
Received March 10, 2018, accepted April 23, 2018, date of publication May 8, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2834146

Soft Memory Box: A Virtual Shared Memory
Framework for Fast Deep Neural Network
Training in Distributed High
Performance Computing
SHINYOUNG AHN 1,2, JOONGHEON KIM 3, (Senior Member, IEEE),
EUNJI LIM2, AND SUNGWON KANG4, (Member, IEEE)
1Department of Information and Communication Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
2High Performance Computing Research Group, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
3School of Software, Chung-Ang University, Seoul 06974, South Korea
4School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Corresponding author: Joongheon Kim (joongheon@cau.ac.kr)

This work was supported by the Institute for Information and Communications Technology Promotion through the Korea Government
(MSIT) (Development of HPC System for Accelerating Large-Scale Deep Learning) under Grant 2016-0-00087.

ABSTRACT Deep learning is one of the major promising machine learning methodologies. Deep learning is
widely used in various application domains, e.g., image recognition, voice recognition, and natural language
processing. In order to improve learning accuracy, deep neural networks have evolved by: 1) increasing
the number of layers and 2) increasing the number of parameters in massive models. This implies that
distributed deep learning platforms need to evolve to: 1) deal with huge/complex deep neural networks and
2) process with high-performance computing resources for massive training data. This paper proposes a new
virtual shared memory framework, called Soft Memory Box (SMB), which enables sharing the memory of
remote node among distributed processes in the nodes so as to improve communication performance via
parameter sharing. According to data-intensive performance evaluation results, the communication time of
deep learning using the proposed SMB is 2.1 times faster than that using themassage passing interface (MPI).
In addition, the communication time of the SMB-based asynchronous parameter update becomes 2–7 times
faster than that using the MPI depending on deep learning models and the number of deep learning workers.

INDEX TERMS High performance computing, distributed computing, soft memory box, shared memory,
deep neural network, distributed deep learning.

I. INTRODUCTION
In modern artificial intelligence research, deep learning
shows the dramatic performance in various applications such
as image recognition [1]–[4], voice recognition [5], [6], text
mining [7], and security [8]. Although higher accuracy mod-
els can be obtained with bigger deep neural networks and
more learning data. The required amount of computation
increases proportionally depending on the multiplication of
the size of the deep neural networks and the amounts of the
training data [9], [10]. Due to the increased amount of deep
learning computation, it takes a long time to train the deep
neural networks with a machine; and thus distributed and
high-performance computing architectures and resources are

required to develop timely deep learning models with good
performance. Based on these requirements, distributed deep
learning platforms have been investigated [11], [12].

In distributed deep learning platforms, workers (or train-
ers) conduct distributed training of deep neural networks. In
addition, they have to share massive deep learning parameters
between them and eventually the sharing of massive param-
eters introduces enormous communication overhead, which
constitutes a considerable portion of the total time of dis-
tributed deep learning. As a consequence, the idle time of the
processing units such as CPU/GPU becomes longer, and this
eventually incurs the degradation of computation resource
utilization. The high communication overhead is introduced

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26493

https://orcid.org/0000-0002-2686-7273
https://orcid.org/0000-0003-2126-768X


S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

not only due to the massive and dominant parameter com-
munication but also due to network protocol (e.g., TCP/IP)
computation. During the computation, memory copy opera-
tions are repeated and the corresponding overheads are also
incurred while dealing with multi-layer network protocols.

As the size of deep neural network becomes massive,
the number of parameters dramatically increases. Therefore,
high speed interconnect networking is desired for fast and
massive distributed processing [12]. Based on the require-
ments, the networking techniques aiming at the low latency
and high bandwidth have been proposed including Infini-
band, Quadrics, 40/100 Gbps Ethernet, and Myrinet. Among
them, the Infiniband Enhanced Data Rate (EDR) provides
extremely low latency (approximately sub-micro-seconds)
and high data rates (100 Gbps). Moreover, Infiniband sup-
ports Remote Direct Memory Access (RDMA). With RDMA,
CPU does not need to control the transmission between local
memory and remote memory, and thus, RDMA can reduce
the number of memory copies between user space and ker-
nel space. Eventually, RDMA not only reduces the access
latency but also dramatically improves the communication
bandwidth.

Massive distributed processing of deep learning requires
high speed networking techniques as mentioned before; and
also need parallel programming models that enable dis-
tributed parallel processing. Among the models, one of the
most well-known programming models is massage passing
interface (MPI).

In this paper, we propose a method that reduces com-
munication overhead of massive distributed deep learning
efficiently. For this purpose, our method allows distributed
workers to share deep learning parameters between them
at high speed. This sharing mechanism can be realized by
designing a new memory sharing framework as well as
allowing all the workers to access the shared memory. The
proposed shared memory framework for distributed deep
learning can be operated in the high-performance clusters that
are connected via high-speed networking techniques (e.g.,
Infiniband). In addition, the proposed architecture utilizes
RDMA technique and thus eliminates copy operations of
communication data between application-level buffers and
kernel-level memory buffers. Eventually, the proposed frame-
work provides a method which can share deep learning
parameters among distributed workers using RDMA for read-
ing/writing data in the memory of remote nodes.

The major contributions of our research in this paper are
as follows: The Soft Memory Box (SMB) is proposed in this
paper which consists of the SMB Server, the SMB Device
Driver, the Infiniband Communication Layer module, and the
SMB Library. The components are used for fast sharing the
memory of remote dedicated node among multiple workers.
In addition, SMB provides application programming inter-
face (API) functions which are required for allocation, use,
and release of shared memory buffers among distributed
processes. Moreover, SMB provides cumulative computa-
tion functions among the shared memory buffers, and then

eventually improves the performance of deep learning param-
eter sharing. In this paper, we implemented two emulation
programs which emulate the asynchronous deep learning
parameters sharing with MPI and SMB, and then we show
benefits of the proposed SMB framework by evaluating the
two programs in the setting of high performance computing
servers.

The rest of this paper consists of following sections.
Section II presents the literature survey on distributed
deep learning. Section III introduces the details of the vir-
tual shared memory framework, i.e., architecture, functions,
components, shared memory allocation methods, and API.
Section IV presents the performance evaluation results of our
proposed virtual share memory framework. Finally, section V
concludes this paper and presents future research directions.

II. RELATED WORK
We can achieve deep learning model of high accuracy if
we train the bigger deep neural network (DNN), which has
much more layers and parameters, with the larger training
data. However, the amount of computation required for the
higher accurate deep learning model increases in proportion
to the product of the deep neural network size and the learn-
ing data capacity [9], [10]. For this reason, very large-scale
DNN training might be impossible to be handled in a single
computing node, and there are a lot of on-going research
projects on various distributed processing platforms for DNN
training [13].

The distributed deep learning platforms use two
approaches to train DNNs in the distributed and parallel
processing. One is data parallelism in which plurality of
workers train parts of all the training data, and the other is
a model parallelism in which workers only train parts of the
entire model with the same training data [9], [14]–[16].

For distributed DNN training, it is necessary to share
parameters (weights or gradients) newly explored by each
worker among distributed workers in each iteration of train-
ing. The parameter sharing (or updating) approaches can be
classified into synchronous and asynchronous approaches.
In the synchronous approach, gradient parameters are trans-
ferred to the parameter server (or the master worker) per
each training iteration by the deep learning workers, or are
exchanged directly among them to integrate gradient param-
eters trained by each worker. The asynchronous approach
is a method in which the parameter server updates global
weight parameters without aggregating gradient parameters
arriving late or early from distributed workers. The syn-
chronous approach has a very large overhead because the time
drift of one iteration (forward and backward) of computa-
tion among DNN training workers is considerable. The syn-
chronous approach suffers from stragglers’ problemwhere all
the workers which finished their own computation must wait
for until the slowest worker finish its computation [13], [17].
However, the asynchronous approach has the advantage
that DNN can be trained faster instead of sacrificing
the accuracy a little as compared with the synchronous

26494 VOLUME 6, 2018



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

approach since the latter can eliminate the synchronization
overhead [18].

Among the distributed deep learning optimization schemes
based on the stochastic gradient descent (SGD), the Hogwild
showed that deep learning processes with same weight and
different data shards can train DNN through asynchronous
SGDs in a shared memory architecture without locking [19].
In addition, the Dogwild framework, an extension of the
Hogwild, performs DNN training by exchanging weights and
gradients asynchronously between the master and slave pro-
cesses. The master process updates the global weights when-
ever it receives gradients from the slave processes, and shares
the updated weights all the slave processes at once. Each
slave process updates the most recently received weights
with the gradients which are explored by itself, and sends
the gradients to the master [20]. The DistBelief framework
proposed Downpour SGD, which supports a large number of
model replicas, as a technique of asynchonous SGD. It also
proposed the Sandblaster batch optimization method, which
is a framework supporting various distributed models [14].
EachDNN trainingworker in an asynchronous SGD can learn
weights at different speeds without synchronization over-
head to maximize the utilization of computing and network
resources. In particular, the resources of a heterogeneous
HPC system consisting of CPUs and GPUs of heterogeneous
specifications (clock rate, the number of cores, etc) can be
utilized effectively to take advantage of the maximum com-
putational performance.

In order to perform the asynchronous SGD as described
above, the parameter server for updating and distributing
parameters is indispensably required. For example, as a
method of implementing the parameter server, the deep learn-
ing worker which acts as the master allocates a memory
region for storing global parameters in its local memory,
updates global weight parameters with gradient parameters
received from the slave workers in the form of communi-
cation messages, and distributes the updated global weight
parameters to the slave workers. Distributed deep learning
platforms such as Petuum and CNTK also use distributed
key-value repositories developed specifically for parame-
ter servers [18], [21]. The parameter server manages asyn-
chronous parameter updates among deep learning workers
and provides the advantage of supporting an elastic coher-
ence model, flexible scalability and fault tolerance [18].
In this paper, we show that our virtual shared memory frame-
work can accelerate the parameter sharing in distributed deep
learning platform that supports asynchronous SGD through
experiments.

III. SOFT MEMORY BOX: VIRTUAL SHARED
MEMORY FRAMEWORK
A. HARDWARE REQUIREMENTS
Distributed parallel deep learning aims at training mas-
sive data and large-scale DNN models in high performance
computing nodes. As the size of DNN and the dimension

FIGURE 1. Soft Memory Box (SMB) architecture and remote shared
memory mapping mechanism.

(i.e. resolution in image data) of training data increases, the
required communication bandwidth increases rapidly. There-
fore, low-speed networks such as 1Gbps Ethernet cannot
provide enough bandwidth to deal with the rapidly increas-
ing inter-node deep learning parameter traffic. Hence, most
companies and researchers are utilizing high-speed intercon-
nection networks (e.g.,Infiniband, 40/100Gbps Ethernet, and
Myrinet) used in supercomputers or high-performance com-
puting systems. The soft memory box (SMB) proposed in this
paper requires the HPC system which consists of computing
nodes with multiple GPUs, a separate memory node that have
enough physical memory to provide remote shared memory,
and an Infiniband switch that connects these nodes.

B. SMB ARCHITECTURE
The SMB consists of an SMB Server and SMB client com-
ponents: SMB Library, SMB Device Driver, and Infiniband
Communication Layer module as shown in Fig. 1. The SMB
Server is located in the memory node and provides distributed
processes with shared memory. SMB client components are
located in the computing node. SMB Library, which is a
user-level static library, provides application programming
interfaces for distributed application processes and statically
linked with the processes during compile time, SMB Device
Driver and Infiniband Communication Layer (ICL) module
are kernel-level modules and should be loaded before the
execution of application processes The SMB Server can pro-
vide the physical memory of the memory node by pool-
ing it in advance, as well as the SMB Server can provide
it on-demand for client processes [23]. In order to enable

VOLUME 6, 2018 26495



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

TABLE 1. Soft memory box APIs.

RDMA operation from the deep learning processes in the
computing nodes,supplied memory pages for client processes
should be registered in the host channel adapter (HCA) driver.
The registration process enroll the virtual-to-physical address
mapping information of the provided pages. Since this regis-
tration time is relatively large, pooling memory methods are
generally preferred.

The SMB Device Driver is a kernel-level device driver and
maps the local physical memory pages, which are served as
the cache for the remote shared memory buffer, to the virtual
address of the DNN training processes as illustrated in Fig. 1.
The SMB Device driver communicates with the SMB Server
through the Infiniband Communication Layer module, which
provides the kernel-level interface for Infiniband communi-
cation with the remote SMB Server by wrapping kernel-level
Infiniband verbs.

C. SMB LIBRARY AND API
The API functions of the SMB framework are classified
four groups such as initialization, allocation/deallocation,
read/write, and event as shown in Table 1. First of all, the
DNN training processes should initialize the SMB frame-
work in order to use shared memory. During the initial-
ization (smb_init()), the DNN training processes open
SMB Device through the standard character device inter-
face of Linux OS and register themselves in the SMB
Device as a user. When the processes want to finish using
shared memory, they have to call the termination API
(smb_terminate()) to cancel user registration and close
the file descriptor of the SMB Device. SMB provides
shm_alloc() and shm_free() API functions for the
shared memory allocation and deallocation. When an appli-
cation process creates a new shared memory in the SMB
Server, the application process can provide SHMKey as the
argument of shm_alloc(). If SHMKey is not supplied by
the application process, it is assigned by the SMB Server.
To use the shared memory, all the application process need
to know the SHMKey, so SMB Library includes an API
(shm_get_key()) that retrieves the shared memory cre-
ation key (SHMKey) assigned by the SMB Server. Reading
the parameter from shared memory and writing the param-
eter to shared memory are performed through Read/Write
APIs (shm_rsync(), shm_wsync()). The event group
has an API that requests cumulative (addition) operation

between two same size of shared memory buffers in the
SMB Server (shm_accum()). This accumulation operation
differs in behavior depending on the type of data, and SMB
supports cumulative operations for two data types: FLOAT
and DOUBLE.

D. SMB DEVICE DRIVER
The SMBDevice is a novel virtual devicewhich serves shared
memory buffer to the application processes through system
call interface. ‘Virtual’ means that SMBDevice does not have
a physical shape. The ICL module and the SMB Server virtu-
ally act as a shared memory device on behalf of the physical
device. We design it as a character device(‘‘/dev/smbd’’).
Linux kernel provides standard interfaces to the character
device via virtual file system. SMB Device Driver reg-
isters file operations (i.e., open(), close(), mmap(),
ioctl() and etc) for the standard interfaces during the
module initialization. Fig. 2 shows the internals and inter-
relationships between SMB Device Driver and other compo-
nents. The major functional components of SMB Device are
as follows:
• SHM Allocation/Deallocation: It allocates and deallo-
cates of the remote sharedmemory buffer by exchanging
control messages with the SMB Server. If user process
call shm_alloc() API, SMB Device Driver sends
shm_alloc_request message to the SMB Server. After
receiving shm_alloc_response, it creates a new SHM
allocation record and allocates physical memory pages
for the shared memory region. SMBDevice Driver maps
the physical pages to the virtual address of the user
process during page fault handling. The page faults of all
the virtual address space of the shared memory region
are handled just once because the SMB Device Driver
assigns the physical pages to the shared memory region
statically. SHM deallocation is performed in the reverse
order of SHM allocation. First, it clears the mappings
in the page table, and then retrun all the physical pages
to the kernel, and it exchanges shm_dealloc_request and
shm_dealloc_response messages with the SMB Server.
Finally it deletes the SHM allocation record.

• SHM Read/Write: It synchronizes the local physical
pages with the remote shared memory buffer by reading
and writing data between them using the Infiniband
RDMA mechanism, which is served by ICL service
functions.

• SHM Accumulation: It sends shared memory accu-
mulation request (shm_accum_request) message to the
SMB Server and waits for shared memory accumu-
lation response (shm_accum_response) message from
the SMB Server when the SMB Server finishes accu-
mulation, and then returns the result to the user
process.

• Message Handler: It allocates a buffer containing
the send/receive message and is responsible for setting
the message header. It is responsible for exchanging
the request/response messages between the SMBDevice

26496 VOLUME 6, 2018



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

FIGURE 2. The Internals and relationship of the SMB Device Driver and Infiniband Communication layer.

and the SMB Server. For message transmission, it calls
a kernel verb of the Infiniband core driver to send the
message and waits for the notification of the completion
of the message sending from Infiniband core driver.
We introduce message_sequenc_id for confirmation of
correct message exchange.

• Connection Manager: it creates Infiniband reliable
connections (RC) with the SMB Server to support
RDMA communications. It also handles the disconnec-
tion event from the ICL module by reconnecting auto-
matically or terminating all the SHM allocations.

To support allocation of remote shared memory buffer in
the SMB Device Driver, we developed the features in the
mmap() function, one of file operations of device driver.
We also specify a page fault handling function for each
shared memory allocation (by setting smb_vm_fault()
as vm_area_struct->vm_ops->fault()) in the
mmap() function. Linux kernel calls the specified page fault
handler, smb_vm_fault(), when page fault occur in the
shared memory region. The page fault handler function pro-
vides Linux kernel with the physical pages assigned during
the SHM allocation, and then return control to the Linux
kernel. The Linux kernel maps the physical pages to the
virtual address of the user process by calling kernel API to
update page tables of the application process.

E. INFINIBAND COMMUNICATION LAYER MODULE
The InfinibandCommunication Layer (ICL)module provides
several service functions to the SMB Device Driver as shown
in the Fig. 2. The icl_connect() function creates con-
nection to SMB Server and icl_disconnect() function
terminates the established connection to the SMB Server.
These functions return to caller only after establishing con-
nection or terminating connection. The icl_send_msg()
function sends message and immediately returns to the caller.
The icl_rdma_read() function reads data from remote
memory to local memory, and icl_rdma_write() func-
tion writes local data from local memory to remote memory.
The functions work in a non-blocking style where the func-
tions return to caller immediately after the read/write work
request to be sent to Infiniband core driver and HCA. The
SMBDevice Driver calling this functions, must wait until the
requested work is completed on the wait queue. This style is
typical in the Infiniband programs that handle long-running
tasks.

The ICL module invokes callback functions to inform the
SMB Device Driver of the receipt of the message and the
termination of RDMA read/write operations. A set of call-
back functions are provided to the ICL module as argument
of the icl_connect() function. The callback functions
are defined in the SMB Device Driver as follows:

VOLUME 6, 2018 26497



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

FIGURE 3. SMB Server architecture and the mechanism of memory pool management.

• disconn: this function is called by the ICL module
when a connection to the SMB Server is disconnected
due to unexpected reasons. disconn callback function
handles the disconnection event by reconnecting con-
nection to the SMB Server or releasing all the shared
memory allocation.

• recvmsg: this function is called by the ICL when a
new message arrives through the connection from the
SMB Server. The recvmsg callback function decodes
message header and wakes up the threads waiting
the message or invokes appropriate handling functions
according to the header information.

• rdma_read_complete: this function is called by
the ICL module to inform the SMB Device Driver
of the completion of RDMA read request. The
rdma_read_complete callback function wakes up
the thread waiting the completion of RDMA read
request.

• rdma_write_complete: this function is also called
by the ICL module to inform the SMB Device
Driver of the completion of RDMA write request. The
rdma_write_complete callback functionwakes up
the thread waiting the completion of RDMA write
request.

F. SMB SERVER
Fig. 3 shows the architecture of the SMB Server and its
mechanism for managing memory pool to provide the shared
memory buffer. The SMB Server is implemented as a Linux
user level process. The SMB Server has the multi-threaded
architecture and the SMB Server spawn threads to handle the
requests from multiple SMB Device Drivers simultaneously.
The request messages sent from the SMB Device Drivers are
temporarily stored in the message ring by message receiver

thread. After storing messages into the ring, the message
receiver thread wakes up all the request handler threads in the
thread pool. One of them takes out one request message from
the message ring in a circular queue style, processes the mes-
sage, and returns to the thread pool when the message pro-
cessing is finished. The SMB Server manages the provided
memory as pool using the buddy memory allocation mech-
anism, which is usually used for physical page allocation in
the Linux kernel. The memory block size can be configured
with the minimum of 4KB and the maximum of 32GB. The
maximum size is also configurable. The communication layer
is implemented as libibverbs and librdma. During the
shared memory allocation phase, the SMB Server provides
the remote access keys required for the SMB Device Driver
to directly access the shared memory buffer. The SMB Server
is not involved at all when the SMB Device Driver accesses
the shared memory which it provides. Major functional com-
ponents of the SMB Server are as follows:
• Connection manager: It creates or releases a connec-
tion when it receives a connection/disconnection request
for the specified port, and handles exception when the
connection is terminated abnormally.

• Message handler: It receives messages from the SMB
Device Drivers of remote computing node, stores them
in a message ring, and wake up the request handler
threads that are responsible for message processing.

• Client registration/unregistration: The SMB Server
processes the requests for registration and unregistration
of the SMB Device Drivers.

• Allocation and deallocation of shared memory: The
SMB Server allocates shared memory buffer from the
memory pool to the SMB Device Driver and returns
shared memory buffer to the memory pool when the
SMB Device Driver releases the shared memory.

26498 VOLUME 6, 2018



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

FIGURE 4. Shared Memory Allocation/Deallocation Scenarios.

• Accumulation between shared memory: The SMB
Server adds the vector of source buffer to the vector of
destination buffer. The vector addition accumulates data
values (FLOAT or DOUBLE) of parameter stored in the
source and destination buffer.

• Memory pool management: The SMB Server allocates
physical memory pages to be supplied to the SMB
client and registers them as Memory Region (MR) using
ibv_reg_mr() Infiniband verb. Then it constructs
memory pool and it maintains and keeps tracks of free
and allocated memory page blocks by using the buddy
algorithm.

G. SHARED MEMORY ALLOCATION/DEALLOCATION
PROCEDURE
Fig. 4 illustrates the procedure of allocating and deallocating
shared memory among distributed deep learning workers
using the SMB. First, the deep learning worker acting as the
master creates a shared memory buffer on the SMB Server
using the SMB API. After creating the shared memory, the
master worker sends SHMKey for the shared memory to the
slave workers. The master worker should have a separate
communication channel to other slave workers who want to
be assigned the shared memory buffer created by the master
worker. The worker who receives this SHMKey from the
master worker sends a shared memory assignment request
(using the shm_alloc_request message) with the SHMKey.
Then the SMB Server provides the Access Key (RDMA-
enabled Infiniband remote key) for the shared memory buffer
if the worker requests the same size of shared memory buffer
assignment and sends the same SHMKey.When the allocation
procedure is completed, the shared memory buffer of the

SMB Server can be shared between the distributed deep-
learning workers. In the end of distributed DNN training,
all the workers perform the deallocation of shared memory
regardless of order. The slave workers request the release of
the allocated shared memory buffer to the SMB Server, and
the master worker requests the deletion of the shared memory
buffer. Fig. 4 shows the details of allocation procedures (A1
throughA7) and deallocation procedures (D1 throughD6) for
virtual shared memory among the distributed deep learning
workers as described above.

IV. EXPERIMENTAL STUDY
A. HARDWARE AND SOFTWARE ENVIRONMENTS
We used 6 SuperMicro 4028GR-TRT2 servers, one HP
DL380p server, and one Mellanox Infiniband switch with
next specifications. SuperMicro server has 2 socket Intel
Xeon CPU (E5-2690 v4, 14cores, 2.3GHz), 128GB DDR4-
2400MHz/ECCmemory, 4 Nvidia GPUs. The types of GPUs
consist of NVIDIA Pascal archtiecture GPUs such as Titan X
Pascal (3584 cores/12GB memory) and Titan Xp (3840 cores
and 12 GB memory). HP server has 2 socket Intel Xeon CPU
(E5-2609 v2, 4cores, 2.5GHz) and 256GB DDR3-1866MHz
memory. Each server has one FDR Infiniband HCA (56Gbps)
and is connected to the Infiniband switch. OS is Ubuntu
14.04-LTS and the kernel version is 3.13.0-123-generic. We
used CUDA 8.0 (including cudnn 8.0).

B. I/O PERFORMANCE OF A SMB SERVER
First of all, we evaluated the I/O performance of the SMB
Server. The exchange of deep learning parameters more
depends on bandwidth rather than latency because parameter
exchange is mass transfer. We measured the shared mem-
ory read, write, and read/write (mixed) bandwidth while the
number of processes, which access the shared memory of
SMB Server concurrently, increases from 2 to 32 in 2-fold
increments. The size of the shared memory allocated to each
process is 1 GB. Each process performs read, write, and
read/write (mix each 50%) simultaneously after the shared
memory is allocated. Fig. 5 shows that the read and write
bandwidth increase to 5.5 GB/s and 5.2 GB/s, respectively,
when the numbers of processes are 8 and 32. The reason why
the read performance reaches the highest value in the number
of 8 processes might be the contentions between distributed
processes. Up to 8 processes, the processes generate more
read requests and increase the read bandwidth, however, too
much processes over than 8 may generate too much read
requests which result in excessive competition between them.
This may decrease the total bandwidth. The read operation
requires the HCA of the SMB Server to send data to HCAs of
the distributed nodes, but the write operation has a different
pattern because the HCAs of the distributed nodes only have
to send the data to the HCA of the memory node. Therefore,
as the number of processes increases, the write performance
is expected to increase gradually. The bandwidth for mixed
read/write increase up to 6.7GB/s. The result shows the

VOLUME 6, 2018 26499



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

TABLE 2. Parameter size and computation time of deep learning models.

FIGURE 5. I/O Performance of a SMB Server.

physical bandwidth utilization of the SMB framework
reaches 96% because the maximum bandwidth of Infiniband
FDR is 7GB/s.

C. EXPERIMENTAL SETUP FOR ASYNCHRONOUS
SGD EMULATION
In order to emulate the behavior of distributed DNN training
based on MPI and SMB, first of all we need to know how
much each DNN model takes time for computation and how
much data need to be exchanged for parameter sharing. We
measured the computation time of training actual DNN mod-
els in a single GPU and the parameter’s data size. For this
purpose, BVLC Caffe (v1.0.0) [22] is used to measure the
parameter size and the computation time during Forward and
Backward training of the six convolutional neural network
(CNN) models for image classification [24]–[28].

Table 2 shows the measured parameter size and computa-
tion time of six CNN models. If the batch size changes, the
computation time changes because the batch size means the
number of images to be trained. For this experiment, the batch
size was selected as the maximum value where each model
can be trained with the NVIDIA Titan X(12GB memory)
GPU except Inception_v1. If the batch size increase, the
Caffe requires more memory allocation, therefore there is
maximum batch size where Caffe can train each model in
an iteration. The selected CNN models have various distri-
butions in terms of parameter size and computation time.
There is no proportionality between computation time and
parameter size. The Inception_v1 [24], Inception_v3 [25]

and Resnet_50 models [26] has smaller parameters than the
other 3 networks:Inception_resent_v2 [27], Resnet_152 [26]
and VGG16 [28] models. However, Inception_v3 [25] has
longest computation time (445ms) but has small parameters
relatively. TheVGG16 [28] with 138.4millions of parameters
has biggest parameter size but the computation time is smaller
than the other 4 models.

D. ASYNCHRONOUS SGD EMULATION PROGRAMS
USING MPI/SMB
In order to demonstrate the usefulness of SMB for deep
learning, we first developed two programs to compare the
SMBwithMPI as a way of exchanging deep learning parame-
ters asynchronously between parameter server and distributed
deep learning workers. The emulation programs which imi-
tate distributed deep learning using the asynchronous SGD
consist of one parameter server and several DNN train-
ing workers. The architecture of the program constitutes a
star topology centered around the parameter server. Both
programs use MPI for distributing multiple deep learning
workers in multiple nodes. One program uses the MPI for
parameter communication, and the other program uses the
SMB for parameter communication. The MPI-based pro-
gram transmits and receives parameters using MPI_Send and
MPI_Recv. The first worker process (MPI_rank=0) acts as a
parameter server to update global parameters trained by other
worker processes (MPI_rank6=0) asynchronously. The SMB-
based emulation program assumes that DNN trainingworkers
share parameters using only one SMB Server which acts as
a parameter server. It exchanges parameters with the SMB
API (shm_rsync() and shm_wsync()). The emulation
programs has two test scenarios to mix computation and
communication:sequential scenario and parallel scenario. In
the sequential scenario, the deep learning computation and
parameter communication occur in sequence. On the other
hand, the deep learning computation and parameter commu-
nication in the parallel scenario occur simultaneously. For
the parallel scenario, the DNN training workers of these two
emulation programs create two threads to parallelize compu-
tation and communication at the same time. We use mutex
and condition variables to control the race between the
threads.

E. COMMUNICATION TIME ANALYSIS:
SEQUENTIAL SCENARIO
We executed the first sequential scenario of the asynchronous
SGD emulation programs. we executed the program in par-
allel on six servers. We also emulated DNN training for six

26500 VOLUME 6, 2018



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

FIGURE 6. Comparison of communication time of MPI-based and
SMB-based deep learning.

models, i.e., Inception_v1, Inception_v3, Resnet_50, Incep-
tion_resnet_v2, Resnet_152, and VGG16, by changing the
number of deep learning worker processes to 2, 4, 6, 8, 12,
18, 24, and 32. The tests were performed 10 times without
any other workload in the test servers, and the measurements
were averaged after the tests. The Fig. 6 and 7 compare
the communication time of MPI and SMB in the sequential
scenario. The sequential scenario do not consider compu-
tation/communication overlapping during each iteration of
DNN training. As shown in Fig. 6, as the model size grows
and the number of workers increase, the communication time
of the MPI method increases rapidly, but the communication
time of the SMB gradually increases. Fig. 6 shows overall
trends and Fig. 7 shows comparison of the MPI and SMB
methods by changing the number of deep learning workers
per 6 deep learning models. It can be seen that the SMB
method is 1.1 through 4.2 times faster (2.1 times on average)
than the MPI method in all models.

F. TRAINING TIME ANALYSIS: PARALLEL SCENARIO
We executed the second parallel scenario of the asynchronous
SGD emulation programs with same condition of the sequen-
tial scenario.

Equation (1) represents the training time of one iteration
as Titer . Titer is the maximum value between Tcomp and
Tcomm, where Tcomp is the computation time and Tcomm is
the communication time in an iteration. In many distributed
deep learning platforms, they try to overlap computation and
communication because communication time is great. The
parallel scenario emulates the deep learning training time
when the deep learning computation and communication
overlap as much as possible. Therefore the maximum value
between Tcomp and Tcomm is selected as Titer .

Titer = max
[
Tcomp, Tcomm

]
(1)

Fig. 8 shows the ratio of pure communication time in one
iteration of DNN training when computation and communi-
cation overlaps.When the communication time is shorter than
the computation time, the communication overhead becomes
zero because the computation time hides the communication
time.

FIGURE 7. Comparison of communication time per model.

FIGURE 8. Comparison of communication time ratio between MPI and
SMB with considering the overlapping of computation and
communication.

Fig. 9 shows comparison of 1 iteration training time
between the MPI and SMB methods by changing the number
of deep-learning workers by 6 deep learning models. The two
bars(i.e. comp and comm) in the Fig. 9 overlap each other
because the figure show the result of the parallel scenario. If
comp bar only appears, that means the comm bar is hidden
by comp bar because the communication time is smaller than

VOLUME 6, 2018 26501



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

FIGURE 9. Comparison of 1 iteration training time per model with considering the overlapping of computation and communication.

the computation time. If comm bar appears, that means the
communication time is greater than the computation time.
Fig. 9 shows that the SMB method achieves better scalability
and communication efficiency than the MPI method in terms
of computation and communication time between the two
methods.

The SMB method is much better than the MPI method for
all models and all the number of workers. The communication
time of the SMBmethod, which exceeds its computation time
was 0 millisecond for up to 24 workers in the case of Incep-
tion_v1 with relatively small model size, and 45 milliseconds
even when we extended the number of workers to 32, which
is 7 times better than MPI method (323 milliseconds). In the
case of Inception_v3 with a comparatively smaller parame-
ter size and longest computation time, all the computation
time of SMB method is hidden by computation time. Nev-
ertheless, when we increase the number of processes to 32,
the communication time of MPI method is 2.3 times longer
than the computation time. As the model size increases, the
difference in pure communication time (non-overlapped with

computation time) between the MPI method and the SMB
method decreases, but the SMB method is 5.2 times better
than the MPI method in the case of Resnet_50, 4.8 times
better in the Inception_resnet_v2 model and 2.0 times better
in the Resnet_152 andVGG16model. The average 1 iteration
training time of SMB-based deep learning platform up
to 3.5 times faster than MPI-based platform.

V. CONCLUDING REMARKS
In this paper, we proposed a new shared memory framework
called Soft Memory Box (SMB) for large-scale deep learn-
ing parameter communication. We described its architecture,
APIs, components, and usage. We measured the I/O perfor-
mance of SMB framework. The read/write bandwidth of the
single SMB Server reaches 6.7GB/s, which achieves 96%
hardware utilization of FDR Infinibnad network (56Gbps).
We also verified the high performance of SMB by developing
a program that emulates the distributed DNN training with
asynchronous SGDmethod. The SMB proposed in this paper
utilizes remote direct memory access (RDMA) to transfer the

26502 VOLUME 6, 2018



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

parameters stored in the local machine’s memory directly into
the memory of the remote shared memory node and exchange
the DNN parameters by reading and writing the remote
shared memory buffer. It greatly reduces the communication
overhead caused by memory copying and network protocol
processing. In the case of sequential scenario of asynchronous
SGD, our proposed SMB-based platform is 2.1 times faster
than that using the MPI-based platform. In the case of par-
allel scenario of asynchronous SGD, which computation and
communication overlap, the communication using the SMB-
based distributed DNN training platform is 2 through 7 times
faster than that using the MPI-based platform. As the exper-
iment results were obtained with a single SMB Server, only
a limited performance improvement was verified. However,
the number of SMB Servers can be increased to improve per-
formance and can be optimized by calculating the bandwidth
according to the size of the model and the number of deep
learning workers. The proposed SMB-based approach pro-
vides a foundation for accelerating the distributed processing
of large-scale DNN training to achieve high accuracy and fast
computation in high-performance computing environment.

ACKNOWLEDGMENTS
This paper will be presented at the 40th IEEE/ACM Inter-
national Conference on Software Engineering, Gothenburg,
Sweden, 2018 [23].

REFERENCES
[1] S. Nagpal, M. Singh, R. Singh, and M. Vatsa, ‘‘Regularized deep learn-

ing for face recognition with weight variations,’’ IEEE Access, vol. 3,
pp. 3010–3018, 2015.

[2] A. M. R. Raina, A. Madhavan, and A. Y. Ng, ‘‘Large-scale deep unsuper-
vised learning using graphics processors,’’ in Proc. 26th Annu. Int. Conf.
Mach. Learn., Montreal, QC, Canada, 2009, pp. 873–880.

[3] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. (2010).
‘‘Deep big simple neural nets excel on handwritten digit recognition.’’
[Online]. Available: https://arxiv.org/abs/1003.0358

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with
deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), Lake Tahoe, NV, USA, 2012, pp. 1097–1105.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, ‘‘Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,’’
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30–42,
Jan. 2012.

[6] G. E. Hinton et al., ‘‘Deep neural networks for acoustic modeling
in speech recognition,’’ IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 82–97, Oct. 2012.

[7] R. Collobert and J. Weston, ‘‘A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,’’
in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, 2008,
pp. 160–167.

[8] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[9] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, ‘‘Project Adam:
Building an efficient and scalable deep learning training system,’’ in Proc.
11th USENIX Symp. Oper. Syst. Design Implement., Broomfield, CO,
USA, 2014, pp. 571–582.

[10] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, ‘‘On
optimization methods for deep learning,’’ in Proc. 28th Int. Conf. Int. Conf.
Mach. Learn., Bellevue, WA, USA, 2011, pp. 265–272.

[11] K. Yang, M. Li, G. Zhu, and Y. Savaria, ‘‘A DAQM-based load balancing
scheme for high performance computing platforms,’’ IEEE Access, vol. 5,
pp. 22504–22513, 2017.

[12] C. Kim et al., ‘‘3D printed electronics with high performance, multi-
layered electrical interconnect,’’ IEEE Access, vol. 5, pp. 25286–25294,
2017.

[13] J. Wang and L. Cheng, ‘‘DistDL: A distributed deep learning service
schema with GPU accelerating,’’ in Proc. 17th Asia–Pacific Web Conf.,
Guangzhou, China, 2015, pp. 793–804.

[14] J. Dean et al., ‘‘Large scale distributed deep networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1223–1231.

[15] A. Krizhevsky. (2014). ‘‘One weird trick for parallelizing convolutional
neural networks.’’ [Online]. Available: https://arxiv.org/abs/1404.5997

[16] W. Wang et al., ‘‘Deep learning at scale and at ease,’’ ACM Trans. Multi-
media Comput., Commun., Appl., vol. 12, no. 4s, 2016, Art. no. 69.

[17] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, ‘‘Revisiting distributed
synchronous SGD,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–10.
[Online]. Available: https://arxiv.org/abs/1604.00981

[18] M. Li et al., ‘‘Scaling distributed machine learning with the parameter
server,’’ in Proc. 11th USENIX Symp. Oper. Syst. Design Implement.,
Broomfield, CO, USA, 2014, pp. 583–598.

[19] B. Recht, C. Re, S. J. Wright, and F. Niu, ‘‘Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,’’ in Proc. 25th Adv. Neural Inf.
Process. Syst. (NIPS), 2011, pp. 693–701.

[20] C. Noel and S. Osindero, ‘‘Dogwild!—Distributed hogwild for CPU &
GPU,’’ in Proc. NIPS Workshop Distrib. Mach. Learn. Matrix Comput.,
2014, pp. 1–6.

[21] D. Yu, K. Yao, and Y. Zhang, ‘‘The computational network toolkit [best
of the Web],’’ IEEE Signal Process. Mag., vol. 32, no. 6, pp. 123–126,
Nov. 2015.

[22] Y. Jia et al., ‘‘Caffe: Convolutional architecture for fast feature embed-
ding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014,
pp. 675–678.

[23] S. Ahn, J. Kim, and S. Kang, ‘‘Poster W37: A novel shared memory
framework for distributed deep learning in high-performance computing
architecture,’’ in Proc. 40th IEEE/ACM Int. Conf. Softw. Eng. (ICSE),
Gothenburg, Sweden, May/Jun. 2018.

[24] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015,
pp. 1–9.

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2015).
‘‘Rethinking the inception architecture for computer vision.’’ [Online].
Available: https://arxiv.org/abs/1512.00567

[26] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-ResNet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell. (AAAI), San Francisco, CA, USA, 2017,
pp. 4278–4284.

[28] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

SHINYOUNG AHN received the B.S. and
M.S. degrees in information engineering from
Sungkyunkwan University, Seoul, South Korea, in
1997 and 1999, respectively, and the M.S. degree
in software engineering from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2005. He is
currently pursuing the Ph.D. degree with the Soft-
ware Architecture Laboratory, Korea Advanced
Institute of Science and Technology, Daejeon,
South Korea. He has been a Principal Researcher

with the High Performance Computing Research Group, Electronics and
Telecommunications Research Institute, Daejeon, since 1999. His main
areas of research interest are high-performance computing, deep learning,
distributed and parallel computing, and software architecture.

VOLUME 6, 2018 26503



S. Ahn et al.: SMB: A Virtual Shared Memory Framework for Fast Deep Neural Network Training

JOONGHEON KIM (M’06–SM’18) received the
B.S. and M.S. degrees in computer science from
Korea University, Seoul, South Korea, in 2004 and
2006, respectively, and the Ph.D. degree in com-
puter science from the University of Southern Cal-
ifornia (USC), Los Angeles, CA, USA, in 2014. In
industry, he was with LG Electronics, Seoul, from
2006 to 2009, InterDigital, San Diego, CA, USA,
in 2012, and Intel Corporation, Santa Clara, CA,
USA, from 2013 to 2016. He has been an Assistant

Professor with Chung-Ang University, Seoul, since 2016. He is a member
of the IEEE Communications Society. He received the Annenberg Graduate
Fellowship along with his Ph.D. admission from USC in 2009.

EUNJI LIM received the B.S. and M.S. degrees
in computer science from Pusan National Uni-
versity, Busan, South Korea, in 1999 and
2001, respectively. She has been a Principal
Researcher with the High Performance Computing
Research Group, Electronics and Telecommuni-
cations Research Institute, Daejeon, South Korea,
since 2001. Her main areas of research inter-
est are distributed systems and high-performance
computing.

SUNGWON KANG received the B.A. degree
from Seoul National University, Seoul, South
Korea, in 1982, and the M.S. and Ph.D. degrees
in computer science from the University of Iowa,
USA, in 1989 and 1992, respectively. From 1993
to 2001, he was a Principal Researcher with the
Korea TelecomResearch andDevelopment Group.
From 2003 to 2014, he was an Adjunct Faculty of
the Master of Software Engineering Program with
Carnegie Mellon University. He joined the Korea

Advanced Institute of Science and Technology. His research areas include
software architecture, software product line, software testing, and data-based
software engineering. He served as the Chair and ProgramChair of numerous
international conferences. He served as the Editor of the Korean Journal
of Software Engineering Society and the President of the Korean Software
Engineering Society.

26504 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	SOFT MEMORY BOX: VIRTUAL SHARED MEMORY FRAMEWORK
	HARDWARE REQUIREMENTS
	SMB ARCHITECTURE
	SMB LIBRARY AND API
	SMB DEVICE DRIVER
	INFINIBAND COMMUNICATION LAYER MODULE
	SMB SERVER
	SHARED MEMORY ALLOCATION/DEALLOCATION PROCEDURE

	EXPERIMENTAL STUDY
	HARDWARE AND SOFTWARE ENVIRONMENTS
	I/O PERFORMANCE OF A SMB SERVER
	EXPERIMENTAL SETUP FOR ASYNCHRONOUS SGD EMULATION
	ASYNCHRONOUS SGD EMULATION PROGRAMS USING MPI/SMB
	COMMUNICATION TIME ANALYSIS: SEQUENTIAL SCENARIO
	TRAINING TIME ANALYSIS: PARALLEL SCENARIO

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	SHINYOUNG AHN
	JOONGHEON KIM
	EUNJI LIM
	SUNGWON KANG


