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ABSTRACT With the rise of cloud computing service, traffic in inter-data center wide area networks
(inter-DC WANs) has been growing rapidly. Inter-data center traffic contains multitudinous data transfers
that require to be accomplished within certain time periods or deadlines. The different completion time
of the transfer tasks has distinct impacts on the performance of the whole system. However, very little
work takes the completion time into account while guarantees the hard deadlines. Besides, most previous
works arrange transfers exclusively, which does not take fairness into account. In this paper, we introduce
a completion time-based model, which takes multiple deadlines and their impacts into consideration to
profile a more accurate characterization of the data transfers. We propose a novel mechanism to achieve
the goals of both maximizing utility and fairness. We also develop an inter-DC WAN emulation tool which
enables a single commodity server to emulate arbitrary topology and dynamic configuration on the WAN
links. Our evaluation demonstrates that our algorithm gains 110%–250% utility than current deadline focus
mechanisms, while achieves 12%higher throughput. Fairness is improved over four times at best by adjusting
the fairness coefficient.

INDEX TERMS Inter-DC WAN, software defined networking, traffic engineering.

I. INTRODUCTION
Cloud service has been growing rapidly in recent years due to
the continuous rise in numbers of data-hungry customers and
applications. Cisco predicts that annual global data center IP
traffic will reach 10.4 zettabytes (ZB) by the end of 2019, up
from 3.4 zettabytes per year in 2014 [1].

It is crucial to understand and optimize the inter-data
center traffic. Despite the high cost of wide area transporta-
tion, cloud service providers deploy dedicate wide area net-
works (WANs) to connect data centers [2]. These providers
need to provision more bandwidth capacity than average for
various reasons, such as burst transmission, or deploy extra
links between data centers in case of link failure.

Recent research shows the interest in traffic engineering
of inter-data center communication. Chen et al. [3] reveal
that datacenter-to-datacenter (D2D) traffic is composed of
datacenter-to-client (D2C) triggered traffic and background
D2D traffic. Inter-data center traffic can be classified into
three categories [4], based on time sensitivity: interactive

traffic which needs to be done in a short time, elastic traffic
that should be transferredwithin a duration that from a quarter
hour to a couple of hours and background traffic that has no
specific deadline or a very long one.

One fundamental property of the tasks in inter-data center
communication is the deadline, either hard or soft. Missing
the deadlinemay lead to unexpected consequences and severe
performance drain, such as [5]. Therefore, it is important for
an efficient traffic engineering to provide deadline guarantees
for inter-data center transmission.

However, state-of-the-art techniques are not intended to
guarantee the deadlines. B4 [6] tries to work along with
existing routing protocols in Software Defined Network-
ing (SDN) [7], [8] environment by building custom switches
and mechanisms, while SWAN [4] gives a more detailed per-
spective by using commodity switches with limited forward-
ing table capacity. These coarse-grained classification based
solutions make no difference to transfers within the same
category and may result in poor performance on elastic traffic
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due tomissing the deadlines. Tempus [9] andAmoeba [10] try
to provide mechanisms to promise the deadlines. However,
both Tempus and Amoeba are solving the allocation prob-
lem by using Linear Programming (LP), the size of which
is typically enormous. Tempus only maximizes the mini-
mum fraction of transfer tasks before deadline, rather than
completing. Amoeba arranges transfers with shorter time to
achieve a better bandwidth utilization, but fairness is ignored.
Furthermore, it does not distinguish the transfers with similar
volume and deadlines, though they have different impacts on
disparate tenants.

To address this problem, we extend Deadline-based Net-
work Abstraction [10] into a Completion Time-based Model
which enables tenants to express how much the comple-
tion time affects their services precisely. A utility function
is added to the Completion Time-based Model, which is a
monotone decreasing function with the completion time to
indicates the benefit of completing them or the impacts of
missing them on different time, and the completion time
depends on how bandwidth resources are allocated. The
Completion Time-based Model provides a more detailed per-
spective for the system to measure the effect of allocating
bandwidth resources to different transfer tasks over time.

In this paper, we propose a novel mechanism for online
bandwidth allocation based on Completion Time-based
Model. The system calculates the probability of disparate
completion time and the predicted utility, according to the
declared utility values of different completion time for var-
ious transfer tasks. It can efficiently improve the flexibility
and scalability of allocation and reduce the computation of
LP which is used in Tempus [9] and Amoeba [10]. Also,
our solution takes fairness into consideration. Greater fairness
means more similar flows transferred in parallel. We intro-
duce the fairness coefficient, which provides a flexible way
for network administrators to express the trade-off between
the performance (total utility) and fairness. We develop an
inter-DC WAN emulation tool which can emulate arbitrary
topology within one commodity server. It provides the abil-
ity to customize WAN topology and dynamically config-
ure bandwidth of WAN links.

Our evaluation shows that our algorithm gains 10%-150%
more total utility than current deadline focus mecha-
nism while producing 12% higher throughput. Furthermore,
by adjusting the fairness coefficient, our algorithm improves
the fairness over four times at best.

II. BACKGROUND AND MOTIVATION
A. DEADLINE
Deadline is crucial for inter-DC transfers. The primary reason
is that the available capacity is far from meeting the total
demand for inter-DC transfers. Flows generated by online
services are used for geo-replication to improve performance
and reliability. Therefore, providers of data centers offer
different network service by setting different Service Level
Agreements (SLAs) to tenants based on the price or the delay
tolerance.

Remote storage access for computation over inherently
distributed data sources is the most common usage in the
elastic traffic [6]. For example, a distributed computation
application consumes data from the workers across the DCs.
If one of the workers fails to transfer, the application has to
wait for it while other workers are idle.

The key point of the elastic traffic is that the utility of the
transfer reduces depending on how late it finishes. Accord-
ingly, an attribution should be attached to each flow, which
indicates the profit of completing it at certain times based on
its deadlines.

However, most of the current solutions, such as rate
limiting and Traffic Engineering (TE) [4], [6], [11], are
unsatisfactory in handling the deadline-oriented inter-DC
transfers.

B. INTRA-CLASS PRIORITY
The main reason for the poor performance on the deadline-
oriented inter-DC transfer is lacking an efficient priority
mechanism within the same category.

Tenants in data centers run various businesses by deploy-
ing different private services distributed over different data
centers. Inter-data center flows generated by these private
services may have the same traffic characteristics but dif-
ferent effects on each tenant, which makes defining priority
tricky.

What makes defining priority more difficult is that the
priority of a transfer dynamically changes along the time.
The priority of a transfer task should increase higher as the
time lapses because it is closer to the deadline. If the transfer
task misses its soft deadline, the priority drops, since its next
deadline is far from now.

C. DNA AND AMOEBA
Amoeba [10] tries to define priority based on deadline
by proposing Deadline-based Network Abstract (DNA) to
represent transfer requests. However, DNA is insufficient
to present impacts to tenants, which should be taken into
account by the priority setting mechanism.

DNA is proposed to allow tenants to specify deadlines for
transfers. DNA defines a standard interface for interactions
between the central controller and tenants to state tenants’
deadline requirements for each flow. A transfer T is specified
as a tuple which contains the source and destination, data
volume, start time and deadlines. Transfers are grouped into
one request which is atomically accommodated by Amoeba.
Amoeba performs admission process on a first-come-first-
served (FCFS) basis. It tries to reschedule earlier admitted
requests to make room for new request arrives at a later time.
Besides, Amoeba handles mispredictions by setting aside
headrooms for further time slots.

The problem of grouping transfers is ignoring different
priorities of the transfers. Tenants have to divide a number of
transfers into several requests to distinguish the transfers with
different priorities, which introduces extra work on tenants
side.
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D. OUR GOAL
Our goal is archiving maximum utility while accommodat-
ing more transfer requests before their deadlines, achieving
higher bandwidth utilization and arranging their transfers
more fairly.

In this paper, we focus on elastic traffic optimization, since
interactive traffic always meets its requirements for its high
priority and background traffic has no specific deadline.

Inter-data centers from various providers may have dif-
ferent multi-path transportation implementations. For this
reason, multi-path transportation optimization is beyond the
scope of this paper.

III. COMPLETION TIME-BASED FLOW SCHEDULING
Equivalent problems, e.g., variants of the packing-covering
issue, have been proposed and solved by LP [12] [13] [14].
However, the size of LP can be extraordinary huge when
large amounts of transfer tasks are involved [9]. Our solu-
tion is based on the greedy algorithm which can naturally
reduce the time complexity with asymptotically optimal
approximations.

In this section, we first introduce a Completion Time-
based Model to have a further detail description of tenant
transfer tasks. Then, we provide a solution to a simplified
problem, end-to-end flow scheduling, which schedules all
transfer tasks from the same pair of source and destination.
Additionally, a complete solution to the overall flow schedul-
ing optimization is proposed based on the algorithm in end-
to-end flow scheduling. Finally, we introduce the fairness
coefficient to improve the parallel of transportation with little
total utility loss.

A. COMPLETION TIME-BASED MODEL
Transfer tasks are generated by tenants in data centers deliver-
ing data from one data center to another for various purposes.
A transfer task (flow) in the Completion Time-based Model
is defined as a tuple {src, dst,Q, ts, u}, where src and dst
are the source and destination node, Q is the data volume
of this transfer, ts is the starting time, and u is the utility
function.

The utility function in the Completion Time-based Model
describes the profit on transfer completion. Different transfer
durations result in different benefits. It should reduce to
zero eventually. The slope of the reduction, steep at first,
plummets near to zero and then changes moderately over
time. A typical utility function of a transfer task is shown
in Figure 1.

B. END-TO-END FLOW SCHEDULING
In end-to-end scheduling, flows share the same src and dst .
Having all available bandwidth to these flows, the controller
can allocate bandwidth resource iteratively for each time slot
in a greedy manner.

Given k-shortest paths P and a set of n flows F , the goal of
our algorithm is to maximize the total utility of flows under

FIGURE 1. Two different types of utility function.

the restriction of bandwidth,

maximize T ,
∑

i Ui,

s.t. ∀i, t, p, Ai,t,p > 0

∀i ∈ [1, n],
∑

t
∑

p Ai,t,p = Qi
∀t, p,

∑
i Ai,t,p 6 Bt,p

whereUi is the utility of flow fi, Ai,t,p is the allocated volume
of flow fi at time t over path p, Qi is the total data volume of
flow fi and Bi is the available bandwidth of path p at time t .
To further reduce computation load, we divide time into

time slots and data volume into identical size data blocks.
With a smaller size of a data block, the system can allocate
bandwidth resource with finer granularity. In consequence,
a time series block queue should be built to allocate band-
width at first. In this way, bandwidth restriction equations in
LP turn into an urn problem [15], [16].

1) TIME SERIES BLOCK QUEUE
Given a graph G of network topology, k-shortest paths
{p1, p2, . . . , pk} from src to dst can be measured by assign-
ing each link a cost value. The available bandwidth of
k-shortest paths at each time slot can be evaluated, as shown
in Figure 2(a). Consequently, the overall available band-
width (blocks) can be gathered, which are ordered from the
shortest path to the longest, as shown in Figure 2(b). Then,
a time series data block queue Q can be built depending on
overall bandwidth in time order, as shown in Figure 2(c).

The block bi in Time Series Block Queue is specified by
a tuple {p, t}, where i is the index, p is the path, t is the time
slot. For instance, b5 is specified as below,

b5 : {p5 : 2, t5 : I }

2) END-TO-END BLOCK ALLOCATION
In this step, blocks will be assigned to separate flows itera-
tively until all flows are satisfied or missed their hard dead-
lines, see Algorithm 1.

Our object is to find the max total predicted utility T i(x) if
assigning block bx to flow fi,

maximize
i

T i(x) ,
∑

k U x,k|i

VOLUME 6, 2018 26183



W. Hu et al.: Completion Time-Based Flow Scheduling for Inter-Data Center Traffic Optimization

TABLE 1. Notations used in algorithm description.

FIGURE 2. Illustration of building Time Series Block Queue. Time slots are presented by Rome numerals, while blocks are indexed by Arabic numerals.
In (a) and (b), the overall bandwidth can be accumulated by those in the k-shortest path (k = 2). In (c), the controller can build a time series data block
queue according to the overall bandwidth. Moreover, blocks in each time slot are ordered from the shortest path to the longest. For example, block b5 is
in Time Slot I , from Path 2 and rounded by red rectangles. (a) Available Bandwidth of 2-Shortest Paths. (b) Total Available Bandwidth at each time slot.
(c) Time Series Block Queue.

Especially, the predicted utility is all the same as long as it
does not get the assignment of the block.

U x,k|i = U x,k|k , ∀i 6= k

Suppose max total predicted utility occurs by assigning
block bx to flow fi, then for any j 6= i

T i,x > T j,x∑
k

U x,k|i >
∑
k

U x,k|j

×U x,i|i + U x,j|i +
∑
k 6=i,j

U x,k|i

> U x,i|j + U x,j|j +
∑
k 6=i,j

U x,k|j

×U x,i|i + U x,j|j +
∑
k 6=i,j

U x,k|k

> U x,i|i + U x,j|j +
∑
k 6=i,j

U x,k|k

×U x,i|i − U x,i|i

> U x,j|j − U x,j|j

Consequently, the objective function is simplified as

maximize
i

T
∗

i (x) , U x,i|i − U x,i|i

Assigning the block bx assigns to flow fi means that if
assigning the block to other flows will lead to a lower value
of the total predicted utility. Then, we name T

∗

i (x) as Utility
Contribution.
Additionally, U x,i|i and U x,i|i are determined as,

U x,i|i =



r − 1
r

∞∑
y=x+1

px←i(y) · ui(ty)

+
1
r
· ui(tx+r−1) ri > 1

ui(tx) ri = 1,

U x,i|i =

∞∑
y=x+1

px←i(y) · ui(ty),

As mentioned earlier, allocation problem can be solved as
an urn problem, more precisely, hypergeometric distribution
problem.
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Algorithm 1 End-to-End Block Allocation

E2EBandwidthAllocation (Q,F)
inputs : Time Series Block Queue

Q = {b0, b1, . . . }; Set of flows to be
allocated F = {f1, . . . , fn};

output: Allocated Time Series Block Queue Q′

Q′← {};
F ′← {} ; // Processing flow set
foreach bx ∈ Q do

F ′← F ′ ∪ {flows start at bx};
F ′← F ′ \ {flows meet hard deadline};
max ← 0;
alloc← 0;
foreach f ′i ∈ F

′ do
T i(x)←

∑
k U x,k|i;

if T i(x) > max then
max ← T i(x);
alloc← i;

end
end
Q′x ← alloc;
ralloc← ralloc − 1;
if ralloc = 0 then

F ′← F ′ \ {falloc}
end

end
return Q′;

Then, the probabilities are

px←i(y) =


( Nx−ri
(y−x)−(ri−1)

)(Nx−1
y−x

) ri − 1
y− x

ri − 1 6 y− x < Nx

0 otherwise

,

px←i(y) =


((Nx−1)−ri
(y−x)−ri

)(Nx−1
y−x

) ri
y− x

ri 6 y− x < Nx

0 otherwise,

both of whose time complexity is O(y). Accordingly,
the time complexity of T

′

i(x) is up to O(Nx
2).

Nx is the amount of all unallocated blocks of the flows
whose start time is no later than the time of block bx while
the hard deadline is later than that. It can be calculated
recursively,

Nx =
F ′∑
i

ri

=

{
max(0, nx−1 − 1)+ Qi · Ii,x − Qi · I ′i,x x > 0∑

i Qi · Ii,0 x = 0

Ii,x : 1 if flow fi starts at blockbx and 0 otherwise ,

I ′i,x : 1 if flow fi meets hard deadline at blockbx
and 0 otherwise.

Additionally, for all x + ri < y < x + Nx ,

px←i(y)
px←i(y− 1)

=
(y− x)− 1

(y− x)− ri + 1
,

px←i(y)
px←i(y− 1)

=
(y− x)− 1
(y− x)− ri

Then, the time complexity of each iteration step decreases
to O(1), and that of T

∗

i (x) falls to O(Nx).
Furthermore, formost of the flowswhich have discrete util-

ity functions, the block indexes of soft deadlines are presented
as {y1, . . . , yn}. Then, U x,i|i and U x,i|i are determined as,

U x,i|i =


r − 1
r

n∑
m=1

(
Px←i(ym)− Px←i(ym−1)

)
·ui(ym)+ 1

r · ui(yx+r−1) ri > 1
ui(tx) ri = 1,

U x,i|i =

n∑
m=1

(
Px←i(ym)− Px←i(ym−1)

)
· ui(ym),

and the possibilities

Px←i(ym) =


0 m = 0 or ym < x + ri( Nx−ri
(ym−x)−(ri−1)

)(Nx−1
ym−x

) otherwise
,

Px←i(ym) =


0 o = 0 or ym < x + ri + 1( Nx−1−ri
(ym−x)−ri

)(Nx−1
ym−x

) otherwise

If bx−1 assigns to fi,

Px←i(ym) =
Nx

ym − x + 1
Px−1←i(ym),

Px←i(ym) =
Nx

ym − x + 1
Px−1←i(ym).

Otherwise,

Px←i(ym) =
Nx

Nx − ri + 1
ym − x − ri + 2
ym − x + 1

Px−1←i(ym),

Px←i(ym) =
Nx

Nx − ri

ym − x − ri + 1
ym − x + 1

Px−1←i(ym).

Then, the time complexity of T
∗

i (x) reduces toO(m), which
is much smaller than O(Nx).
According to the algorithm described above, wewill have a

view of howmany data blocks of each flowwill be transferred
in each time slot.

C. OVERALL FLOW SCHEDULING
Different from end-to-end flow scheduling, bandwidth
resources are not exclusive to the flows sharing same src and
dst nodes. A path of k-shortest paths in one end-to-end flow
group may overlap with the path in other end-to-end flow
groups.

Considering a simple example, given a topology as shown
in Figure 3, assume that capacity of link AB and BC are same.
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FIGURE 3. Example topology.

The data volume of f1, f2 and f3 are equal, and the utility of f1
is greater than that of both f2 and f3 but less than the sum of
f2 and f3.

cAB = cBC ,

F = {f1, f2, f3},

Q1 = Q2 = Q3,

U2, U3 6 U1 6 U2 + U3

If merely comparing utilities of each flow, the system
should arrange f1 to transfer rather than f2 and f3. However,
transferring one block of f1 takes up two blocks in total,
one block on each link. Apparently, transferring f2 and f3 in
parallel is a better choice.

In order to operate an overall optimized flow scheduling,
we introduce Per-cost Utility Contribution which can reveal
the relationship between utility and cost.

1) PER-COST UTILITY CONTRIBUTION
Transferring a block along diverse paths will contribute dif-
ferent utility while having distinct costs. The per-cost utility
contribution indicates the "earning rate" of utility that gener-
ated by transferring a specified block.

Per-cost utility contribution PUCi defines as below,

PUCi(x) =
T
∗

i (x)
c(px)

where px is the path the block bx belongs to and c(px) is the
cost of transferring a block along the path px .
It can efficiently avoid the case that multiple short transfers

with less utility cannot beat a single long transfer with greater
utility, while the sum of short transfers’ utilities is greater
than that of the long one. Moreover, it can achieve the goal of
contributing maximum utility while having the same cost.

2) OVERALL BLOCK ALLOCATION
Before allocation, the system classifies flows into end-to-end
groups.

Consequently, the system collects network information to
build Time Series Block Queue for each end-to-end flow
group. Note that available bandwidth (blocks) are not exclu-
sive to the flow group. They are shared by different groups
due to sharing links in k-shortest paths. For this reason, blocks
may be removed from the queue during the allocation. Further
details will be discussed in the following section.

Additionally, the system maintains several states for each
flow group during the allocation, including the number of
unallocated blocks N , allocation index x, processing flow set
F ′ and allocated Block Queue Q′.

FG = {fg1, . . . , fgn},
fg = {F,Q,N , x}

The detail of overall block allocation algorithm is
described in Algorithm 2.

Algorithm 2 Overall Bandwidth Allocation

OverallBandwidthAllocation (FG)
inputs : End-to-End Flow Groups

FG = {fg1, . . . , fgn}
output: Allocated Time Series Block Queue Groups

Q′G
ts← 0;
while ∃fg ∈ FG N ! = 0 do

/* Loop until all flows are satisfied */

update all F ′,N , ksp;
while ∃fg ∈ FG tx = ts do

/* Loop until all blocks in current
time slot are assigned */

foreach fg ∈ FG do

PUCfg←
maxT i(xfg)
w(pxfg )

;

flowfg← i;
end
allocfg← max(PUC1, . . . ,PUCn);
Q′allocfg← flowallocfg;
bwpxallocfg ← bwpxallocfg − 1;
Nallocfg← Nallocfg − 1;
FG←UpdateFlowGroup(FG, pxallocfg );
foreach l ∈ pxallocfg do

cl ← cl − 1;
end
xallocfg← xallocfg + 1;

end
ts← ts+ 1;

end
return {Q′1, . . . ,Q

′
n}

The objective of the overall block allocation is to find max
per-cost utility contribution for each iteration.

For each flow group, flows are competing for a single
block in each iteration. So, the cost of allocation current
block in this group is the same to these flows. Consequently,
the greatest Utility Contribution makes the greatest Per-cost
Utility Contribution. Then, for each end-to-end flow groups,
the objective function remains all the same.

Accordingly, the system will assign a block to the flow
which has the highest per-cost utility contribution and updates
states to fix the problem that the allocated block is occupied in
different flow groups. Note that all these changes take effect
within the current time slot.
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For the flow group allocfg that got allocated, the number of
unallocated blocks N minus 1 and the allocate index x moves
forward.

For other flow groups, the system will update these flow
groups to rebuild Time Series Block Queue Q dynamically.
Besides, the path of the assigned block consumes a block

on each block. Therefore, the available capacity cl of links
along the path minus 1.

3) FLOW GROUP UPDATE
As we have mentioned above, the consumed blocks along the
path of the allocated block need to be removed out of queue
as shown in Algorithm 3.

Algorithm 3 Flow Group Update

UpdateFlowGroup (FG, path)
inputs : End-to-End Flow Groups

FG = {fg1, . . . , fgn}; The path of allocated
block path

output: Updated Flow Groups FG
foreach fg ∈ FG do

procLink ← linkpath ∩ {l|l ∈ ksp,
∑
bwp = cl};

while procLink! = Ø do
foreach p ∈ kspfg and bwp > 0 do

intsp← procLink ∩ linkp;
end
rmPath← path which has the max |ints|;
rmLink ← intsrmPath;
bwrmPath← bwrmPath − 1;
procLink ← procLink \ rmLink;

end
rebuild Qfg;

end
return FG

The available bandwidth of k-shortest path is exclusive in
each flow group, and the sum of available bandwidth bwp of
a link l shared by k-shortest paths ksp in one end-to-end flow
group cannot be greater than the available capacity cl of this
link.

∀l ∈ ksp,
p∈ksp,l∈p∑

p

bwp 6 cl

In the case that
∑
bwp < cl , the system regards that the

block consumed is not occupied in this flow group. Then the
system will ignore the link l until they are equal.
In the case that

∑
bwp = cl , the system will remove a

block from a path which contains the link l. As a result,
the system should only process links procLink in the allocated
path whose capacity equals the sum of available bandwidth.

Moreover, multiple paths may contain the link to be pro-
cessed. The object of the system is to remove blocks as few as
possible. Accordingly, the block from the path which contains
the most processed links intspath should be removed first.

Then the contained links intspath are removed from procLink .
Repeat the above steps until procLink is empty.

In the end, rebuild the Time Series Block Queue Q and the
flow group has been updated.

D. FAIRNESS COEFFICIENT
According to the object functions, the bandwidth resources
are allocated to separate transfer tasks to obtain a maximum
utility.

Our algorithm prefers to allocate blocks to the same flow
in a row to obtain the utility as soon as possible due to a
greedy manner, even though it is far from the deadline and
flows can be transferred in parallel without utility loss. This
allocation strategy can effectively obtain utility with the high
risk of missing deadline, e.g., link failure, since the utility is
gained only at the time of completing transportation.

Nevertheless, exclusive transportation introduces extra
cost on control plane to synchronize flow transportations,
while the total utility may not be visibly increased when
the risk of missing deadline is low because the system does
not gain more utility no matter how early the transfer task
completes before the deadline.

For this reason, in order to improve the fairness of trans-
portation, as well as, parallelism of transportation, we intro-
duce the fairness coefficient fair(k) , which is defined as
below,

fair(k) =
(
1−

x−1∑
y=0

(k
2

)x−y
· Q′y(i)

) r
2

,

Q′y(i) : 1if allocate block by to flow fi and 0 otherwise.

k is an argument ranges from 0 to 1. The system will
allocate blocks more equitably with a higher value of k . For
the case of k = 0, the system will allocate blocks strictly
according to the D-value of predicted utilities.

Correspondingly, the objective functions turns into

maximize
i

T
∗

i (x) · fair(k)

A higher penalty is received on the value of T ∗ of a flow if it
has been allocated recently, which makes its completion time
delayed and less valued flows have a chance to be transferred.
Accordingly, flows with approximate values of T ∗ will be
arranged to be transferred in parallel, rather than one by one
exclusively. In other words, fairness coefficient improves the
fairness by delaying of completing flows, which may lead to
missing their deadlines, either soft or hard, and a loss of total
utility during the growth of k value.
Besides, we define allocation distance is used as a metric

to measure the fairness of our algorithm. Allocation distance
is the distance between the locations of adjacent blocks
from the same flow, where they are allocated in the queue.
Correspondingly, a greater value of average allocation dis-
tance means more flows are transferring in parallel.

In summary, by setting a proper value of k of the fair
coefficient, the system can arrange bandwidth scheduling
more fairly while keeps the loss of total utility to a minimum.

VOLUME 6, 2018 26187



W. Hu et al.: Completion Time-Based Flow Scheduling for Inter-Data Center Traffic Optimization

IV. SYSTEM IMPLEMENTATION
In order to evaluate our algorithm, we develop a
prototype system that implements all functions used in our
algorithm. Additional, for the purpose of flexibly emulating
arbitrary topology and dynamically reconfiguring the WAN
link attributes, we develop an Inter-DCWAN emulation tool.

In this section, we describe details of the prototype archi-
tecture, rate limiting, failure handling and the emulation tool.

A. ARCHITECTURE
The architecture of our prototype is shown in Figure 4.
On the top of the architecture, a central controller implements
all functions used in our allocation algorithm, including
topology monitoring, bandwidth prediction, queue building
and utility computation.

FIGURE 4. Prototype architecture & experiment topology.

On site level, site broker and multi-path dispatcher are
deployed within each data center. Site broker exchanges
information between central controller and agents deployed
in virtual machines, including transfer requests and alloca-
tion result. Multi-path dispatchers take charge of multiple-
path transportation according to the output of bandwidth
allocation.

An agent installed in each virtual machine accepts transfer
requests from user applications and sets up rules for rate lim-
iting. Besides that, the agent periodically reports transferred
data volume for each task to the central controller for further
allocation.

B. RATE LIMITING
Rate limiting is transparent to tenants’ applications.
Applications from tenants do not take control of sending
rate. When packets enter into the kernel, rules of iptables set
these packets with different marks to identify different flows.
With tc tools, packets are split into different classes based on
their marks. These classes are associated with distinct token
buckets which have different sizes. As a result, flows are
limited at specified rates.

C. PER-TIME SLOT BANDWIDTH ALLOCATION &
FAILURE HANDLING
Different from Amoeba, our algorithm allocates bandwidth
for each time slot separately, rather than directly deciding

whether accept or not when the system receives new requests
as Amoeba does. This per-time slot allocation mechanism
dramatically improves the flexibility and scalability of the
system.

Since our allocation algorithm heavily relies on completion
time prediction, especially when a high value of k in fairness
coefficient is set, bandwidth misprediction and link failure
severely affect the performance of our allocation algorithm.

For bandwidth misprediction, the system sets aside head-
room for future time slots. Furthermore, the system can
dynamically estimate how much data volume left for each
request from agents to make a better allocation for next time
slot.

Link failure means that the allocation has a high risk of
missing deadline due to inadequate bandwidth resource than
expected. To address this problem, a smaller value of k should
be set to push the completion time of each task as early as
possible, based on the link quality.

D. INTER-DC WAN EMULATION TOOL
In order to emulate WAN topology flexibly in our evalu-
ation, we develop an inter-DC WAN emulation tool based
on Mininet [17] in a virtual machine, as shown in Figure 5.
For the purpose of emulating dynamic links, we create a
DynamicTCLink class inherit from TCLink, which provides
extra APIs to dynamically change the link properties such as
delay, bandwidth, packet loss.

FIGURE 5. Inter-DC WAN topology emulation.

All physical ports, which connect to DC sites, are one-
to-one mapped to emulation VM. These mapped ports are
used to redirect traffic on data plane, which is tagged by
multi-path dispatchers with VLAN IDs. While, traffic on
the control plane, not tagged by any VLAN ID, redirects to
central controller virtual machine directly.

In emulation VM, OVS switches are created as the gate-
ways of DCs. Each switch is composed of a mapped port
and several virtual WAN ports based-on the emulation topol-
ogy. Virtual WAN ports are connected by DynamicTCLink to
emulate links for inter-DC traffic. By doing that, the goal of
emulating arbitrary topology is achieved.

The central controller installs rules on virtual switches to
handle outgoing and incoming traffic. For outgoing traffic,
it is filtered by VLAN ID to select the corresponding path
to send traffic to correct destination. Meanwhile, incoming
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traffic forwards directly to the mapped port since traffic can
be routed to host without choosing the path.

According to our evaluation, our emulation tool is capa-
ble of handling traffic in our experiment topology with
using 8% CPU.

V. EVALUATION
A. EXPERIMENT SETUP
1) TESTBED SETUP
We create a small testbed with 6 servers to emulate an inter-
DC WAN with 5 DCs, which topology is shown in Figure 6.

FIGURE 6. Physical topology of testbed.

Five servers act as DC sites. Within these servers, three
virtual machines act as hosts in each DC site. Each DC server
has a quad-core Intel E5-2609 2.40GHzCPU, 32GBmemory,
500GB hard disk with four 1G Ethernet NICs. These severs
directly connect to network emulator server with 1-4 physical
1G links on demand. The emulator sever runs the central
controller and the Inter-DC WAN emulation tool. It has two
E5-2609 CPU and 64GB memory, 500GB hard disk, and
eight 1G Ethernet NICs. The CPU, memory or hard disk is
not a bottleneck in our testbed evaluation. We use a modified
iperf3 to generate TCP flows.

2) EXPERIMENT SETUP
To emulate dynamically changing links, we use Inter-DC
WAN emulation tool to emulate the virtual topology. The
emulated topology is the topology shown in Figure 4 and
all links have the same distance. Data center servers are
connected logically by the virtual links, as described in
Section IV(D).

We randomly generate from 5% to 15% of the link capacity
as the interactive traffic on each link for each time slot.
Based on such presupposition, we leave extra headroom as
we discussed before. We perform experiments on our testbed
for a duration of 50 3-minute time slots (2.5 hours).

We report the average of 5 runs.

3) METRICS
We measure three main performance metrics: total utility,
hard deadline accommodate (acceptance) rate and average
allocation distance.

4) WORKLOAD
The inter-DC transfer tasks are generated with the following
parameters:
• Arrival time is modeled as a Poisson process with arrival
rate λ per time slot.

• Deadlines: The hard deadline is modeled under expo-
nential distribution with a mean of one hour. We also
generate 2 or 3 soft deadlines for each task, which
follows a uniform distribution from 25% to 75% of the
duration of the hard deadline.

• The data volume of each task should be related to its
deadline. We expect the data volume is under exponen-
tial distribution with a mean of 100Mbps over the time
of the hard deadline.

• Utility of a transfer task has a close correlation with data
volume and deadlines. We calculate the utility as below:

Ut = Q ∗ p ∗ (
hd
t
)2, t ∈ {sd1, . . . , hd}

where p is under exponential distribution with a mean
of 1/Gb.

B. TESTBED EVALUATION
We evaluate the performance of our algorithm for both end-
to-end and overall flow scheduling.

For end-to-end evaluation, we select DC3 as the source
node and DC5 as the destination node. 3-shortest paths are
DC3-DC5, DC3-DC4-DC5 and DC3-DC2-DC1-DC5, which
cover all links in the network. Besides, the total available
bandwidth is 3Gbps.

For overall evaluation, we connect all 8 NIC interfaces
from the emulation server to DC servers. The total throughput
is 16Gbps. Besides, the cost of each links is modeled under
Uniform Distribution from 1 to 10.

1) END-TO-END FLOW SCHEDULING
a: TOTAL UTILITY
As shown in Figure 7(a), when k = 0, the total utility
increases with the growth of λ, whereas, the growth of the
total utility slows down as the λ increases due to the link
utilization reaches saturation gradually. Note that the total
utility is not always increased as λ rises, when a higher value
of k is set, e.g., 0.7, although the trend is upwards as the λ
increases. This is mainly because that our algorithm works
in a greedy manner and our algorithm improves the fairness
by delaying the completion time of allocated flows, which
allocation may be not always the best choice from the view
of a later time slot.

On the other side, the total utility tends to decline with the
growth of k . Additionally, the rate of total utility decline from
k = 0 to k = 1 ranges from 10% to 60%.

b: ACCEPTANCE RATE
According to Figure 7(b), the acceptance rate reduces with
the growth of λ by the reason that limited bandwidth can
only accommodate limited transfer requests. For the same
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FIGURE 7. End-to-end Flow scheduling performance evaluation. (a) Total utility. (b) Acceptance rate and average allocation distance.

reason, the average allocation distance does not rise with the
growth of λ.

Compared with the total utility and acceptance rate, higher
acceptance rate does not lead to a higher total utility. On the
contrary, for all λ, the minimum acceptance rate happens at
k = 0 where achieves maximum total utility. In general,
there is no correlation between utility and acceptance rate.
Since the total utility is our first goal, the system prefers to
arrange a more valuable flow to transfer rather than accepting
many small flows that have less utility, which result in a lower
acceptance rate.

c: AVERAGE ALLOCATION DISTANCE
The average allocation distance is positively correlated
with k . The system archives around 3.2-4.2 times of average
allocation distance on the condition of k = 1 than that of
k = 0.

On the other side, there is no specific link between the
average allocation distance and λ. The average allocation dis-
tance is related to the available bandwidth. With the growth
of λ, the number of accommodated flows is not obviously
increased and extra arrived flows are dropped due to lim-
ited bandwidth. Accordingly, under the limited bandwidth
resource, the average allocation distance will not have enor-
mous change with λ.

d: OVERALL FLOW SCHEDULING
We can find a similar result in Figure 8 for overall flow
scheduling. The total utility increases with the growth of λ,
whereas the acceptance rate drops. Notably, k = 0.3 is a
proper value for the evaluation. For total utility, the system
loses 7% on average when k = 0.3, while 25%when k = 0.5.
For average allocation distance, it achieves 1.6 times on
average when k = 0.3, while 1.8 times when k = 0.5.

The total utility declines up to about 50% when k = 1,
which is better than that in the end-to-end evaluation. This
is mainly because that the system gains more utility from
other source/destination pairs. The system achieves around
2-3 times of average allocation distancewith the increase of k ,
which is smaller than that in the end-to-end evaluation. This is
because the allocated bandwidth for each source/destination
in overall evaluation is smaller than that of end-to-end
evaluation.

Then, we have a closer look at the accommodated flows.
As shown in Figure 8(d), the number of accommodated flows
increases with the growth of λ and then the trend of the
improvement becomes flattened. This is because that themost
valuable flows have been selected to be transferred under the
restriction of limited bandwidth resource and it is unlikely
to have flows with more valuable no matter how many more
flows arrive.

Furthermore, we divide accommodated flows into three
different classes {short,mid, long} based on the average hops
of their transferred paths. As the stacked bar charts shown
in Figure 8(d), the flows of short takes up to over half of
accommodated flows, while the proportion of long is the
least. This is because that, with the approximate utility contri-
bution, a shorter path has a lower cost of transportation which
leads to a greater value of per-cost utility contribution. The
flow can be transferred along a long path, only when it has an
extraordinary utility contribution.

Additionally, with the growth of k , the number of accom-
modated flows is increased around 30% on average with the
growth of k . With the growth of k , more flows with less data
volume and less per-cost utility contribution are accommo-
dated. By taking fairness into account, the completion time
of flows is delayed. Therefore, these flows are delayed and
maybe not completed at the time we collect the result from
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FIGURE 8. Overall flow scheduling performance evaluation. (a) Total utility. (b) Acceptance rate. (c) Average allocation distance. (d) Accepted flows.

the testbed, which should be completed when k = 0. Then the
extra accommodated flows, when k = 1, are inserted into the
blocks which are leased by delayed flows.

Besides, the proportion of the short declines 8% on aver-
age, while long’s increases 11% on average. This is mainly
because that most of flows from short are accommodated
when k = 0 and the number of unaccommodated flows
from long is much more than other classes. In conclusion,
the fairness coefficient improves not only the fairness within a
single end-to-end flow group but also the fairness of different
flow classes.

C. FIXED MINIMUM BW GUARANTEE & AMOEBA
In this part, we compare our solution with fixed minimum
bandwidth and Amoeba.

The fixed minimum bandwidth guarantee is set to
satisfy the hard deadlines. Amoeba performs bandwidth

scheduling based on the level of request , whereas our’s
on transfer . Therefore, we set the number of transfers per
request to 1.

As shown in Figure 9(b), Amoeba accommodates most
flows. When later arrived flows cannot meet their deadlines,
Amoeba tries to reschedule on previously accepted flows to
make room for these flows.Fixed accommodates less because
the bandwidth will not be rescheduled if newly arrived flows
cannot meet their deadlines. Later arrived flows can be
accommodated only with less bandwidth. Additionally, both
ofAmoeba andFixed prefer to accommodate flowswith small
data volume to achieve a higher acceptance rate with limited
bandwidth. The acceptance rate of our solution is the least
because that our solution is utility oriented which acceptance
rate is ignored. In some cases, the system assigns a lot of
bandwidth resource to a high data volume flow to complete
before its soft deadline if it has high utility value, which leads
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FIGURE 9. Our solution vs. amoeba & fixed minimum BW. (a) Total utility. (b) Acceptance rate. (c) Throughput.

to other flows with less data volume and utility miss their
short hard deadlines.

Figure 9(a) shows the total utility obtains for each solution.
Amoeba and Fixed gain less utility than our solution even
when k = 1, although both of them accommodate more.
If we set the total utility that our solution gains when k = 1
as the baseline, Amoeba loses 10% of total utility because
the utility is not in a linear relationship with data volume and
deadline. The per accommodated flow utility is much less
than ours, although Amoeba runs OR to accommodate more
flows. Due to the same reason, Fixed loses 37% of total utility
on average. Additionally, accommodated flows of Fixed only
meet their hard deadlines, which the system can only gain the
least utility from them.

As shown in Figure 9(c), our solution achieves about 12%
higher throughput than Amoeba and 80% than Fixed. This is
mainly because that our solution does not reject flows when
they arrive. It assigns available bandwidth to all candidate
flows, which translate into higher total utility.

D. FLEXIBILITY & SCALABILITY
To evaluate the flexibility of our solution, we measure the
total utility under link failure by randomly failing one of the
inter-DC links. We consider two cases: 100% link capacity
loss and 50% link capacity loss. We calculate the remaining
rate, which is the portion of the total utility we collect under
different conditions of link failure over that without link
failure.

Figure 10 shows the result.When λ is small, the total utility
keeps almost the same, no matter the value of k . This is
because that the system allocates bandwidth resource for each
time slot separately.When link failure, the system can arrange
flows, which should be transferred on the fail link, to transfer
along with other paths where have surplus bandwidth. With
the growth of λ, fewer data can be rearranged to transfer due
to that the network is being saturated as shown in Figure 9(c).

FIGURE 10. Performance under link failure.

As a result, more flows are failed to be accommodated, and
lower total utility is gained by the system.

Additionally, k affects the remaining rate as well. With the
same condition of link capacity loss, the greater value of k
leads to a greater portion of loss on the total utility. This is
caused by the same reason which causes greater k results in
less total utility without link failure.When a greater value of k
is set, the total utility declines because the completion time of
flows is delayed. Additionally, with link failure, the comple-
tion time is further delayed which translates into lower utility.
As a result, the total utility declines more.

Moreover, our solution achieves over 85% and 90%
remaining rate respectively under high arrival rate.

We quantify the scalability by measuring the allocation
time. As shown in Figure 11, the average allocation time
increases accelerated with the growth of λ. This is because
that the allocation time is mainly affected by the number of
unserved flows, e.g., arrived but neither finished nor outdated.

The block size affects the allocation time as well. With
a smaller size of a data block, the system can schedule
bandwidth with finer granularity but takes a longer time to
allocate. The system takes around double time when the size
of data block is reduced from 1GB to 500MB. According to
our practice of evaluation, the average allocation time should

26192 VOLUME 6, 2018



W. Hu et al.: Completion Time-Based Flow Scheduling for Inter-Data Center Traffic Optimization

FIGURE 11. Average allocation time.

be around 1/20 of the duration of time slot to obtain a better
balance between scalability and granularity.

VI. CONCLUSION
A significant portion of Inter-DC transfer tasks have dead-
lines. Missing deadline may have various impacts on the
whole system. However, current mechanisms mainly focus
on deadline guarantee, rather thanmake a distinction between
tasks to achieve an overall optimization on system perfor-
mance. This paper introduces a completion time-based model
which enables tenants to express howmuchmissing the dead-
line of a transfer task impacts on their business, and a novel
mechanism which efficiently allocates bandwidth resources
to achieve a maximum utility in a flexible and scalable
manner. Our evaluation shows that our solution effectively
improves total utility than current deadline focus mecha-
nisms while outperforming more throughput. Furthermore,
by adjusting the fairness coefficient, our algorithm improves
over 4 times fairness at best.
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