. We report the maximum F-measure calculated from
all precision-recall pairs as suggested in [45]. Since human
visual system is highly sensitive to the structures in image
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Algorithm 1 Foreground- and Background-Queries-Based

Hypergraph Optimization Framework for Salient Region

Detection

Input: An image and required parameters.
1. Construct a probabilistic hypergraph based on local
spatial correlation, global spatial correlation and color
correlation: Choose hyperedges and compute the prob-
ability that a vertex belongs to a hyperedge according
to Formula 5 to get the hyperedge set E and an incident
matrix H; Compute the hyperedge weights according to
Formula 6 to get a hyperedge weight matrix W. The
similarity matrix SIM which is used for the incident
matrix H and the hyperedge weight matrix W can be
computed according to Formula 7 and Formula 8.
2. Set each of the four image borders as the initial
background queries separately to get four background
maps based on Formula 10. Combine them to get the
initial saliency map based on Formula 11. The final
foreground queries and the final background queries are
then obtained from this initial saliency detection result
using two thresholds separately based on Formula 12 and
Formula 13.
3. Compute the final saliency result by Formula 3 accord-
ing to the constructed probabilistic hypergraph, the final
foreground queries, and the final background queries.

Output: A saliency map.

scenes, in this paper we also report the S-measure metric
which puts more emphasis on the region-aware and object-
aware structural similarity between a saliency map and the
ground truth. The implementation detail of S-measure can be
found in Fan et al.’s work [46].

3) PARAMETER SETUP

We choose parameter empirically. The weights A and A, in
Formula 3 are set to 0.05 and 0.1, respectively. The weight
a in Formula 10 is set to 0.2. The thresholds ti¢ and th;, in
Formula 12 and Formula 13 are empirically chosen, thy =
0.2 and thy, = 0.5, for all the experiments. Our method
is implemented using Matlab on a computer with Intel
Core 17-4790 3.6 GHz CPU and 8GB RAM.

B. QUANTITATIVE COMPARISON

We compare our method (HO2) against twenty-one recent
methods, including GB [8], FT [9], MSS [47], CB [11],
HC [10], RC [10], GS [24], SF [48], AM [35], GR [12],
HM [21], HS [39], BD [13], BSCA [49], CL [14], GP [15],
RRWR [22], PM [16], MST [17], GF [18] as well as a
preliminary version of our method HO1 [50]. CL, GP, PM and
RRWR are the latest graph-based methods. HM is the previ-
ous hypergraph-based method. For fair comparison, we use
the implementations provided by the authors.
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1) MSRAT0K

Figure 2 (a) compares our method with state-of-the-art meth-
ods using precision-recall curves on the MSRA10K database
where most images contain one salient object. Recent graph-
based methods, e.g. PM, RRWR, GP, BD, GR and AM show
competitive performance. However, the proposed method
outperforms these methods which demonstrates the effective-
ness of our approach. HM is a hypergraph-based model, but
the algorithms proposed by HM and our method are quite
different. For one thing, HM constructs a binary hypergraph
based on a clustering algorithm while our method constructs
a probabilistic hypergraph based on three correlations: local
spatial correlation, global spatial correlation and color cor-
relation. In addition, HM detects the salient region using
a hypergraph modeling algorithm which is essentially the
average of saliency detection maps from different image
scales, while in this work we propose a novel foreground- and
background-queries-based hypergraph optimization frame-
work. The quantitative comparison with PR curves demon-
strates that our method outperforms HM by a large margin
on MSRA10K database. The max F-measure values of dif-
ferent methods on MSRA10K database is shown in Table 1.
As we can see, our method has the largest max F-measure
value, which demonstrates that our method gives the best
overall performance when considering both precision and
recall values. The S-measure values of different methods
in Table 2 further demonstrate that our method can better
extract the region-aware and object-aware structures of the
salient objects on the MSRA 10K database.

2) ECSSD

We further evaluate our method on the ECSSD database
which contains various images with complex foreground and
background patterns, shown in Figure 2 (b), Table 1, and
Table 2. The performances of different methods as measured
by PR curves, max F-measure and S-measure are slightly
lower in comparison to the MSRA10K database. This indi-
cates that it is harder to detect salient objects in complex
images. However, the proposed method outperforms other
state-of-the-art methods, demonstrating that the proposed
hypergraph-based optimization framework and the usage of
both the foreground queries and the background queries
helps to detect salient foreground objects in complex natural
images.

3) ICOSEG

The iCoseg database contains a number of images with
multiple salient objects. The performance comparison
in Figure 2 (c), Table 1, and Table 2 shows that the proposed
method outperforms other methods. It demonstrates that the
proposed foreground-queries- and background-queries-based
optimization framework and the construction of the proba-
bilistic hypergraph can help to detect multiple salient objects
in images.
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4) SOD

The SOD database is a difficult saliency detection database,
which contains a number of natural images with multiple
salient objects and complex patterns. Figure 2 (d) shows that
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FIGURE 2. The quantitative comparison of different methods on MSRA10K, ECSSD, SOD, iCoseg and PASCAL-S databases based
on precision-recall curves. Our method gives the best performance on all databases.

our method can better detect salient objects in challenging
images with higher precision and recall values. Furthermore,
our method improves on the maximum F-measure achieved
by the state-of-the-art methods, shown in Table 1. Table 2
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TABLE 1. Performance Comparison Based on Max F-Measure. The First, Second, and Third Best Results on Each Database Are Labeled in Red, Green, and

Blue, Respectively.

F — measure GB FT MSS CB HC RC GS
MSRA10K 0.648 | 0.536 | 0.609 | 0.775 | 0.645 | 0.696 | 0.792
ECSSD 0.545 | 0.384 | 0.454 | 0.631 | 0.432 | 0.537 | 0.600
iCoseg 0.538 | 0.532 | 0.595 | 0.653 | 0.588 | 0.656 | 0.686
SOD 0.538 | 0.375 | 0446 | 0.537 | 0.423 | 0.535 | 0.572
PASCAL-S 0.525 | 0.366 | 0.448 | 0.568 | 0.403 | 0.527 | 0.578
F — measure SF AM GR HM HS BD BSCA
MSRA10K 0.713 | 0.809 | 0.809 | 0.797 | 0.812 | 0.831 | 0.834
ECSSD 0.505 | 0.638 | 0.650 | 0.646 | 0.646 | 0.639 | 0.679
iCoseg 0.650 | 0.720 | 0.729 | 0.699 | 0.733 | 0.746 | 0.737
SOD 0.465 | 0.590 | 0.562 | 0.593 | 0.584 | 0.595
PASCAL-S 0.455 | 0.599 | 0.586 | 0.593 | 0.578 | 0.602
F — measure CL GP RRWR| PM MST GF HO2
MSRA10K 0.786 | 0.827 | 0.811 | 0.802 | 0.813 0.855
ECSSD 0.625 | 0.664 | 0.652 0.648 | 0.667 | 0.694
iCoseg 0.689 | 0.694 | 0.730 | 0.712 | 0.722 0.786
SOD 0.539 | 0.588 | 0.564 | 0.600 | 0.594 | 0.598 | 0.634
PASCAL-S 0.528 | 0.607 | 0.586 | 0.610 | 0.613 | 0.584 | 0.626

TABLE 2. Performance Comparison Based on S-Measure. The First, Second, and Third Best Results on Each Database Are Labeled in Red, Green, and Blue,

Respectively.

S — measure GB FT MSS CB HC RC GS
MSRA10K 0.671 | 0.532 | 0.531 | 0.759 | 0.663 | 0.679 | 0.775
ECSSD 0.572 | 0.427 | 0.445 | 0.621 | 0.479 | 0.551 | 0.611
iCoseg 0.606 | 0.558 | 0.554 | 0.676 | 0.641 | 0.670 | 0.711
SOD 0.575 | 0.421 | 0.441 | 0.564 | 0.468 | 0.557 | 0.597
PASCAL-S 0.584 | 0.426 | 0.463 | 0.611 | 0.472 | 0.566 | 0.622
S — measure SF AM GR HM HS BD | BSCA
MSRA10K 0.591 | 0.785 | 0.786 | 0.755 | 0.787 | 0.808 | 0.813
ECSSD 0.451 | 0.639 | 0.643 | 0.608 | 0.635 | 0.637 | 0.666
iCoseg 0.581 | 0.698 | 0.712 | 0.691 | 0.735 | 0.757 | 0.732
SOD 0.420 | 0.606 | 0.586 | 0.567 | 0.599 | 0.589
PASCAL-S 0.439 | 0.632 | 0.625 | 0.595 | 0.623 | 0.641
S — measure CL GP | RRWR| PM MST GF HO2
MSRA10K 0.767 | 0.819 | 0.789 | 0.798 | 0.810 0.832
ECSSD 0.628 | 0.658 | 0.645 0.648 | 0.661 | 0.677
iCoseg 0.699 | 0.716 | 0.712 | 0.727 | 0.736 0.776
SOD 0.563 | 0.620 | 0.588 | 0.614 | 0.609 | 0.618 | 0.648
PASCAL-S 0.579 | 0.651 | 0.626 | 0.644 | 0.651 | 0.636 | 0.664

demonstrates that the proposed method outperforms other
methods by better extracting the structures of the salient
objects.

5) PASCAL-S

We also compare different methods on the PASCAL-S
database, which contains various natural images with the
ground truth labeled by 12 subjects. The quantitative compar-
ison in Figure 2 (e), Table 1, and Table 2 demonstrates that our
method outperforms other salient object detection methods
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on the PASCAL-S database in terms of higher precision-
recall values, max F-measure and S-measure.

The proposed method HO2 also consistently outperforms
the preliminary version of this method HO1 [50] on the
above five databases as shown by the precision-recall curves,
max F-measure and S-measure in Figure 2 and Table 3.
This is because the proposed method HO2 improves on the
preliminary version’s methods for acquiring the foreground
and background queries and constructing the probabilistic
hypergraph [50].
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FIGURE 3. Visual comparison of saliency maps generated from different salient object detection methods. The first column is the original image and
the last column is the ground truth. The second-to-last column is our saliency detection result and the remaining columns are results of other
evaluated methods.

TABLE 3. Performance Comparison of the Proposed Method With the Preliminary Version Based on Max F-Measure and S-Measure.

Metric Method | MSRA10K | ECSSD | iCoseg | SOD | PASCAL-S
Fomeasure HOl1 0.845 0.684 0.770 | 0.611 0.606
HO2 0.855 0.694 0.786 | 0.634 0.626
S-measure HO1 0.806 0.663 0.763 | 0.619 0.636
HO2 0.832 0.677 0.776 | 0.648 0.664
C. VISUAL COMPARISON Representative images have been chosen to highlight the
We present a few saliency maps generated by our method as differences between different methods. The first and sec-

well as other representative methods, including graph-based ~ ond images have low contrast between the foreground
methods(PM [16], RRWR [22], GP [15], CL [14], BD [13], object and the background. Most other methods only detect

R [12], AM [35] and GB [8]) and a hypergraph-based part of the foreground while our method can uniformly
method (HM [21]), for visual comparison in Figure 3. highlight the entire salient object. The third image has a
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FIGURE 4. The PR curves on ECSSD database with different design options.

complex background. Many other methods wrongly highlight
a portion of the background, but our method can suppress
the background because we introduce the background queries
in our hypergraph optimization framework in addition to
the foreground queries, which can help to inhibit the image
background. The forth and fifth images show salient objects
which intersect the image boundaries. Most methods cannot
highlight the foreground regions near the image borders.
Our method can highlight the whole foreground object due
to the constructed probabilistic hypergraph based on local
spatial correlation, global spatial correlation and color cor-
relation, which can better represent the grouping informa-
tion in the image. When there are multiple disconnected
salient objects in an image (last image), our method can
uniformly highlight all of the salient objects and largely
suppress the background while some methods detect only part
of the salient objects or wrongly highlight the background.
The major reason why our method works better is that we
construct a probabilistic hypergraph based on three different
correlations in the proposed method, which can help to detect
all the salient regions even when they are not contiguous.
In short, the proposed foreground- and background-queries-
based probabilistic hypergraph optimization framework gen-
erates more accurate saliency maps, which highlight more of
the salient objects with less noise in a variety of challenging
cases.

D. EXAMINATION OF DESIGN OPTIONS

We examine different design options on the ECSSD database,
shown in Figure 4. We first examine the major innovations of
our proposed method in Figure 4 (a). The green full curve and
the black full curve show the performances of the graph-based
ranking framework with only foreground queries and the
hypergraph-based ranking framework with only foreground
queries. The green dashed curve and the black dashed curve
represent the performances of the graph-based ranking frame-
work with only background queries and the hypergraph-based
ranking framework with only background queries. Both the
comparisons between the graph-based ranking framework
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and the hypergraph-based ranking framework with only fore-
ground queries and with only background queries demon-
strate that the hypergraph is helpful for detecting salient
regions in images. The red curve shows the performance
of the final output using the proposed hypergraph optimiza-
tion framework with both the foreground queries and the
background queries. The complete method outperforms the
methods with only foreground queries and with only back-
ground queries, which demonstrates that including both the
foreground queries and the background queries can help to
uniformly highlight the salient foreground and suppress the
background. Based on the above observations, both the hyper-
graph and the inclusion of two kinds of queries in our opti-
mization framework contribute to the overall performance.
We further compare the performances of this method using
different hypergraphs based on various subsets of features
(local spatial correlation, global spatial correlation, and color
correlation) in Figure 4 (b). Hypergraphs which use only one
of these three features have the lowest performance. Hyper-
graph which use two of the three features perform somewhat
better, while the complete method based on all three kinds of
correlations gives the best performance. This demonstrates
that local spatial correlation, global spatial correlation and
color correlation are all helpful for salient region detection.

VIi. CONCLUSION

In this work, we present a novel foreground- and background-
queries-based hypergraph optimization framework for salient
region detection. Unlike the traditional graph-based method,
we construct a probabilistic hypergraph based on local spa-
tial correlation, global spatial correlation, and color cor-
relation to include both the pairwise and the higher-order
relations among two or more vertices. Furthermore, both
foreground queries and background queries are explic-
itly exploited in the optimization framework to uniformly
highlight the salient foreground and suppress the non-salient
background. An extensive experimental evaluation demon-
strates the effectiveness of our method on five representative
saliency databases.
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APPENDIX A
CALCULATE THE SOLUTION OF FORMULA 2
The optimization function F(S) of Formula 2 is:
FS) = ST(D, — HWD;'HT)S
+arQr(S — L) (S — L)

+10p(S — Lp)" (S — Lp) (14)
The derivative of the above optimization function is:
aF (S
7%l=mm—ﬂmgmﬁs
+ 24 0r(S — Ly)
+2405(S — L) (15)

Set the derivative to be zero and the optimal S can be
computed:

§* = (Dy — HWD,'H™ 4+, Or +2506) " (0r O — A6Q0)

(16)
APPENDIX B
CALCULATE THE SOLUTION OF FORMULA 9
The optimization function F(B) of Formula 9 is:
FB) = B'(D, —HWD;'HT)B
+aB-0B-0) 17
The derivative of the above optimization function is:
dF(B
-3%2=2an—HWDjHﬁB+2mB—0) (18)

Set the derivative to be zero and the optimal B can be
computed:

B* = a(D, — HWD;'HT +al)"'0 (19)
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