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ABSTRACT A high performance electrocardiogram (ECG)-based arrhythmic beats classification system is
presented in this paper. The classifier was designed based on convolutional neural network (CNN). Single
channel ECG signal was segmented into heartbeats in accordance with the changing heartbeat rate. The beats
were transformed into dual beat coupling matrix as 2-D inputs to the CNN classifier, which captured both
beat morphology and beat-to-beat correlation in ECG. A systematic training beat selection procedure was
also proposed which automatically include the most representative beats into the training set to improve
classification performance. The classification system was evaluated for the detection of supraventricular
ectopic beats (SVEB or S beats) and VEB using the MIT-BIH arrhythmia database. Our proposed method
has demonstrated superior performance than several state-of-the-art detectors. In particular, our proposed
CNN system has improved sensitivity and positive predictive rate for S beats by more than 12.2% and 11.9%,
respectively, over these top performing algorithms. Our proposed CNN classifier with an automatic training
beats selection process has shown to outperform the previous methods. The classifier is also a personalized
one by combining training set from a common pool and a subject-specific set of ECG data. Our proposed
system provides a reliable and fully automatic tool for detection of arrhythmia heartbeat without the need
for manual feature extraction or expert assistant. It can potentially be implemented on portable device for

the long-term monitoring of cardiac arrhythmia.

INDEX TERMS Convolutional neural network (CNN), ECG classification, arrhythmia, patient-specific.

I. INTRODUCTION

Electrocardiography (ECG) has become a promising source
for the study of structure and function of the heart due to its
low cost, ease of use, high efficiency and non-invasiveness.
It reveals the electrophysiological pattern of depolarization
and repolarization of the heart muscles during each heart-
beat. The term ‘“‘arrhythmia” refers to any changes from
the normal sequences of electrical impulses in the heart
which causes abnormal heart rhythms. Arrhythmias can be
completely harmless or life-threatening. It may lead to tachy-
cardia or even sudden cardiac arrest. In the research of
arrhythmia detection, heartbeat classification based on ECG
signal has become a valuable and promising techniques for

early warning of arrhythmias. However, variation in ECG sig-
nals can be significant among different subjects. Under differ-
ent circumstances, the morphologies and rhythms produced
by the same symptoms of arrhythmia can be quite different
as well [1], [2]. Experienced cardiologists can distinguish
abnormal heartbeats from normal sinus rhythms easily by
observing the ECG. However, this is still a challenging task
for a computer to perform automatically due to the variation
in ECG signals and the differences of recording environment.
For a healthy subject, the morphology and rhythm can be
quite variable even in a short period of time [1].

Numerous methods have been proposed for generic heart-
beat classification using ECG signal based on techniques
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such as discrete wavelet transform [3], [4], feature
selection [5]-[7], hidden Markov models (HMM) [8] and
mixture of experts method [9], [10]. In [3], morphological
features (wavelet and independent component analysis) and
dynamic features (RR interval) are combined to give a set of
more comprehensive features. These methods require certain
amount of priori knowledge of the signals or they need expert
input frequently. These limit the application of the method
and higher variations may be encountered when classifying
new subjects’ ECG signals. Furthermore, integrity of ECG
components, such as P, Q, R, S and T waves, may also be
required for these algorithms. However, for arrhythmia, these
ECG components may not always be well defined and their
extraction becomes ambiguous.s

To circumvent the limitation of these methods that require
manual feature selection, some researchers turn their sight
to convolutional neural network (CNN) and several CNN
based approaches have been proposed for ECG classification
recently [10]-[13]. CNN was proposed by LeCun et al. [14]
in 1990 and it has emerged as one of the most pow-
erful machine learning approaches in recent years. With
the great help of rapidly developing graphics process
unit (GPU) technology, CNN shows advantages on both accu-
racy and efficiency in image recognition [15], audio classifi-
cation [16] and semantic identification [17]. Recent studies
have also shown great potentials of CNN in dealing with
biomedical applications, such as animal behavior classifica-
tion [18], histopathological diagnosis [19], protein structure
prediction [20] and electromyography (EMG) pattern recog-
nition [21]. Recent studies have also found promising
applications of CNN in time series bio-signal such as
ECG [10]-[13]. CNN framework has a clear advantage of
making use of large training dataset for improving classifica-
tion performance. For instance, Rajpurkar et al. [13] showed a
classifier for atrial fibrillation trained from ~30,000 patients’
ECG data that can outperform the average cardiologist perfor-
mance. Even with a smaller training set (hundreds of beats),
several recent studies have shown improved performance
of cardiac arrhythmia detection with CNN [10]-[12]. These
improvements may be due to the feature learning capability
of CNN. In contrast to many conventional method, no man-
ual or explicit feature extraction or feature selection will
be required. These processes may otherwise lead to loss of
information in the data at various stages. Thus, we also took
advantages of the feature learning capability of CNN in this
study. We explored the 2-D approach for ECG classification
with CNN. Using a 2-D encoded ECG inputs, not only the
continuous waveforms, but also the relationships of vari-
ous ECG components in adjacent heartbeats can be readily
captured by the convolutional filters. Hence, as compared
to these 1-D algorithms, the 2-D approach may boost the
performance of the CNN classifier in terms of both network
capacity and regularity.

In this paper, we first proposed a 2-D CNN classifier for
heartbeat classification. To supply a feature-rich input to
the CNN network, three adjacent heartbeats in ECG were
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transformed into a 2-D coupling matrix that capture mor-
phology of single heartbeat as well as temporal relationship
in adjacent beats. Then, we proposed an automatic selection
process to include the most representative beats into the
training set to improve classifier performance, as opposed
to a randomly selected set used in other studies. Our pro-
posed method was tested using publicly accessible MIT-BIH
arrhythmias database and compared with previous work fol-
lowing AAMI recommendations [22].

Il. METHODOLOGY

A. DATABASE

The MIT-BIH arrhythmia database [1] was used in this study.
It is a publicly accessible database which has been widely
used to evaluate performance of different ECG-based heart-
beat classification algorithms [5], [7], [10]-[12], [23], [24].
The MIT-BIH arrhythmia database comprises of 48 records
of ECG collected from 47 subjects (record 201 and 202 came
from the same male subject) and each record contains 30 min-
utes long two-channel ECG signals which were filtered using
a 0.1 to 100Hz bandpass filter and digitized at 360 Hz. Each
beat has been labeled by two cardiologists independently
and the timing of the R peaks (or the local extremum) for
each beat is also given. The labels have been continuously
updated in the past few decades. The data were handled
according to AAMI ECAR-1987 recommended practice [22]
for evaluation of our classification algorithm. The same data
handling procedure was used in [11], [23], and [24] and
our results can be compared to them directly. Four records
(#102, #104, #107 and #217) were excluded because they
contain paced heartbeats. Based on the characteristics and
symptoms of the subjects, the 44 records used can be divided
into two groups [1]. The first group (includes 20 records
with labels # starting with 1) serve as the representative
sample of a variety of waveforms and artifacts that an arrhyth-
mia detector might encounter in routine clinical use. The
remaining 24 records (records with labels # starting with
2) include complex ventricular, junctional and supraventric-
ular arrhythmias and conduction abnormalities. Complexity
in thythm, QRS morphology variation or signal quality in
some of these records will present significant challenge to
arrhythmia detectors. According to the AAMI recommen-
dation [22], each ECG beat can be classified as N (beats
originating in the sinus mode), S (supraventricular ectopic
beats), V (ventricular ectopic beats), F (fusion beats) or Q
(unclassifiable beats). To train a subject specific classifier,
the training data consisted of two parts, a common part and a
subject specific part. The common part of training data was
selected from the first group (record # started with 1) and is
used for all testing subjects (second record group, record #
started with 2). Following the AAMI recommended practice,
at most 5 minutes of recordings from a subject were used
for classifier training purpose. So the subject specific part of
training data included the heartbeats from the first 5 minutes
of the ECG recording of each testing subject. The remaining
25 minutes of the record was used for testing.
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FIGURE 1. Dual-beat coupling matrix computed from two pairs of adjacent beats. A. Coupling matrix of beats originating from the sinus mode. B.

Coupling matrix from a supraventricular ectopic beat.

B. ECG SIGNAL PREPROCESSING

In this study, we used the modified lead II channel only from
the database. Automatic ECG classification is particularly
useful for portable or wearable device and it is expected that
few channel number (even single channel) would be found in
these devices. Hence, we developed our algorithm to handle
small channel number of ECG. The timing of each heartbeat
has been labeled for the corresponding R peak in the database.
Hence, we can directly obtain the R-R intervals for each beat
in our segmentation. Nevertheless, numerous robust methods
have already been available for R peak detection [25], [26]
and algorithm for this is beyond the scope of current study.

1) HEARTBEAT SEGMENTATION

The morphology of each heartbeat is critical for classification
of arrhythmia. Some studies segmented the ECG signals into
equal length at preprocessing [11]. However, the heartbeat
rates may vary significantly among different subjects and
over time, and hence each beat is of different length. For this
reason, the heartbeat rate, and hence the beat length, should
be considered dynamically over time and specifically for each
subject. The beat was segmented such that it was centered
around the R peak.

For each record in the first group (the common part),
the segmentation length is computed as the average R-R
interval over T sec from the current beat. Hence, the length
for each beat is variable. In this study, we chose T = 10sec
such that the average R-R interval is calculated over 20sec.
For each record in the second group (the subject specific
part, both training and testing beats), the beats are segmented
using the R-R interval averaged over the first 5 minutes of
the record. As such, all the beats in the second group for each
subject have equal length. Using average R-R interval over
every 20sec yielded similar results in our study.

2) SEGMENT LENGTH SCALING

In order to unify the different segment length due to variation
in heartbeat rate for inputting into the classifier, the segments
are first scaled into the same length. If the length (in sample
number) of an extracted beat is Nj, we will first up-sample
it, by interpolation, by a factor equals to the input size,
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M, designed for the CNN. Hence, the length of the beat
becomes Nj x M. Then, the mean values for every N; samples
are calculated such that eventually, we can obtain a segment
of length M for beat with any original length of N;.

C. INPUTS FOR CLASSIFIER

The dual-beat coupling matrix, which integrates both beat
waveform and beat-to-beat correlation was used as input in
this study. Heartbeat arrhythmia can be analyzed not only
by single beat morphology, but also beat-to-beat correlation.
Hence, we took into account a series of three adjacent beats in
formulating the input for the classifier. Two pairs of heartbeat
are extracted following the same segmentation principle as
described above. The first pair consists of the current beat
and the previous beat, denoted as the column vector:

Dual_beat;_1 ; = Beat;_1[L]...Beat;_1[L],

Beat;[1], ...... Beatilk], ...Beat;[L] (1)

where Beat;[k] is the k™ sample of ECG signal in time
of the current beat. The second pair consists of the cur-
rent beat and the next beat (denoted as the column vector
Dual_beat; ;11 in similar way). All three beats have the same
length extracted based on the current beat (Beat;). These
two dual-beat vectors are scaled to the required input size
M respectively, as described above. Then we compute the
coupling matrix (CM), with size MxM, as follow,

CM = |Dual_beat;_1;[1], ..., Dual_beat,_1 ;[M]]
o [Dual_beat; ;1[11, ..., Dual_beat; ;11 [M1]" (2)

Two examples of the resultant coupling matrix with size
MxM are shown in Fig. 1.

The coupling matrices integrate both morphological and
rhythmic information of the ECG into a single input. For
instance, in Fig. 1, the four high intensity points (white)
correspond to the four R peaks of the two pairs of heartbeat
in concern. The intensity reflects the relative amplitude of R
peaks in these the beats, while the relative position of these
points reflects the rhythm of this segment of ECG. Fig. 1A
shows a segment of ECG originated from sinus mode, while
Fig. 1B shows a segment around a supraventricular ectopic
beat. In Fig. 1A, the four white points distribute more evenly
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FIGURE 2. Schematic for proposed CNN classifier.

over the matrix and it corresponds to a regular rhythm. Other
parts of the coupling matrix provide further information about
the segments such as the morphology and rhythm of P, Q, S
and T waves.

D. CNN CLASSIFIER

Fig. 2 shows a schematic for our CNN classifier. This CNN
classifier has a similar form to the one used for MNIST
handwritten digit database [27]. Our CNN model contains
3 convolutional layers, 2 sub-sampling layers (I maximum
sub-sampling layer and 1 average sub-sampling layer), 1 fully
connected layer with dropout and a softmax loss layer.
Rectified linear units (ReLU) is used as activation function.
Different input sizes were tested for the best performance.
The convolution filter sizes were adjusted accordingly.
An open source MATLAB toolbox MatConvNet was used to
implement the CNN classifier [28].

E. CLASSIFICATION PROCEDURES

In this study, we followed the AAMI recommendation [22]
using the same procedure as in [11], [23], and [24] to evaluate
our classification system. The training data consists of two
parts, a common part and a subject-specific part. The com-
mon part comes from the first record group (record# from
100 to 124) and remains the same for all testing subjects. The
common part consists of 245 representative beats, including
75 N beats, 75 S beats, 75 V beats, 13 F beats and 7 Q
beats (more details below). The subject-specific part includes
all the heartbeats from the first 5 minutes of ECG recordings
of the testing subject. Beats from the remaining 25 minutes
were used for testing.

F. SELECTION OF TRAINING BEATS

In previous studies [11], [23], [24], the training beats were
usually randomly selected from the dataset. However, among
S beats in particular, the morphology can vary significantly
from beat to beat and some S beats were easily misclassified
as N beats. As such, previous studies have suffered from a
relatively low sensitivity and/or positive predictive rate for
S beats [11], [23], [24]. Hence, more care is required in
selecting the training beats to overcome these problems.
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Here, we proposed a procedure for selecting the more
representative S beats for the training set without manual
input. In the first group records (the common part), S beats
exist only in 12 (out of 20) records (#100, 101, 103, 108, 112,
113, 114, 116, 117, 118, 121 and 124). We randomly select
75 N beats and 75 S beats respectively from each of these
12 records as training set for a preliminary classifier (same
structure as Fig. 2) and test on 100 N beats selected from each
of the remaining 8 records, hence a total of 800 beats. The pre-
diction accuracy is noted for these 75 S beats in the training
set. We repeat the procedure for 200 times using different set
of 75 S beats for training the preliminary classifier. After that,
we average the accuracy for each S beat selected over these
200 simulations and the 75 S beats with the highest accuracy
are picked as the training data in the common part for training
the actual classifier. The procedure is shown in Fig. 3. The
idea is to include the S beats that have significantly different
morphology than the N beats (hence high prediction accuracy
for N beats in this selection process) in the training set for the
final classifier such that the resultant classifier will be less
prone to confusion between S beats and N beats. We also
compared the performance using the 75 S beats with the
lowest average accuracy as well randomly selected S beats.

G. ASSESSMENT INDICATORS

To evaluate the performance of the proposed classifier,
we used four statistical indicators in this study, which have
been commonly used in previous work [5]-[7], [9]-[12], [23],
[24], [29]. They are classification accuracy (Acc), sensitiv-
ity (Sen), specificity (Spe) and positive predictive rate (Ppr).
The classification Acc measures the overall performance of
the proposed method on all valid heartbeats. However, as the
number of different types of beats varies, Sen, Spe and Ppr
are less biased in assessing the classifier performance.

The four statistical indicators can be calculated as follow,

TP + TN
Acc = 3)
TP+ TN + FP + FN
TP
Sen = ——— “4)
TP + FN
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b TP ©
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where TP is true positive, TN is true negative, FP is false
positive and FN is false negative. We here evaluated the
classification performance for S and V beat detection as in
several previous studies [5]-[7], [9]-[12], [23], [24], [29].

TABLE 1. Confusion matrix of the ECG beat classification results for the
24 test records in the MIT-BIH arrhythmia database.

Ground Classification result

Truth N s v F Q
N 40877 593 171 191 32
S 357 1797 163 20 3
\% 171 36 4510 83 8
F 88 0 37 487 0
Q 4 1 2 0 1

Ill. RESULTS

Table 1 shows the confusion matrix for all testing beats in
the 24 test records in the MIT-BIH arrhythmia database using
input size of 73. It is shown that some of the S beats are
misclassified as N beats, but the number is significantly lower
than the previous best result by Kiranyaz et al. [11] using
1-D CNN.

To determine the effect of input size on the performance,
we tested with six different input sizes. We started with input
size of 28 which is the input resolution used in MNIST
database. The results are shown in Table 2. Table 2 shows
that Sen and Ppr of S beats are particularly sensitive to the
input size. Acc and Spe for both S and V beat classifications
are generally high at >95% and change only slightly with
different input size. For better visualization, we plotted the
Sen and Ppr of S and V beats for different input size in Fig. 4.
It is clear that at small input size of 28, the Sen and Ppr for
both S and V beat detection are the lowest. This is likely
due to the low resolution of input to capture the necessary
information of the original ECG signal. Yet, Sen and Ppr for
V beat remind relatively high (~80%), probably because V
beats are usually well distinguished from other beat type in
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TABLE 2. VEB and SVEB classification performance with different input
sizes.

Input size VEB SVEB

Acc | Sen | Spe | Ppr | Acc | Sen | Spe | Ppr
28 96.7 | 81.6 | 98.4 | 84.1 | 964 | 54.1 | 98.5 | 64.3
43 973 | 914 | 979 | 825 | 97.7 | 66.2 | 99.3 | 82.6
58 98.5 [ 92.8 | 99.1 | 92.0 | 97.9 | 72.1 | 99.1 | 80.6
73 98.6 | 93.8 | 99.2 | 924 | 97.6 | 76.8 | 98.7 | 74.0
88 98.5 1909 | 993 | 934 | 97.5 | 78.1 | 98.4 | 70.9
103 98.3 1 90.1 | 99.2 | 92.5 | 97.0 | 76.8 | 98.0 | 66.0

waveform and even a lower input resolution is sufficient to
reveal the differences. Fig. 4 shows that Ppr of S beats drops
with larger input size. This is likely because the network
structures were not adjusted properly for each individual
input size. The oversized convolutional kernel may not give
good performance. Fig. 4 suggests that an input size of 73
provided relatively high performance in both Sen and Ppr of
V beats and S beats in our network. Hence, we used input size
of 73 as the preferred choice in this study.

As we discussed above, the selection of training beats is
critical for the classifier performance. Here, we compared the
actual classifier performance using training S beats that were
denoted as the most representative beats and those denoted
as the least representative beats by our automatic selection
process (see Method Section F ““Selection of training beats””).
We also compared with the results using randomly selected
training beats. Input size of 73 was used in all cases. Sim-
ulation for each case was repeated 10 times. The results are
shown in Table 3. The selection process significantly affected
Ppr of S beat detection. With the most representative S beats,
mean Ppr for S beats is the highest with the smallest standard
deviation. Hence, the proposed selection process, which is
fully automatic, not only improves the Ppr for S beats, but
also increases the stability of the classifier from sampling the
training set.

Table 4 summarizes the top performance of our proposed
classifier as compared to several other methods that followed
AAMI ECAR-1987 recommended practice. It is shown that
our classifier generally performed among the top in all indi-
cators. It is worth noting that our approach has significantly

27469



IEEE Access

X. Zhai, C. Tin: Automated ECG Classification Using Dual Heartbeat Coupling Based on CNN

A
0.85
* 28
= 43
ors) |1 %,
>
s 07}
2 -
S 065(
0.6
055+ ®
0.5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Positive Predictive Rate

0.95

0.9

0.85

Sensitivity

0.8

0.75 . . . )
0.75 0.8 0.85 0.9 0.95

Positive Predictive Rate

FIGURE 4. Sensitivity and positive predictive rate using different input sizes for (A) S beats and (B) V beats.

TABLE 3. Comparison of different selection methods of training beats.
The results are presented as mean + SD.

. VEB
Selection methods Ao Sen Spe Ppr
Most Rep. S 98.7+0.1 93.2+0.6 99.3+0.1 93.4+0.6
Least Rep. S 98.6+0.1 | 93.4+0.4 | 99.240.1 | 92.5+0.6
Randomly Selected S 98.5+0.3 | 92.7+1.8 | 99.1£0.3 | 92.0+2.3
. SVEB
Selection methods oo Sen Spe Por
Most Rep. S 97.6+0.1 77.0+£0.5 98.7+0.1 73.9+1.3
Least Rep. S 96.240.2 | 79.2+0.7 | 97.1+0.2 | 57.4+2.0
Randomly Selected S 96.3+0.9 78.6+1.4 97.2+0.9 58.2+7.9

TABLE 4. VEB and SVEB classification performance of the proposed
method and comparison with former studies (24 testing records).

VEB SVEB
Methods Acc | Sen | Spe | Ppr | Acc | Sen | Spe | Ppr
Jiang [23] 98.1 | 86.6 | 99.3 | 933 | 96.6 | 50.6 | 98.8 | 67.9
Ince [24] 97.6 | 834 | 98.1 | 87.4 | 96.1 | 62.1 | 98.5 | 56.7
Kiranyaz[11] | 98.6 | 95.0 | 98.1 | 89.5 | 964 | 64.6 | 98.6 | 62.1
Proposed 98.6 | 93.8 1 99.2 | 924 | 97.5 | 76.8 | 98.7 | 74.0

improved Sen and Ppr of S beats up to >70%. These are
the two indicators that suffered from low performance in the
other methods.

The AAMI also recommends that the problem of V beat
and S beat detection can be considered separately. According
to their recommendation, for V beat detection, the testing
dataset contains 11 records (#200, 202, 210, 213, 214, 219,
221,228,231,233, and 234) and for S beat detection, the test-
ing dataset contains 14 records (#200, 202, 210, 212, 213,
214, 219, 221, 222, 228, 231, 232, 233, and 234). We evalu-
ated our classifier using the same procedure and the results
are summarized and compared with several other studies
in Table 5. Our proposed method again performed among the
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TABLE 5. VEB and SVEB classification performance of the proposed
method and comparison with former studies (11 recordings for testing
VEB detection and 14 recordings for testing SVEB detection.)

VEB SVEB
Methods Acc | Sen | Spe | Ppr | Acc | Sen | Spe | Ppr
Hu [9] 948 | 789 | 96.8 | 75.8 | N/A | N/A | N/A | N/A
Jiang [23] 98.8 | 943 | 994 | 958 | 97.5 | 749 | 98.8 | 78.8
Ince [24] 97.9 1 90.3 | 98.8 | 92.2 | 96.1 | 81.8 | 98.5 | 63.4
Kiranyaz[11] | 98.9 | 959 | 99.4 | 96.2 | 96.4 | 68.8 | 99.5 | 79.2
Proposed 99.1 | 964 | 99.5 | 964 | 97.3 | 853 | 98.0 | 71.8

top for almost all indicators. Although our Ppr for S beats
is lower than the other two methods, our method could still
achieve >70% Ppr without sacrificing the Sen (85.3% vs.
74.9% and 68.8%). Hence, we showed that our proposed
method has a generally high performance regardless of the
classification procedure.

IV. CONCLUSIONS
We have proposed a CNN-based framework for heartbeat
classification using dual-beat ECG coupling matrix. This 2-D
encoded dual-beat coupling matrix of ECG is an effective
representation of both heartbeat morphology and rhythm.
We have also proposed an automatic selection procedure for
picking the most useful training beats systematically to boost
the classification performance. Our proposed method was
tested using the MIT-BIH arrhythmia database. We showed
that our 2-D CNN-based classifier can offer 12.2% higher
Sen and 11.9% higher Ppr respectively for S beat detection
when compared with previous 1-D CNN based method [11].
Furthermore, performance metrics for VEB detection are all
well above 90%. These results support that our 2-D CNN
framework could be a useful tool for automatic heartbeat
classification without explicit ECG feature extraction.

The recent decade has witnessed the tremendous advance-
ment of CNN and other deep learning frameworks in
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computer vision, audio recognition, artificial intelligence and
so on. The application of CNN in biomedical signal has
also attracted more attention. Recently, three studies have
implemented CNN for ECG-based heartbeat classification
using the MIT-BIH arrhythmia database [10]-[12]. ECG sig-
nal is a time signal and often a single channel was used in
these previous studies, and hence a 1-D input. However, the
relationship among different ECG components in adjacent
heartbeats may also be useful indicators of presence of
arrhythmia. Inter-beat features have shown to be useful in
boosting classification performance of ECG [30]. Neverthe-
less, such relationships are difficult to convey using 1-D
input. Here, we proposed to use dual ECG beat coupling
matrix as inputs for the CNN classifier, which are 2-D pre-
sentation of the beat morphology and beat-to-beat correla-
tion of the 1-D ECG signal. While including more beats in
forming the input may be advantageous, we have tested our
proposed system using five adjacent heartbeats. However,
no improvement was observed (Sen of S beats indeed dropped
by ~12%) and it is suggested that our system design will
need specific optimization in handling five adjacent beats.
Nevertheless, we have verified that using these 2-D inputs
can boost the classifier performance over using 1-D inputs,
and hence 1-D convolution filter, particularly in terms of Sen
and Ppr of S beats detection (Tables 4 and 5). Although only
a few hundreds of beats were used in training the CNN in
order to balance the samples of different beat types, our CNN
system emerges as a powerful tool of feature learning and
demonstrated improved performance over several previous
classifiers.

We have also proposed a systematic procedure for selecting
the more representative S beats to improve the classifier
performance. Al Rahhal et al. [10] also performed an itera-
tive procedure to identify the uncertain beats to add to the
training set but they required a human expert to relabel them
at each iteration for fine tuning the classifier in order to reach
a high performance. Instead, our proposed method is fully
automatic. We have verified that our method can improve
the performance and stability of the classifier especially for
S beat Ppr by reducing the misclassification of N beat to
S beat. This is particularly important for those subjects whose
ECG beats in the first Smin of record do not contain S beats,
and hence not found in the subject specific training set.
Although annotating clinical signal is costly and can only be
performed by expert, we believe that with a bigger common
pool database in addition to the MIT-BIH database, the Sen
and Ppr of S beats can be further improved to match the level
of other indicators. Rajpurkar et al. [13] collected an exten-
sive set of ECGrecords (64,121 records from 29,163 patients)
and showed that a deep CNN classifier for detection of atrial
fibrillation trained from them can outperform the average
cardiologist performance. This should motivate the establish-
ment of more extensive public ECG database for advancing
the related classification technology.

The popularity of CNN and other deep learning frame-
works in various applications have led to more efficient
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computational tools which have essentially improved the
speed of the training process and eased the complication
of implementation. In this study, with the help of NVIDIA
CUDA®Deep Neural Network library [31], our CNN classi-
fier can be effectively parallelized with NVIDIA GTX 980m
graphic card. The average training time for each subject is
only 134s. These advantages make the CNN a more flexi-
ble platform for heartbeat classification using ECG signal.
While the network structure used in this study mainly inspired
from those in image recognition, further work will investigate
improved network for ECG per se. Future work will examine
the robustness of the classification system in long-term use.
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