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ABSTRACT With the increasing attention paid to many-objective optimization in the evolutionary
multi-objective optimization community, various approaches have been proposed to solve many-objective
problems. However, existing experimental comparative studies are usually restricted to a few methods.
Few studies have encompassed most of the recently proposed state-of-the-art approaches and made an
experimental comparison. To this end, this paper offers a systematic comparison of 13 algorithms covering
various categories to solve many-objective problems. The experimental comparison is conducted on three
groups of test functions by using two performance metrics and a visual observation in the decision space. The
experimental results demonstrate that different approaches have different search abilities. None of the test
approaches outperform the others on all types of problems. However, some of the approaches are competitive
on a large number of test problems. Moreover, inconsistent results from the hypervolume and the inverted
generational distance metrics are revealed in this paper. Based on these comparative results, researchers can
obtain useful suggestions for choosing appropriate algorithms for different problems.

INDEX TERMS Evolutionary computation, experimental comparison, HV, IGD, multi-objective

optimization.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) frequently
appear in many fields such as engineering [1], business [2],
mathematics [3] and physics [4], when two or more poten-
tially conflicting objectives are required to be minimized
simultaneously. Problems with multiple objectives are much
common in real world, such as minimizing cost while max-
imizing comfort while buying a car. Advanced methods
are especially required for solving the more complicated
problems in real world application. For instance, a unit com-
mitment problem [5] can be solved as a multi-objective opti-
mization problem considering minimizing cost and emission
as the multiple objectives. In medical aid distribution route
problems [6], the travel time and priorities for the shelters
with higher demand are both supposed to be considered
simultaneously. Moreover, in financial field, a central bank
must choose a stance for monetary policy that balances
competing objectives: low inflation, low unemployment and
low balance of trade deficit. Overall, there are a number of
problems that are characterized by more than one goal and the

trade-offs are required in order to satisfy the different objec-
tives. To model such problems, a MOP can be formulated as
follows:

mXin fx) = (i(x), LX), ..., fu(X)
st.xeX

where f(x) is an objective function vector that consists of
M objective functions and X C Rp is the decision space.
X = (x1,x2,...,xp) € X is the decision vector with
D dimensions.

Since optimizing one objective often leads to a deteriora-
tion in at least one other objective, a set of trade-off solutions,
termed Pareto optimal solutions, are expected to be found
for MOPs. A solution is called nondominated or Pareto opti-
mal, if none of the objective functions can be improved in
value without degrading some of the other objective values.
All Pareto optimal solutions are considered equally good if
there is no additional subjective preference information. More
formally, let x', x> € X; x! is said to dominate x> (termed
x! < x?)ifand only if fi(x!) < fi(x?) foralli € 1, ..., M and
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fi(x") < fi(x?) for at least one index i. Here, a point x* € X is
a Pareto optimal solution if there is no x € X such thatx < x*.
f(x*) is then called a Pareto optimal (objective) vector. The set
of all Pareto optimal points in X is called the Pareto set (PS),
and the set of all the Pareto optimal objective vectors is the
Pareto front (PF).

Over the past two decades, evolutionary multi-objective
optimization (EMO) has been demonstrated to be an effi-
cient approach for solving MOPs that can obtain a set of
solutions in a single run. A number of EMO algorithms
have been proposed to solve MOPs, e.g., NSGA-II [7],
SPEA2 [8], IBEA [9], and MOEA/D [10]. Among these
EMO algorithms, Pareto-based approaches are the most pop-
ular class of approaches in the EMO community. In these
approaches, solutions with a better Pareto rank are selected
according to what is known as the dominance-based selection
criterion. To achieve a diversity of solutions, a secondary
diversity-related criterion is also often adopted. NSGA-II
and SPEA?2 are two representative Pareto-based approaches.
Such approaches have shown very effective performance in
tackling MOPs with two or three objectives. However, for
MOPs with more than three objectives, known as many-
objective optimization problems (MaOPs), the efficiency of
Pareto-based approaches decreases significantly.

In real-world applications, such as water distribution
systems [11] and land use management problems [12], there
often exist MaOPs that involve more than three objectives and
even reach 10 to 15 objectives. Strategies for solving MaOPs
have drawn increasing attention in recent years because con-
ventional EMO algorithms developed for solving MOPs with
two or three objectives cannot tackle MaOPs efficiently. The
main reason for this failure is that the percentage of non-
dominated solutions increases dramatically as the number of
objectives increases, and thus, the dominance-based selec-
tion criterion is unable to distinguish the generated solutions
in a population. When the primary criterion fails to pro-
vide sufficient selection pressure to discriminate solutions,
the diversity-related secondary criterion is activated to select
solutions, which is known as the Active Diversity Promo-
tion (ADP) phenomenon [13]. Many experimental observa-
tions have shown that the ADP phenomenon may cause poor
convergence of the final solutions. As a result, the final set of
solutions may present good diversity over the objective space
without converging to the Pareto front. Moreover, the calcu-
lation of performance metrics, such as the hypervolume mea-
sure, may be too computationally expensive when dealing
with MaOPs.

To enhance the performance of EMO algorithms to tackle
MaOPs effectively, a variety of approaches have been devel-
oped in recent years. These approaches can be roughly
divided into five categories.

As the Pareto-based approaches fail to provide suf-
ficient selection pressure towards the PF when tackling
MaOPs, the first category covers various non-Pareto-based
approaches, such as decomposition-based and indicator-
based approaches. The decomposition-based type of methods
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aggregate the objectives into a scalar function, and each
objective has a weighting coefficient that indicates its impor-
tance, known as the weight vector. By employing a set of
weighting vectors, an MaOP is decomposed into a number of
single-objective sub-problems that can be optimized simul-
taneously. The multiobjective evolutionary algorithm based
on decomposition (MOEA/D) and multiple single objective
Pareto sampling (MSOPS) [14] are two representative algo-
rithms. In MOEA/D, the fitness of each solution is evalu-
ated by a unique weight vector, whereas each solution in
MSOPS is evaluated by a set of weight vectors. In [15],
an improved version of MSOPS, termed MSOPS-II, is pro-
posed with two comprehensive extensions to MSOPS. More-
over, there is another type of decomposition-based approach
in which an MOP is decomposed into a set of sub-MOPs,
such as MOEA/D-M2M [16]. A reference vector-guided evo-
lutionary algorithm (RVEA) [17] belongs to this category of
methods. In RVEA, the objective space is partitioned into
a number of subspaces using the reference vectors, which
helps balance the convergence and diversity. Other algorithms
(e.g., NSGA-III [18] and MOEA/DD [19]) can also be viewed
as decomposition-based approaches that use hybrid mecha-
nisms of the Pareto dominance-based fitness evaluation and
the MOEA/D framework.

The indicator-based approaches use the value of
the performance indicator to guide the search process,
e.g., the indicator based evolutionary algorithm (IBEA) [9],
the S-metric selection based evolutionary multi-objective
algorithm (SMS-EMOA) [20], and the fast hypervolume
based evolutionary algorithm (HypE) [21]. IBEA was the
first indicator-based approach to solve MaOPs using a pre-
defined optimization goal to measure the contribution of
each solution. However, IBEA has bad performance with
respect to diversity due to the lack of diversity maintenance
in its indicator. As the hypervolume (HV) value can balance
both convergence and diversity effectively, SMS-EMOA was
developed based on the HV value. Moreover, to reduce
the large computational cost of calculating the HV values,
HypE was developed by applying Monte Carlo simulation to
approximate the exact HV values.

Due to the ineffectiveness of the Pareto dominance for
solving MaOPs, the second category of approaches modifies
the traditional dominance relation to enhance the selection
pressure towards the PF. Many approaches have been devel-
oped, such as e-dominance [22], [23], L-optimality [24],
fuzzy dominance [25], and preference order ranking [26].
Yang et al. [27] developed a grid-based evolutionary algo-
rithm (GrEA) in which a grid dominance is introduced to
strengthen the selection pressure toward the optimal direc-
tion. A new dominance relation, termed 6 dominance, is intro-
duced for many-objective optimization in [28]. Based on the
6 dominance, an effective & dominance-based evolutionary
algorithm (#-DEA) is proposed to tackle MaOPs effectively.

Although extensive work has focused on enhancing the
selection pressure towards PF, the third category of methods
aims to modify the secondary diversity-related criterion to
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maintain a good balance between convergence and diversity
for tackling MaOPs. Adra and Fleming [29] developed a
diversity management mechanism named DM1 to determine
whether or not to activate the diversity promotion according
to the convergence condition. In GrEA, in addition to intro-
ducing a grid-dominance to enhance the selection pressure,
three grid-based criteria (i.e., grid ranking, grid crowding dis-
tance, and grid coordinate point distance) are applied to main-
tain the diversity of solutions. Moreover, Li et al. [30] propose
a general modification of the diversity-related criterion for
dominance-based EMO algorithms, termed the shift-based
density estimation (SDE) strategy, to reduce the detrimental
impact caused by the ADP phenomenon. In the recently pro-
posed knee point-driven evolutionary algorithm (KnEA) [31],
a knee point-based secondary selection is designed in addi-
tion to the dominance-based selection criterion to enhance
the convergence pressure. In addition, NSGA-III replaces
the crowding distance-based diversity-maintenance operator
in NSGA-II with a reference point-based strategy to solve
MaOPs effectively.

As the objective space dimensions in MaOPs increase,
the population size should increase exponentially to approx-
imate the entire PF [32]. However, the population size in
real-world MaOPs is often too limited compared to the large
objective space [33]. Thus, it is rational to focus on a subset
of the PF according to the user’s preference. This category of
approaches is known as the preference-based approach and
mainly includes three classes: a priori algorithms [34], [35],
interactive algorithms [36]-[38], and a posteriori algorithms
[39]-[42]. In a priori algorithms, the preference informa-
tion is specified before the search. In interactive algorithms,
the decision maker is required to provide preference
information interactively. Similarly, in a posteriori algo-
rithms, the preference information is introduced after the
search. PICEA-g [41], which is a highly cited a posteriori
algorithm, harnesses the power of coevolution of candidate
solutions and preferences for the purposes of optimization.
It achieves competitive performance as the number of objec-
tives increases.

A few other types of recently proposed approaches
also show competitive performance in maintaining a good
balance between convergence and diversity for tackling
MaOPs. For example, the recently proposed MOEA/DD
algorithm combines the advantages of both the dominance
and decomposition-based approaches to achieve satisfactory
performance for MaOPs. In [43] and [44], a novel two-archive
algorithm (TAA) and its improved version (Two_Arch2) are
proposed. These algorithms apply two archives focusing on
convergence and diversity separately. Most recently, other
advanced methods have been proposed, such as MnRP-
BILDE [45], which was developed based on the concept of
objective function space reduction. Jiang and Yang [46] pro-
pose a new SPEA based on the reference direction, denoted
SPEA/R, for both multiobjective and many-objective opti-
mization. Moreover, RPEA [47] was proposed to exploit the
potential of the reference points-based approach. To solve
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unconstrained many-objective problems, a vector angle-
based evolutionary algorithm [48] was developed.

FIGURE 1. Number of publications about many-objective optimization in
the Web of Science Core Collection from 2003 to 2016.

Overall, a variety of algorithms have been proposed to han-
dle many-objective optimization problems. However, ques-
tions remain, including which algorithm is suitable for a
specific type of problems and if any algorithm has a clear
advantage over the others. To this end, Li et al. [49] compared
the performance of eight different representative algorithms
with a total of eleven test functions in 2013. However, studies
on solving MaOPs have increased greatly since 2013. Fig. 1
shows the research trends of many-objective optimization,
as indicated by the number of publications in this field from
2003 to 2016 in the Core Collection of Web of Science.
Many approaches have been proposed in the most recent four
years. In 2016, Ma et al. [50] conducted a comparative study
only on decomposition-based approaches for many-objective
optimization. In addition, a large number of state-of-the-
art many-objective algorithms (21 algorithms in total) are
examined in [51]. However, only WFG1-9 test problems are
used for performance comparison. Thus, this work provides
a systematic comparison of 13 algorithms covering different
popular categories of approaches and recently proposed novel
algorithms and applies three groups of test functions (17 test
functions in total) to evaluate the above algorithms.

Il. THE THIRTEEN INVESTIGATED ALGORITHMS

In this part, the 13 algorithms investigated in this paper are
introduced. These algorithms are introduced in chronological
order.

o MSOPS-II is an improved version of MSOPS for many-
objective optimization that uses a set of target vectors to
direct and control the search process based on the cho-
sen aggregation method. MSOPS-II applies two exten-
sions to MSOPS. The first extension is the redefinition
of the fitness assignment process to simplify analysis
and enable more comprehensive constraint handling.
The second extension permits automatic generation of
the target vector, with no need to specify a search direc-
tion a priori.

VOLUME 6, 2018



li et al.: Evolutionary Many-Objective Optimization: Comparative Study of the State-of-the-Art

IEEE Access

The operation of MSOPS is to generate a set of T
target vectors. For every target vector, the performance
of every individual in the population (size P) is eval-
uated based on the chosen aggregation/target vector
method(s). Thus each of the P members of the pop-
ulation has a set of scores, held in a score matrix S
with dimensions P x T. Each column of the matrix
S is now ranked, with the best performing population
member being given rank one and the worst a rank P.
MSOPS sorts the individual of population based on these
aggregated rank instead of objective functions.

In MSOPS-1I, the aggregate fitness of the i’ member of
P has been redefined as follows:

1) for each column (target vector), find the minimum
and second smallest metric value (from valid population
members only),

2) scale each column by the minimum value found,
except for the row which gave the minimum value: use
the second lowest to scale this result,

3) for each row (population member), find the minimum
scaled value to represent fitness, resulting in a column
vector as the final aggregate fitness,

4) sort column vector to rank population.

Moreover, MSOPS-II designs an automatic target vector
generation system, that uses the current population to
provide the source for the new target vectors instead
of specifying them a-priori. Those modifications make
MSOPS-II a general-purpose many objective optimiza-
tion algorithm, requiring minimal initial configuration.

MOEA/D decomposes a multi/many-objective problem
into a set of single-objective problems with uniformly
distributed weight vectors and optimizes them simul-
taneously. Each problem is optimized and updated by
the information from its neighbouring problems. The
neighbourhood relations are defined based on the dis-
tances among their weight vectors. Several aggrega-
tion functions, weighted sum (WS), Tchebycheff and
penalty-based boundary intersection (PBI), can be used
in MOEA/D. The brief process of MOEA/D is intro-
duced as follows:

1) give a uniform spread of N weight vectors:
AL, ..., AN, while generating a N-sized initial pop-
ulation; compute the Euclidean distances between
any two weight vectors and then work out the
T closest weight vectors to each weight vector i,
forming the neighbourhood set B(i).

2) for each i in N, perform genetic operators to gen-
erate a new solution y from two randomly chosen
solutions in neighbourhood B(7) in a probability,
and then update neighbouring solutions if y is bet-
ter, evaluated by the chosen aggregation function.

3) repeat 2) if stopping criteria is not satisfied.

In this work, PBI is selected as the aggregation func-
tion since it shows more competitive performance
than other functions when solving problems with a
high-dimensional objective space [49]. More advanced
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variants of MOEA/D, e.g., MOEA/D-STM [52] and
MOEA/D-PaS [53], are discussed in [54].

HypE is a hypervolume-based algorithm designed for
many-objective optimization. Monte Carlo simulation
is adopted to approximate the exact hypervolume val-
ues, thereby significantly reducing the computational
cost. Moreover, HypE applies the rankings of solutions
induced by HV values instead of the actual HV values.
In HypE, the hypervolume-based fitness of a solution
is not only calculated based on its own hypervolume
contribution but also the hypervolume contribution asso-
ciated with other solutions. This is a more refined
approach than that adopted in the other hypervolume-
based approaches, such as the S metric selection-
based evolutionary multi-objective optimization algo-
rithm (SMS-EMOA), in which contribution calculations
are limited to single solutions, without consideration
of the wider population context. Experimental results
indicate that HypE is highly effective for many-objective
problems and represents a trade-off between the accu-
racy of hypervolume estimation and computing cost.
PICEA-g is a realization of the preference-inspired
coevolutionary algorithm (PICEA). In PICEAsS, a family
of decision-maker preferences are coevolved together
with the candidate solutions. The use of coevolution as
the adaptation mechanism is particularly notable as it
is very challenging to harness the power of coevolution
for the purposes of optimization (rather than simply to
explore coevolutionary dynamics). It focuses on the a
posteriori optimization to provide decision makers with
the approximation of the entire Pareto front.

1) In PICEA-g, first, a population of candidate solu-
tions S of fixed size N and a population of prefer-
ence sets G of fixed size NGoal are initialized.

2) In each generation t, N offspring Sc(¢) are pro-
duced by applying genetic variation operators to
parents S(¢). Simultaneously, NGoal new prefer-
ence sets Ge(t), are randomly regenerated based on
the initial bounds.

3) The combined populations, S(¢)+ Sc(¢) and G(¢) +
Gc(t), are sorted according to the fitness. The
method of calculating fitness of a candidate solu-
tion and a preference is based on the fitness assign-
ment method of [55].

4) Accordingly, the best N solutions are selected as
new parent population S(¢ 4 1), and the best NGoal
solutions are selected as new preference population
G(t+1).

In systematic comparisons of PICEA-g with other repre-
sentative methods, PICEA-g shows competitive perfor-
mance as the number of objectives increases.

SDE was proposed as a general modification of the
diversity maintenance mechanism to make Pareto-based
algorithms suitable for many-objective optimization.
The idea of SDE is to put individuals with poor conver-
gence into crowded regions. Thus, individuals that are
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poorly converged will be eliminated easily during the
evolution as they will be assigned a higher density value.
More specifically, when estimating the density of an
individual p, SDE shifts the positions of other indi-
viduals in the population according to the convergence
comparison between these individuals and p on each
objective. If an individual performs better than p for an
objective, it will be shifted to the same position of p
on this objective; otherwise, it remains unchanged. This
process would assign p a higher density value if it has
a poor convergence. Thus, only the individual with both
good convergence and good diversity has alow crowding
degree in SDE.

The application of SDE in three popular Pareto-based
algorithms validates its efficiency in many-objective
optimization. Here, the application of SDE in the
SPEA?2 algorithm (SPEA2+4-SDE) is selected to conduct
experiments.

GrEA is a grid-based evolutionary algorithm for solv-
ing many-objective problems aimed at balancing the
convergence and diversity of solutions. To strengthen
the selection pressure towards the optimal direction,
the grid dominance and grid difference are introduced
to determine the mutual relationships of individuals in
a grid environment. Moreover, the fitness assignment
process is modified by three grid-based criteria (grid
ranking(GR), grid crowding distance(GCD), and grid
coordinate point distance(GCPD)). The basic procedure
of GrEA is similar to NSGA-II. The initial population
P and the grid environment for the current population
P are set at first. Then the fitness of individuals in P is
assigned according to their location in the grid, evaluated
by GR, GCD, and GCPD. Mating selection is performed
to pick out promising solutions for variation. Finally,
the environmental selection procedure is implemented
according to the grid-based fitness of individuals.
NSGA-III uses the framework of the NSGA-II proce-
dure with significant modifications in its crowding dis-
tance operator to tackle MaOPs. It is an elitist approach
and the basic procedure is similar to NSGA-II: the parent
and offspring population are combined and evaluated
using a fast nondominated sorting approach and an effi-
cient crowding scheme. When more than N population
members of the combined population belong to the
nondominated set, only those with a better crowding
measure are chosen.

In NSGA-III, the crowding distance operator is replaced
with the following approaches. First, a number of well-
spread reference points, similar to the weight vectors
in MOEA/D, are applied to maintain the diversity
among population members. Each population mem-
ber is associated with a reference point based on
its perpendicular distance to the reference line. Then,
non-dominated solutions close to the reference points
are prioritized. After the generation of offspring solu-
tions, the non-dominated sorting method and elitism

26198

mechanism are employed following the procedure
in NSGA-IL.

KnEA is a knee point-driven evolutionary algorithm
for solving many-objective problems. In KnEA, solu-
tions for the next generation are first selected based on
the non-dominance selection criterion, and then knee
points are used as the secondary selection criterion. The
work shows that preference over knee points can be
approximately viewed as a bias towards larger HV, thus
maintaining good convergence and diversity.

The basic procedure of KnEA is similar to NSGA-IIL.
First, an initial parent population of size N is randomly
generated. Second, N offspring individuals are selected
from the parent population by a binary tournament strat-
egy using a variation method. In the binary tournament
selection, three tournament metrics are adopted, namely,
the dominance relationship, the knee point criterion, and
a weighted distance measure. Third, nondominated sort-
ing is performed on the combination of the parent and
offspring population, followed by an adaptive strategy
to identify solutions located in the knee regions of each
nondominated front in the combined population. Fourth,
an environmental selection is conducted to select N indi-
viduals as the parent population of the next generation.
RVEA applies a framework similar to that of the
NSGA-II algorithm, from which RVEA adopts an
elitism strategy, where the offspring population is gen-
erated using traditional genetic operations, and then the
offspring population is combined with the parent pop-
ulation to undergo an elitism selection. The main new
contributions in the RVEA lie in the two other compo-
nents, i.e., the reference vector guided selection and the
reference vector adaptation. RVEA uses the reference
vectors to partition the objective space into a number of
subspaces, where the selection is performed separately.
To obtain a uniform distribution of Pareto optimal solu-
tions, an adaptive strategy of reference vectors is pro-
posed to deal with objective functions that are not well
normalized. In addition, RVEA applies a scalarization
approach called the angle penalized distance (APD) to
dynamically balance the convergence and diversity of
solutions in high-dimensional objective space.
Two_Arch2 is a significantly improved version of the
two-archive algorithm (Two_Arch), which is a low-
complexity algorithm with two archives that focus on
convergence (CA) and diversity (DA) separately. The
basic framework of Two_Arch2 is similar to general
MOEAs (reproduction and iteration). The main differ-
ence is that the nondominated solution set is divided
into two archives (CA and DA). After the generation
of children, the environmental selection is performed
by CA and DA, separately. Different from Two_Arch,
Two_Arch2 makes crossover between CA and DA but
mutation on CA only during the process of reproduc-
tion. Moreover, the I indicator and a L, norm based
crowding distance metric are applied to the individuals
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in CA and DA, respectively. As the diversity of CA
is too poor, Two_Arch2 use DA as the final output,
which is different from the union set of CA and DA
in Two_Arch. Two_Arch2 is reported to solve many-
objective problems with satisfactory convergence, diver-
sity, and complexity.

o O—DEA introduces a new dominance relation, termed

6 dominance, to improve the convergence of NSGA-III
by referring to the procedure of the MOEA/D algo-
rithm, while preserving the strength of NSGA-III in its
diversity maintenance. In 6 dominance, given a set of
well-spread reference points, solutions are clustered into
different groups, with each group represented by a refer-
ence point. Competitive relationships between solutions
only exist in the same cluster, where a fitness function
similar to PBI is defined. Based on the 6-dominance
relation, the combined parent-offspring population is
sorted into different non-domination levels, and a new
population is constructed as in NSGA-III.
The framework of 8 —DEA is briefly described as fol-
lows. First, a set of N reference points, the initial popu-
lation Py of size N, the ideal point z* and the nadir point
2" are generated. z* and z"“? are updated during the
search. The offspring population is produced by using
the recombination operator, which is then combined
with the current population to form a new population.
Next, a population S; is obtained according to the Pareto
non-domination level. The normalization procedure is
executed to S; assisted by z* and 2% After normaliza-
tion, the clustering operator is used to split the members
in Sy into a set of N clusters, where each cluster is rep-
resented by a reference point. Then, the nondominated
sorting based on & dominance (not Pareto dominance) is
employed to classify S; into different 6-nondomination
levels. Once 6-nondominated sorting has been finished,
the remaining steps fill the population slots in P, using
one level at a time.

« MOEA/DD is a combination of MOEA/D and
NSGA-III for many-objective optimization, exploit-
ing the merits offered by both dominance and
decomposition-based approaches. Each weight vector in
MOEA/DD defines a subproblem, while also specifying
a unique subregion in the objective space. To maintain
the diversity in a high-dimensional objective space,
the density of a population is estimated by the local niche
count of a subregion. In the population updating process
of MOEA/DD, only one offspring solution is consid-
ered each time. That is to say, multiple rounds of this
update procedure will be implemented if more than one
offspring solution have been generated. Upon updating,
the associated subregion of the offspring solution x¢ is
identified at first. Then, x° is combined with the parent
population P to form a hybrid population P’. The method
proposed in [56] is used to update the nondomination
level structure of the population after introducing an
offspring solution.
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o AnD is a very simple and efficient approach which is
free from the use of the Pareto relationship, the ref-
erence vectors or points and the performance indi-
cators. Instead, it only makes use of two strategies
(i.e., the angle-based selection strategy and the shift-
based density estimation strategy) to delete the poor
individuals one by one in the environmental selection
process. More specifically, the angle based selection
strategy is employed to maintain the diversity of the
search directions and it can be used to identify a pair
of solutions with the minimum vector, which means
these two solutions search in the most similar directions.
Subsequently, the shift-based density estimation strategy
is conducted to differentiate these two solutions consid-
ering both the diversity and convergence performance,
and then delete the inferior one. The experimental results
indicate that AnD can achieve a highly competitive per-
formance when comparing with seven state-of-the-art
MaOEAs. In addition, AnD can also be conveniently
extended (C-AnD) for solving constrained MaOPs.

TABLE 1. The categories of thirteen selected algorithms.

C1: decomposition-based approaches. C2: indicator-based approaches.
C3: approaches that modify the secondary diversity-based selection
criterion. C4: approaches that modify the traditional dominance relation.
C5: preference-based approaches.

Algorithms ~ Categories ~ Algorithms  Categories
MSOPS-II Cl KnEA Cc3
MOEA/D Cl RVEA C1,C5
HypE C2 Two_Arch2 (O3]
PICEA-g C5 0—DEA C1,Cc4
SDE C3 MOEA/DD C1,C3
GrEA C4 AnD c4
NSGA-III C1,C3

Overall, the main differences and similarities of the thirteen
algorithms above can be summarized by the their categories
as discussed in Introduction, as shown in Table 1. In this
sense, MSOPS-II and MOEA/D are decomposition-based
methods (let this category be Category C1), which does not
apply the Pareto dominance relation. HypE is non-Pareto-
based approach as well, which belongs to the indicator-based
approach (Category C2). SDE and KnEA are still Pareto-
based approaches but they modify the secondary diversity-
based selection criterion to better solve MaOPs (Category
C3). Moreover, GrEA, 6 —DEA and AnD modify the tra-
ditional dominance relation to enhance the selection pres-
sure (Category C4). PICEA-g is a preference-based approach
(Category C5) and Two_Arch2 can be considered as this cat-
egory to some extent. In terms of RVEA, when a set of evenly
distributed reference vectors are generated for achieving rep-
resentative solutions of the whole PF, the proposed RVEA can
be considered as one of the decomposition-based approaches.
However, if user preferences are available and a set of specific
reference vectors are generated for achieving only a preferred
section of the PF, RVEA can also be seen as a preference
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based approach. In addition, MOEA/DD and NSGA-III can
be categorized into both the C1 and C3 category, as they use
hybrid mechanisms of the Pareto dominance-based fitness
evaluation and the decomposition-based techniques.

TABLE 2. The properties of test instances in WFG problem suite.

Problem Properties

WFG1 Convex, Mixed, Biased, Unimodal

WFG2 Convex, Disconnected, Non-separable

WEFG3 Linear, Partially degenerate, Unimodal, Non-separable
WFG4 Concave, Multimodal

WEFG5 Concave, Deceptive

WEG6 Concave, Unimodal, Non-separable

WEG7 Concave, Biased, Unimodal

WFG8 Concave, Biased, Unimodal, Non-separable
WFG9 Concave, Biased, Multimodal, Deceptive, Non-separable

lIl. EXPERIMENTAL DESIGN

A. TEST PROBLEMS

Three problem suites are used in this study: WFG [57],
MaF [58], and Pareto-Box [59]. Problem attributes of separa-
bility or nonseparability, unimodality or multimodality, unbi-
ased or biased parameters, and convex or concave geometries
are all covered.

o WFG is a commonly used continuous benchmark func-
tion and is scalable to any number of objectives.
To achieve a thorough comparison, all test instances in
WFG (9 test functions) are considered in this paper.
Table 2 lists the properties of WFG problems.

o MaF is a benchmark function suite proposed in 2017 to
promote research on evolutionary many-objective opti-
mization. Fifteen benchmark functions are designed in
MaF with diverse properties that provide a good repre-
sentation of various real-world scenarios. Due to space
limitations, seven representative problems with different
characteristics are selected to evaluate the algorithms.
The properties of the seven test functions are summa-
rized in Table 3.

o The Pareto-Box problem is a simple and interesting
many-objective test function developed by Képpen and
Yoshida [59] and extended by Ishibuchi ez al. [60]. There
are two characteristics of the Pareto-Box problem. One
is that its Pareto optimal set in the decision space is
one (or several) two-dimensional closure(s). The sec-
ond important characteristic is that the crowding in its
decision space is closely related to the crowding in
its objective space. Thus, we can view the distribution
of solutions in the decision space while inferring the
behaviour of algorithms in the objective.

B. PERFORMANCE METRICS

The widely used performance metrics of inverted genera-
tional distance (IGD) [10] and hypervolume (HV) [61] are
used in this work to evaluate the performance of all compared
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algorithms. IGD and HV can measure both convergence and
diversity.

Inverted Generational Distance (IGD): Let P* be a set of
uniformly distributed reference points on the Pareto front and
P be the set of solutions obtained by an EMO algorithm. The
IGD value of P can be defined as follows:

ZVGP* d(V, P)

IGD(P, P*) = =

ey
where d(v, P) is the Euclidean distance from point v € P*
to its nearest point in P. |P*| is the cardinality of P*. Here,
the number of reference points is taken as 10,000 in the
computational experiments. The smaller the IGD, the better
the quality of P for approximating the whole PF.

Hypervolume (HV): Let y* = (3], ..., y;,) be a reference
point in the objective space dominated by all Pareto optimal
solutions. The HV metric measures the size of the region
that is dominated by P and dominates y*. Given a reference
point y*, a larger HV value indicates better performance. The
selection of the reference point is an important issue. It is bet-
ter for y* to be slightly larger than the maximum value of each
objective to emphasize the balance between convergence and
diversity. Here, the reference pointis set as 1.1 times the upper
bound of the Pareto front, as recommended by [60].

C. GENERAL EXPERIMENTAL SETTINGS

In our experimental study, all test results are obtained from a
recently developed software platform, PlatEMO! [62], which
has more than 50 representative algorithms and more than
100 benchmark functions. Assume that D is the number of
decision variables and M is the number of objectives. For
each selected test problem, M is taken as 2, 3 or 7.

o For MaF test instances, the number of decision variables
issetas D = M + K — 1, where K is set as 10 for
problems MaF1-MaF6 and 20 for problem MaF7.

o For WFG test instances, the number of decision
variables is set as D = M + 9. The number of position-
related variables K = M —1, and the number of distance-
related variables L = D — K.

o The simulated binary crossover (SBX) operator is
applied for crossover, and polynomial mutation is used
for mutation, with distribution indexes both set to 20.

o The population size N is set to 100. The final results
are obtained by executing 31 independent runs of each
algorithm after 250%100 evaluations.

o We set the parameters of the algorithms as recommended
in their original papers or some relevant literatures. The
specific parameter settings in each algorithm are shown
in Table 4. Here, N is the population size and M is the
number of objectives. It is noted that the best parameters
recommended by the authors of GrEA and KnEA are
also associated with the specific problems, e.g., div = 10
for 3-objective WFG1. However, we use the same set of

1PlatEMO can be downloaded at http://bimk.ahu.edu.cn/index.php?s=/
Index/Software/index.html
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TABLE 3. The properties of test instances in MaF problem suite.

Problem  Properties Note

MaF1 Linear No single optimal solution in any subset
of objectives

MaF2 Concave No single optimal solution in any subset
of objectives

MaF3 Convex, Multimodal

MaF4 Concave, Multimodal Badly-scaled and no single optimal solu-
tion in any sub-set of objectives

MaF5 Convex, Biased Badly-scaled

MaF6 Concave, Degenerate

MaF7 Mixed, Disconnected, Multimodal

TABLE 4. The parameters of the test algorithms. N is the population size and M is the number of objectives.

Algorithms Parameters
MOEA/D The penalty parameter 6 of the PBI function: 5, neighbourhood size T: N/10
HypE The number of sampling points: 10,000
PICEA-g The number of preferences N Goal: 100 « M
SDE Archive size: N
GrEA The grid division div = 45 for 2 objectives, div = 15 for 3 objectives and div = 8 for 7 objectives
KnEA The rate of knee points in population K = 0.6 for 2 objectives and K = 0.5 for other conditions.
RVEA The index « of penalty function: 2, the frequency f;- of reference vector adaptation: 0.1
Two_Arch2 The sizes of CA and DA: N, the p for L,-norm-based distances: 1/M
0-DEA The penalty parameter 0: 5
MOEA/DD  The penalty parameter 6 of the PBI function: 5, neighbourhood size T: N/10, neighbourhood selection probability §: 0.9

TABLE 5. HV results (Mean and SD) of the 13 algorithms on the 2-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA NSGAIII KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD
WEGI 2 11 5.7269¢+0 4.0578e+0 4.5281e+0 5.6664e+0 5.9717e+0 6.0119e+0 5.5877e+0 5.7855e+0 3.8278e+0 5.5287e+0 5.5124e+0 5.2285e+0 5.2936e+0
(5.19e-1)  (2.72e-1)  (5.96e-1) (1.74e-1)  (3.07e-1)  (4.33e-1) (1.76e-1) (4.06e-1) (2.02e-1)  (5.16e-1)  (3.76e-1)  (1.94e-1)  (1.74e-1)
WEG2 2 11 6.1004e+0 5.8777e+0 6.1297e+0 6.0947e+0 6.1210e+0 6.1007e+0 6.1103e+0 4.6332e+0 5.8352e+0 6.1048e+0 6.0923e+0 6.0902e+0 6.0793e+0
(8.43e-3) (1.43e-1) (4.46e-3) (4.86e-2) (6.20e-3)  (4.35e-3) (6.23e-3) (5.53e-1) (5.60e-2)  (1.66e-2)  (4.76e-2) (1.25e-2) (1.44e-2)
WEG3 2 11 5.6060e+0 5.5267¢+0 5.6236e+0 5.5776e+0 5.6163e+0 5.5844e+0 5.6104e+0 5.6023e+0 5.3659e+0 5.6057e+0 5.6150e+0 5.5988e+0 5.5898e+0
(7.10e-3)  (3.03e-2)  (4.52¢-3) (1.08¢-2)  (2.27e-3)  (4.35¢-3) (7.33¢-3) (9.70e-3) (5.61e-2)  (1.28e-2)  (5.0le-3) (1.17e-2)  (1.10e-2)
WEG4 2 11 3.3410e+0 3.2323e+0 3.3636e+0 3.3228e+0 3.3532e+0 3.3285e+0 3.3456e+0 3.3009e+0 3.0510e+0 3.3572e+0 3.3462e+0 3.3390e+0 3.3415¢+0
(3.06e-3)  (2.70e-2)  (1.43e-3) (7.24e-3)  (231e-3)  (2.05e-3) (4.70e-3) (2.20e-2) (4.68e-2)  (3.10e-3)  (3.23e-3) (7.53e-3) (3.92¢-3)
WEGS 2 11 3.0189%¢+0 2.9619¢+0 3.0333e+0 3.0133e+0 3.0125¢+0 2.9844e+0 3.0224e+0 2.9405¢+0 2.8835e+0 3.0231e+0 3.015le+0 2.9949e+0 3.0200e+0
(4.59-3)  (6.29¢-3) (1.39%¢-2) (2.07e-2)  (2.00e-2)  (2.09¢-2) (1.21e-2) (5.02e-2) (3.58e-2) (2.15e-2)  (1.99%e-2) (2.2le-2) (1.42e-2)
WEGE 2 11 2.9624e+0 2.8820e+0 2.9595e+0 2.8711e+0 2.9387e+0 2.9528e+0 2.9127e+0 2.0673e+0 2.6033e+0 2.9906e+0 2.9406e+0 2.9177e+0 2.9404e+0
(1.18e-1)  (1.21e-1)  (1.12e-1)  (1.05e-1)  (1.00e-1)  (1.50e-1) (1.29e-1) (2.33e-1) (1.08e-1)  (l.1le-1)  (7.60e-2) (1.02e-1)  (9.97e-2)
WEGT 2 11 3.3394e+0 3.2300e+0 3.3662e+0 3.3327e+0 3.3563e+0 3.3291e+0 3.3531e+0 2.8652e+0 3.1496e+0 3.3623e+0 3.3534e+0 3.3456e+0 3.3437e+0
(2.28e-3)  (1.68e-2) (5.20e-4) (3.87e-3)  (1.6le-3)  (1.20e-3) (1.57e-3) (1.84e-1) (2.64e-2) (6.93e-4) (1.62e-3) (1.79%-3) (2.72e-3)
WEGS 2 11 2.7762e+0 2.7076e+0 2.7973e+0 2.7488e+0 2.7865e+0 2.7758e+0 2.7766e+0 1.4156e+0 2.3644e+0 2.7890e+0 2.7702e+0 2.7789%e+0 2.7592¢+0
(1.33¢-2)  (3.44e-2) (1.09¢-2) (1.17e-2)  (8.82e-3)  (4.35¢-3) (8.53¢-3) (1.21e-1) (5.62¢-2)  (2.09¢-2)  (1.28e-2) (9.40e-3)  (9.98¢-3)
WFGY 3.1560e+0 2.9861e+0 3.3157e+0 3.1493e+0 3.2928e+0 3.2665e+0 3.2641e+0 3.1901e+0 3.1106e+0 3.3016e+0 3.2674e+0 3.2642e+0 3.2562e+0
(3.93¢e-1)  (2.72e-1)  (1.06e-2) (2.66e-1)  (1.75e-2)  (1.93e-2) (1.60e-2) (2.35e-1) (2.90e-2)  (2.07e-2)  (2.05e-2) (1.76e-2)  (1.84e-2)

parameters for all problem instances, which is a little dif-
ferent from the best one. This difference should not lead
to a large deterioration of the results if this algorithm
is robust to minor changes in parameters, which should
also be an assessment of the algorithm.

IV. RESULTS AND DISCUSSION

To ensure clarity in the result comparisons, the results are
presented in two stages. First, each of the 16 test problems
on which the performances of the different algorithms are
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compared is listed and introduced separately. Due to the
large number of algorithms and test instances, the results
for the HV metric are first illustrated in this comparison
stage. Then, all of the results are summarized in terms of
both HV and IGD. A variety of conclusions and differences
between the behaviours of the HV and IGD metrics are
obtained.

The HV values obtained by the 13 algorithms (mean and
standard deviation) on 2-, 3- and 7-objective WFG and MaF
problems are presented in Tables 5, 6, 7, 8, 9, and 10.
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TABLE 6. HV results (Mean and SD) of the 13 algorithms on the 3-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA NSGAIII KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD
WEGI 3 12 5.1126e+1 4.0333e+1 4.0727e+1 3.2010e+1 5.5223e+1 5.2279%+1 4.5021e+1 52412e+1 4.2492e+1 4.7383e+1 4.764le+1 3.1662e+1 4.6596e+1
(2.46e+0)  (3.12e+0) (2.21e+0) (3.25e+0)  (2.21e+0)  (1.91e+0) (2.52e+0) (2.10e+0) (2.01e+0) (3.89e+0) (2.66e+0) (3.51e+0) (1.68e+0)
WEG2 3 12 5.8898e+1 5.6393e+1 5.972le+l 5.8787e+1 5.9408e+1 5.8985e+1 59174e+l 59183e+l 5.8634e+l 5.9525e+1 5.9383e+1 5.8858e+1 5.9015e+1
(1.95e-1)  (1.06e+0) (6.12e-2)  (3.56e-1)  (1.60e-1)  (1.71e-1) (8.72e-2) (1.27e-1) (2.46e-1)  (1.6le-1)  (1.36e-1) (2.22e-1) (1.58e-1)
WFGZ 3 12 6.1101e+0 5.4032e+0 6.5857e+0 5.8623¢+0 6.3197e¢+0 6.2468e+0 6.0228e+0 5.7085¢+0 5.2051e+0 6.2051e+0 6.0672¢+0 5.1317e+0 5.7264e+0
(2.35e-1)  (3.69-1) (1.19¢-2) (9.11e-2)  (7.17e-2)  (8.13e-2) (8.34e-2) (4.77e-1) (l.64e-1) (7.67e-2) (L.13e-1) (5.19e-1) (1.25e-1)
WEG4 3 12 3.4142e+1 3.3536e+1 3.5640e+1 3.3608e+1 3.5203e+1 3.5396e+1 3.5064e+1 3.4245e+1 3.454le+l 3.513%e+1 3.512le+] 3.4594e+1 3.4800e+1
(2.24e-1)  (2.24e-1)  (7.08¢-2) (1.64e-1)  (1.25e-1)  (7.02e-2) (1.40e-1) (2.29e-1) (1.71e-1)  (1.72e-1)  (9.78e-2) (1.52e-1)  (1.37e-1)
WEGS 3 12 3.2028e+1 3.1740e+1 3.303%+1 3.1966e+1 3.2967e+1 3.2939e+1 3.3030e+1 3.2204e+1 3.2778e+1 3.2595e+1 3.3013e+1 3.2485e+1 3.2893e+1
(2.66e-1)  (1.61e-1) (4.7%-2) (2.72e-1)  (9.75e-2)  (1.68e-1) (4.11e-2) (2.88e-1) (1.57e-1)  (2.06e-1)  (2.07e-1) (8.05e-2)  (6.75e-2)
WEG6 3 12 3.0432e+1 3.0040e+1 3.2511e+l 3.0473e+1 3.2028e+1 3.2043e+1 3.1592e+1 3.0655e+1 3.1352e+1 3.2319e+1 3.1857e+1 3.1424e+1 3.2232e+l1
(8.62e-1)  (6.90e-1) (1.10e+0) (1.18e+0)  (8.8le-1)  (7.94e-1) (9.19e-1) (5.77e-1) (1.29e+0) (1.03e+0)  (8.56e-1) (1.11e+0) (1.03e+0)
WEGT 3 12 3.4205e+1 3.0991e+1 3.5463e+1 3.4086e+1 3.552le+l B3.5657e+l 3.5219e+1 3.4676e+1 3.4629e+1 3.5493e+l 3.5327e+1 3.4589e+1 3.5215e+1
(2.80e-1)  (1.44e+0) (8.35e-2)  (1.80e-1)  (9.79%e-2)  (5.65e-2) (7.07e-2) (2.75e-1) (1.74e-1)  (7.00e-2)  (5.7le-2) (1.02e-1)  (I.16e-1)
WEGS 3 12 2.7389e+1 2.8476e+1 2.9716e+1 2.8473e+1 3.0265e+1 3.0312e+1 2.9502e+1 2.8588e+1 2.8932e+1 2.9843e+1 2.9529e+1 2.9255e+1 2.9305e+1
(2.18e-1)  (4.93e-1) (1.23e-1) (2.67e-1)  (1.28e-1)  (9.64e-2) (1.96e-1) (3.18e-1) (4.74e-1)  (1.66e-1)  (2.04e-1) (2.28e-1) (1.7le-1)
WEGY 3 12 3.2996e+1 2.9486e+1 3.4826e+1 3.2241e+1 3.4098e+1 3.4302e+1 3.2742e+1 3.3413e+1 3.2922e+1 3.3809e+1 3.3040c+1 3.3016e+1 3.3589%e+1
(2.09¢+0)  (2.05e+0) (1.61e-1) (7.77e-1)  (2.63e-1)  (1.19e-1) (1.99e+0) (2.49¢-1) (4.23e-1)  (3.35e-1)  (1.95¢+0) (2.09¢-1)  (6.52¢-1)

TABLE 7. HV results (Mean and SD) of the 13 algorithms on the 7-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA NSGAIIT KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD
WEGI 7 16 1.0597e+6 6.7814e+5 [1.0152e+6 3.7052e+5 9.4067e+5 9.0173e+5 6.7005e+5 7.6370e+5 7.1587e+5 6.2475e+5 8.6348e+5 6.2374e+5 7.3361e+5
(6.98e+4) (1.03e+5) (1.09e+5) (2.3le+4) (7.45e+4) (9.08e+4) (5.83e+4) (4.87e+4) (6.6le+4) (7.16e+4) (1.18e+5) (7.10e+4) (5.0le+4)
WEG2 7 16 1.245%¢+6 1.0982e+6 [1.2533e+6 1.2052e+6 1.2208e+6 1.2188e+6 1.2357e+6 1.2340e+6 1.2027e+6  1.2353e+6 1.2136e+6 1.1823e+6 1.2460e+6
(7.89¢+3)  (5.91e+4) (1.60e+3) (1.07e+4)  (7.96e+3)  (6.92e+3) (6.87e+3) (5.22e+3) (1.38e+4)  (4.80e+3)  (1.60e+4) (1.03e+4) (3.18e+3)
WFG3 7 16 2.2280e-1 0.0000e+0 2.5137e-1 0.0000e+0 2.5654e-3  1.4401e-2 2.5049¢-2 0.0000e+0 0.0000e+0 8.9220e-3  1.0394e-1  0.0000e+0 3.6690e-2
(1.27e-2)  (0.00e+0) (9.41e-3)  (0.00e+0)  (5.17e-3)  (2.28e-2) (2.41e-2) (0.00e+0) (0.00e+0)  (1.69e-2)  (2.67e-2) (0.00e+0) (1.70e-2)
WEGE 7 16 1.0543¢+6 4.5993e+5 8.5398e+5 9.0674e+5 1.0003e+6 [1.0330e+6 1.0497e+6 1.0455¢+6 1.0332e+6 8.8404e+5 [1.0583e+6 1.0007e+6 1.0295¢+6
(8.39e+3)  (7.66e+4) (6.86e+4) (1.88e+4)  (8.53e+3) (7.16e+3) (1.98e+4) (7.76e+3) (1.77e+4) (1.13e+4) (5.46e+3) (1.23e+4) (1.30e+4)
WEGS 7 16 9.5088e+5 4.9829e+5 1.0147e+6 8.4682e+5 9.6742e+5 9.9047e+5 [1.0101e+6 9.6967e+5 [1.0090e+6 8.463%e+5 [1.0131e+6 9.2436e+5 9.8610e+5
(9.74e+3)  (4.00e+4) (2.30e+4) (2.05e+4)  (8.44e+3)  (5.08e+3) (3.23e+3) (7.67e+3) (5.70e+3) (1.22e+4) (2.24e+3) (1.50e+4) (6.57e+3)
WEG6 7 16 9.4253¢+5 2.9428e+5 9.7930e+5 8.1007e+5 9.4228e+5 9.5978e+5 9.7440e+5 9.0745e+5 9.4762e+5 7.9656e+5 9.7788e+5 8.9230e+5 9.6920e+5
(3.23e+4) (3.25e+4) (3.90e+4) (2.65e+4) (2.28e+4) (2.65e+4) (3.0le+4) (3.28e+4) (3.21e+4) (2.60e+4) (2.25e+4) (3.34e+4) (2.67e+4)
WEGT 7 16 1.0421e+6 4.2584e+5 1.0239e+6 8.7506e+5 1.0408e+6 [1.0714e+6 1.0574e+6 1.0419¢+6 1.0357e+6 9.0888e+5 [1.0708e+6 1.0062e+6 [1.0640e+6
(1.07e+4)  (4.8le+4) (4.79e+4) (3.25e+4)  (6.79e+3)  (7.19e+3) (8.72e+3) (1.21e+4) (2.09e+4) (1.62e+4) (5.99e+3) (1.88e+4) (5.96e+3)
WFGS 7 16 7.3295e+5 4.3223e+4 9.3137e+5 7.7498e+5 9.1649e+5 8.3782e+5 8.7260e+5 8.0024e+5 7.1463e+5 6.8366e+5 8.7966e+5 8.5141le+5 8.5580e+5
(2.25e+4)  (4.46e+4) (1.50e+4) (2.35e+4)  (9.21e+3)  (1.96e+4) (2.01e+d) (3.20e+4) (9.72e+4)  (1.60e+4) (1.09e+4) (1.94e+d) (3.14e+4)
WEGY 7 16 8.7803e+5 3.7184e+5 9.7818e+5 7.3898e+5 9.4424e+5  9.6204e+5 9.3590e+5 9.6448e+5 9.1356e+5  8.1836e+5 9.6162e+5 7.8588e+5 9.4747¢+5
(7.97e+4)  (1.33e+5) (9.0le+4) (5.50e+4)  (1.58e+4) (1.12e+4) (4.23e+4) (4.99e+4) (3.6le+4) (3.38e+4) (4.37e+4) (5.30e+4) (4.48c+4)

TABLE 8. HV results (Mean and SD) of the 13 algorithms on the 2-objective MaF problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD  HypE  PICEA-g SPEA2SDE  GrEA  NSGAII  KnEA  RVEA Two_Arch2 6-DEA MOEADD  AnD
MaEl o p 0098e-l 0492 TO476ed 703981 703981 6.9890e-1 704920 70239%-1 FOBIel 704321 0493 [0493ed 7.0226e-1
(687c-4)  (3.94c-6) (2.38¢-5) (1.3le-4)  (3.08¢-4)  (7.96¢-5) (1.12¢-5) (4.54e-4) (6.94c-5) (643c-6) (5.27e-6) (4.83¢-6) (4.660-4)
Marz o qy 2138l 203421 20435l 20394l 21414el 212981 214251 1976Te-l 213121 21423l 21430e1 212031 213791
(1.19e-4)  (1.84e-4) (643¢-6) (4.65¢5) (3.85¢-5) (5.52e-5) (7.08¢-5) (544e3) (1.75e-4)  (6.94e-6)  (2.64e-5) (3.24e4)  (7.32e-5)
MaFs o gy 10152 526531 4.5060c-1 0.0000e+0 5636%e] 513891 43498c-1 48506e-1 L6746e2 34074e-2 273621 0.0000¢+0 0.0000e+0
(740e2)  (24de-1)  (3.57e-1)  (0.00e+0)  (3.59%-1)  (B12e-1)  (3d9%-1) (3.70e-1) (649e2) (943¢-2)  (348¢-1) (0.00e40)  (0.00¢+0)
Mabd oy O7087e+0 52863e+0 GOT0IH0 43490040 6A118e+0 5278340 50135e40 6.2956e+0 2268640 3691940 GOBAIEH0 1.6247e+0 4.8977e-1
(1.76e40)  (2.59¢40) (1.70e40) (3.07e+0)  (2.00e40)  (2.64e40) (3.07e40) (1.85¢40) (3.22e40) (3.46e+0) (1.60e+0) (2.32e+0)  (8.19e-1)
Maps o gy 20856e+0 BI907e0 25931e+0 31930640 B19336x0 3329860 B9556+0 258820+0 33530 1376940 2864640 B3560e0 33543640
(1.13¢40)  (6.3%¢-1) (L.11e+0) (6.40c-1)  (6.40c-1)  (1.64e-3) (64le-1) (1.07e40) (6.14¢-3)  (1.03¢+0)  (1.03¢+0) (4.88¢-3)  (2.17¢-3)
Mare o 1 F447el HI9SSel 4.1206e-1 AIS90e] 41088l AN62el 41979 2.6272e-1 AISIOed 42037 AI98Ged 41979 41796e
(5.38¢-2)  (2.52¢-4)  (6.92¢-3) (6.74c-4)  (1.85c-4)  (1.66c-4) (l4le-d) (1.13e-2) (122¢-3) (140e-4) (1.79-4) (1.19%-4)  (I.14e-3)
MaF7 o gy 057661 9S82lel 8.0646e-1 DSSISel (L00SSER0 996041 [LOOSIERD 9957%-1 952931 9TI3Ferl (1009840 9.9575e-1 [L0026ex0
(949e2)  (927e2)  (1.27e-1)  (T.13e2)  (7.58e-4) (3.52e3) (ldde-d) (7.31e3) (1.08e2) (9.82e-2)  (9.46e-5) (1.07e-3)  (1.22e-3)

As a supplement, the IGD results are presented in Tables 13,
14,15, 16, 17, and 18.

Based on the HV and IGD results, a statistical comparison
between different algorithms on a particular test problem

26202

can be designed as follows. Because the Kruskal-Wallis test
rejects the hypothesis that all algorithms are equivalent at
the 95% confidence level, pairwise performance compar-
isons between algorithms are first conducted (according to
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TABLE 9. HV results (Mean and SD) of the 13 algorithms on the 3-objective MaF problems. The top-ranked algorithms for each problem instance are

highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA

NSGAIIT KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD

2.7358e-1 2.6376e-1 2.4915e-1 2.8988e-1 2934le-1 2.9174e-1
(4.26e-3)  (1.19e-4)  (6.82e-3) (1.30e-3)  (9.03e-4)  (4.67e-4)

MaFl1 312

2.7202e-1 2.8429e-1 2.4774e-1 2.9375e-1 2.5059e-1 2.5315e-1 2.8973e-1
(2.19e-3)  (5.52e-3) (1.24e-3)  (3.78e-4)  (l.1le-3) (2.32e-3) (7.03e-4)

2.1199-1 2.0895e-1 2.1554e-1 2.1232e-1  2.175le-1 2.1781e-1
(1.04e-3)  (1.01e-3)  (4.62e-4) (7.02e-4)  (5.49¢-4)  (4.56e-4)

MaF2 3 12

2.1000e-1  2.1628e-1 2.0314e-1  2.1771e-1  2.1128e-1 1.7853e-1  2.1643e-1
(9.38¢-4)  (7.27e-4) (1.34e-3)  (3.77e-4)  (8.73e-4) (1.72e-3) (6.27e-4)

2.4073e-1  7.6963e-1 2.9862e-1 0.0000e+0 9.3834e-1 5.9616e-1
(4.09%-1)  (5.79%-1) (5.13e-1) (0.00e+0)  (5.23e-1)  (5.8%-1)

MaF3 3 12

1.8691e-1  6.7333e-1 0.0000e+0 2.7673e-2  5.5516e-1  0.0000e+0 0.0000e+0
(3.8%-1)  (5.22e-1) (0.00e+0)  (1.07e-1)  (5.63e-1)  (0.00e+0) (0.00e+0)

1.4408e+1 1.7611e+1 1.5399e+1 7.6143e¢+0 2.6429%e+1 1.8114e+1
(1.79e+1)  (1.29e+1) (1.78e+1) (1.35e+1)  (2.03e+1) (2.05e+1)

MaF4 3 12

2.5122e+0 2.556le+l 1.7710e+1 7.0120e+0 24121e+l 2.4145e+1 2.7831e+0
(5.83¢+0) (1.76e+1) (1.92e+1) (1.47e+1) (1.89e+1) (2.01e+1) (1.08e+1)

4.0906e+1 3.2277e+1 3.2154e+1 4.0069¢+1 4.3915e+1 4.3686e+1
(8.44e+0) (1.15e+1) (1.04e+1) (8.90e+0)  (7.45e+0)  (8.04e+0)

MaF5 3 12

4.5138e+1 4.6275e+1 4.7612e+1 4.7625e+1 4.2355¢+1 4.6504e+1 4.7343e+1
(6.59¢+0)  (2.60e-1)  (2.44e-2)  (1.45e-1)  (9.09e+0) (1.19e-2)  (1.22¢-1)

1.2476e-1 1.0613e-1 7.4042e-2 1.3247e-1 [1.3275e-1  1.2523e-1
(1.84e-2)  (2.34e-2) (3.15e-3) (2.26e-4)  (1.0le-4)  (2.33e-4)

MaF6 3 12

1.2855e-1  1.1236e-1 1.1403e-1  1.3315e-1 1.2172e-1 1.2132e-1  8.8436e-2
(8.30e-4) (l1.4le-2) (7.16e-3)  (5.46e-5) (5.60e-4) (3.79e-4)  (1.05e-2)

1.4970e+0 1.4889e+0 1.1556e+0 1.3939¢+0 [1.6380e+0 1.6001e+0
(1.69e-2)  (1.27e-2) (5.75e-3) (1.44e-1)  (4.35e-3) (1.51e-2)

MaF7

1.6055e+0 [1.6293e+0 1.5392e+0 [1.6004e+0 1.5598e+0 1.2402e+0 1.5880e+0
(5.30e-3)  (9.42e-3) (1.34e-2) (7.11e-2)  (4.50e-2) (1.27e-1)  (9.49e-3)

TABLE 10. HV results (Mean and SD) of the 13 algorithms on the 7-objective MaF problems. The top-ranked algorithms for each problem instance are

highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA

NSGAIII KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD

2.5898¢-4  3.8959¢-5 1.0025e-4 1.6472e-4  3.3003e-4 2.7123e-4
(3.46e-5)  (1.53e-5) (1.33e-5) (1.85e-5)  (2.25¢-5)  (2.50e-5)

MaFl 7 16

2.0416e-4 3.1912e-4 2.7286e-5 3.1119¢-4 2.7087e-4 1.5618¢-4 2.5775e-4
(4.13e-5)  (1.71e-5)  (1.34e-5)  (4.04e-5)  (1.44e-5) (4.1le-5) (2.64e-5)

4.4388e-2  4.5893¢-2 5.4584e-2 4.6531e-2  5.0658¢-2  5.2130e-2
(1.60e-3)  (6.54e-4)  (6.83e-4) (1.02¢-3)  (6.50e-4)  (6.07e-4)

MaF2 7 16

4.2899e-2  4.2868¢-2 3.0243e-2  4.8095e-2  4.3466e-2  3.6499%-2 5.0503e-2
(1.60e-3)  (3.45e-3) (9.28e-3)  (4.99e-4)  (1.74e-3)  (1.94e-3) (5.04e-4)

6.5777e-1 1.2914e+0 0.0000e+0 0.0000e+0 1.2253e+0 0.0000e+0
(7.12e-1)  (7.69¢-1)  (0.00e+0) (0.00e+0)  (8.74e-1)  (0.00e+0)

MaF3 7 16

0.0000e+0 0.0000e+0 0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0 0.0000e+0
(0.00e+0)  (0.00e+0)  (0.00e+0)  (0.00e+0)  (0.00e+0)  (0.00e+0)  (0.00e+0)

1.3169e+0 1.875%+3 1.460le+4 2.2905e+4 1.1058e+5 4.5907e+5
(5.10e+0)  (1.94e+3) (3.92e+4) (8.87e+4)  (1.37e+5)  (1.08e+6)

MaF4 7 16

1.2877e+5 2.0110e+4 1.4287e+4 1.0859e+4 [1.2419e+6 1.6827e+4 0.0000e+0
(4.63e+5)  (7.29e+4) (2.73e+4)  (4.19e+4)  (1.74e+6) (2.27e+4)  (0.00e+0)

2.9597e+8 1.2230e+8 3.4229¢+8 3.7557e+8 3.6820e+8 4.5862e+8
(7.23e+7) (449e+7) (4.15e+7) (1.67e+7)  (3.14e+7)  (7.60e+5)

MaF5 7 16

4.5107e+8 4.4164e+8 4.2163e+8 3.6133e+8 4.5697e+8 2.6007e+8 4.5134e+8
(2.08e+7)  (4.66e+6) (3.91e+7) (1.04e+7) (6.29e+5) (4.71e+7) (1.52e+6)

2.0576e-4 9.4096e-5 1.8629¢-4 2.0882e-4 2.0755¢-4 1.8234e-4
(1.92e-6)  (9.57e-5)  (5.24e-6)  (4.90e-7)  (1.06e-6)  (5.05e-5)

MaF6 7 16

1.3925¢-4 [1.9188e-4 1.6360e-4 2.1007e-4 1.8337e-4 1.6249¢-4  7.3615e-7
(8.71e-5)  (5.32e-5) (2.4le-5) (5.45e-7)  (2.14e-6)  (3.06e-5) (1.27e-6)

2.0200e+0 9.0376e-2 1.6748e+0 6.4972e-1 1.7873e+0 2.3327e+0
(1.06e-1)  (1.72e-1)  (1.08e-1)  (3.5%-1)  (1.5le-1)  (1.15e-1)

MaF7

1.8372e+0 1.4256e+0 1.5702e+0 1.5455e+0 1.8822e+0 4.2413e-1 2.0293e+0
(1.08e-1)  (1.23e-1)  (1.85e-1)  (9.46e-2)  (1.95e-1) (3.8le-1) (6.28e-2)

TABLE 11. The average ranks of the 13 algorithms for the different types of problems based on HV metric. A smaller rank indicates a better performance.

M MSOPSII MOEAD HypE PICEA-g SPEA2SDE GrEA NSGAIII KnEA RVEA Two_Arch2 6-DEA MOEADD AnD

2 6 11 2 10 1 7 4 12 13 5 3 8 9
3 9 13 4 12 1 2 7 6 10 3 5 11 8
7 6 13 3 11 4 1 5 8 10 9 2 12 7

TABLE 12. The average ranks of the 13 algorithms for the different types of problems based on IGD metric. A smaller rank indicates a better performance.

M MSOPSII MOEAD HypE PICEA-g SPEA2SDE GrEA NSGAIII KnEA RVEA Two_Arch2 §-DEA MOEADD AnD

2 8 11 4 7 6 9 2 12 13 5 1 3 10
3 11 12 13 7 5 3 6 9 1 2 10 8
7 9 13 12 5 1 7 10 8 3 6 11 2

the Wilcoxon-rank sum test). Then, partial orderings of the
algorithms can be constructed. For example, if A and B are
both better than C, then A and B are assigned a better rank
than C. Similarly, if A is comparable to B, then A has the
same rank as B. Hence, the algorithms with the best rank
are identified as the best algorithms (highlighted in grey
background in the Tables). The algorithms with the worst
rank are identified as the worst algorithms (highlighted in
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bold). A more comprehensive comparison can be obtained in
this way than by simply highlighting the algorithm with the
highest HV value.

In addition, box plots are used to visualize the HV values
of the 31 runs. The bottom and top of the box are the first
and third quartiles, whereas the line inside the box indicates
the median. The ends of the whiskers represent the low-
est datum that is still within 1.5 times the interquartile
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TABLE 13. IGD Results (Mean and SD) of the 13 algorithms on the 2-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD  HypE  PICEA-g SPEA2SDE GrEA  NSGAIIl  KnEA RVEA  Two_Arch2 6-DEA MOEADD  AnD

WEGI 2 11 2.1134e-1 5.2779e-1 7.2651e-1 2.0358e-1 1.9256e-1 1.9163e-1 2.7023e-1 2.8776e-1 5.8172e-1 2.5722e-1 2.7203e-1 3.1137e-1 2.8482e-1
(9.19¢-2)  (5.95¢-2) (1.53e-1) (3.63e-2) (4.81e-2) (9.0le-2) (5.03e-2) (1.3%e-1) (4.75e-2) (9.0le-2) (8.29¢-2) (3.60e-2) (2.60e-2)
2.6824e-2 1.0926e-1 1.0763e-2 2.5927e-2 1.2562e-2 3.1444e-2 1.5249¢-2 9.187%¢-1 7.7188¢-2 1.2996e-2 3.0173e-2 2.4768e-2 3.0270e-2

wrez oz (3.18e-3)  (6.86e-2) (2.78e-4) (4.83e-2) (7.44e-4)  (2.06e-3) (6.28e-4) (2.70e-1) (1.07e-2)  (1.97e-3) (4.77e-2) (1.68e-3) (3.96e-3)
WEG3 2 11 1.6767e-2 2.6843e-2 [1.234le-2 1.8146e-2 [1.3715e-2 2.3784e-2 1.3469e-2 1.7967e-2 5.7999%e-2 1.4775e-2 1.2904e-2 1.5832e-2 1.9044e-2
(9.57e-4)  (4.8%e-3) (3.48e-4) (1.67e-3) (3.66e-4) (3.33e-4) (8.46e-4) (8.33e-4) (1.04e-2) (l.46e-3) (5.23e-4) (1.21e-3) (1.64e-3)
WEG4 2 11 1.8001e-2 3.6040e-2 1.7771e-2 [1.8532¢-2 3.181le-2 2.6055e-2 1.3953e-2 2.5249¢-2 9.4425e-2 1.6245e-2 1.4012e-2 1.4325¢-2 1.9852¢-2
(1.16e-3)  (4.78e-3) (1.24e-3) (1.97e-3) (5.11e-3)  (1.42e-3) (1.13e-3) (4.50e-3) (1.59¢-2) (8.82e-4) (1.21e-3) (4.79e-4) (2.00e-3)
WEGS 2 11 6.6120e-2 7.2322¢-2 6.6914e-2 6.5859¢-2 7.8220e-2 7.4116e-2 6.4440e-2 7.8605e-2 1.0122e-1 6.5940e-2 6.5213e-2 6.7091e-2 6.6924e-2
(4.58¢-4)  (1.45¢-3) (1.48e-3) (2.22e-3) (4.69¢-3)  (2.13e-3) (1.0le-3) (9.4le-3) (1.40e-2) (2.36e-3) (2.14e-3) (2.75e-3) (1.91e-3)
WFG6 2 11 7.6567e-2 9.5519e-2 8.1120e-2 9.5516e-2 9.4419¢-2 8.0767e-2 8.6392e-2 3.0893e-1 1.6972¢-1 7.3811e-2 8.0992e-2 8.3543¢-2 8.4227e-2
(2.14e-2)  (2.32e-2) (2.09e-2) (1.99e-2)  (1.88e-2) (2.56e-2) (2.42e-2) (6.94e-2) (242e-2) (2.00e-2) (1.42e-2) (1.87e-2) (1.87e-2)
WEGT 2 11 1.9124¢-2 3.3514e-2 [1.7886e-2 [1.6001e-2 3.5441e-2 2.9776e-2 1.2700e-2 1.4060e-1 6.6515¢-2 [1.6222e-2 1.2699¢-2 [1.3963e-2 [1.9752¢-2
(1.42e-3)  (3.34e-3) (8.14e-4) (9.18e-4)  (5.56e-3)  (1.90e-3) (2.35¢-4) (5.4le-2) (1.26e-2) (2.69¢-4) (1.98¢e-4) (3.45¢-4) (1.68e-3)
WFGS 2 11 1.1263e-1 1.2663e-1 1.1143e-1 1.2033e-1 1.1775e-1 1.1217e-1 1.1293e-1 5.0156e-1 2.0629e-1 1.1728e-1 1.1495e-1 1.1042e-1 1.1835e-1
(2.64e-3) (5.63e-3) (3.7%-3) (4.0le-3)  (3.46e-3) (9.73e-4) (1.70e-3) (7.25e-2) (1.51e-2) (8.79%e-3) (3.42e-3) (1.98e-3) (2.65e-3)
WEGY 4.7621e-2 7.4091e-2 2.0663e-2 4.2529¢-2  3.5560e-2 3.0308e-2 2.3035e-2 3.7442e-2 6.0373e-2 2.0218e-2 2.1812e-2 2.2160e-2 2.8940e-2

(7.28e-2) (5.48e-2) (1.00e-3) (5.09¢-2)  (5.90e-3)  (2.65e-3) (1.97e-3) (4.19¢-2) (5.71e-3) (2.34e-3) (2.34e-3) (2.23e-3) (3.46e-3)

TABLE 14. IGD results (Mean and SD) of the 13 algorithms on the 3-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA  NSGAIIl  KnEA RVEA  Two_Arch2 6-DEA MOEADD  AnD

3.8619e-1 6.5207e-1 1.3305e+0 9.7828e-1 2.9430e-1 3.0458¢-1 5.5535e-1 3.7930e-1 6.5424e-1  4.5853e-1  4.7516e-1 1.0232e+0 4.7946e-1
(7.13¢-2)  (9.52¢-2)  (1.22e-1) (1.07e-1)  (5.17e-2)  (4.41e-2) (7.70e-2) (5.38e-2) (6.52e-2) (l.l14e-1) (6.57e-2) (1.49e-1) (4.94e-2)
2.7288e-1 1.022de+0 2.7156e-1 [1.5379%-1 2.4798e-1 2.6076e-1 [1.8288e-1 2.3662e-1 2.1757e-1 [1.5356e-1 2.1064e-1 4.8589%e-1 2.4939%-1
(3.40e-2) (3.31e-2) (4.30e-2) (9.67e-3)  (5.53e-2) (2.64e-2) (5.38e-3) (4.36e-2) (2.05e-2) (3.4le-3) (2.24e-2) (l.lle-1) (2.26e-2)
9.7974e-2  2.0491e-1 3.7216e-2 1.2526e-1 6.6408¢-2  9.1062¢-2 1.1934e-1 1.3620e-1 2.3089e-1 8.7444e-2  1.3446e-1  2.6050e-1 1.5499¢-1
(2.44e-2)  (5.78e-2) (3.53e-3) (1.04e-2) (5.31e-3) (8.78e-3) (8.98e-3) (5.76e-2) (1.96e-2) (6.22¢-3)  (1.84e-2) (1.0le-1) (1.87e-2)
2.6046e-1 2.6322e-1 3.3366e-1 2.234le-1 3.2817e-1 2.4107e-1 2.2294e-1 2.5496e-1 2.4346e-1 2.2780e-1 2.2194e-1 2.415le-1 2.285le-1

WFGL 3 12

WEG2 3 12

WFG3 3 12

wratsoe (9.62¢-3)  (5.94e-3)  (1.48e-2) (3.05e-3)  (1.37e-2) (2.99e-3) (9.79¢-4) (1.04e-2) (5.85e-3) (5.49e-3) (5.44e-4) (9.34e-4) (6.08e-3)
WFGS 3 12 2.8036e-1 2.5416e-1 3.6200e-1 2.2784e-1 3.3427e-1 2.607le-1 2312le-1 2.6812e-1 2.3700e-1 2.3775e-1 2.3047e-1 2.4583e-1 2.3805e-1
(9.31e-3)  (3.69e-3)  (1.19e-2) (3.29e-3)  (1.60e-2)  (4.44e-3) (4.39e-4) (1.54e-2) (2.78e-3) (3.98e-3) (8.14e-4) (1.68e-3) (4.09-3)
WEG6 3 12 3.2058e-1 2.9976e-1 3.7273e-1 2.6303e-1 3.5553e-1 2.721le-1 2.5119e-1 3.0266e-1 2.7282¢-1 2.5355e-1 2.4670e-1 2.610le-1 2.5513e-1
(1.71e-2)  (8.25e-3)  (2.28e-2) (2.14e-2)  (1.97e-2) (9.51e-3) (1.27e-2) (1.45e-2) (1.72e-2) (1.38e-2) (1.13e-2) (1.29¢-2) (1.69e-2)
WEGT 3 12 2.7116e-1 3.7391e-1 3.8358e-1 2.1863e-1 3.2703e-1 2.5514e-1 2.2287e-1 2.5276e-1 2.3948e-1 2.2493e-1 2.2219e-1 2.4466e-1 2.2943e-1

(1.35e-2)  (4.54e-2) (l.44e-2) (3.58e-3) (1.4le-2) (9.13e-3) (4.19e-4) (1.36e-2) (5.28e-3) (4.51e-3) (4.77e-4) (1.85e-3) (4.27e-3)
3.9153e-1 3.2510e-1 3.7156e-1 3.0942e-1  3.6055e-1  3.020le-1 2.9562e-1 3.3820e-1 3.2874e-1 3.1132e-1  2.9379%-1 3.0529e-1 3.2855e-1
(1.25¢-2)  (1.10e-2)  (1.41e-2) (4.52¢-3) (l.1le-2) (8.8%e-3) (5.07e-3) (1.29e-2) (1.62e-2) (5.61e-3)  (4.59¢-3) (3.66e-3) (9.38e-3)
2.5643e-1 3.0339e-1 3.6226e-1 2.2134e-1 3.1156e-1 2.3984e-1 2.3560e-1 2.294le-1 2.3645e-1 2.2152e-1 2.3258e-1 2.394le-1 2.2678e-1
(3.01e-2)  (3.76e-2)  (1.31e-2) (1.10e-2)  (1.39e-2)  (5.39%-3) (3.10e-2) (5.63e-3) (6.77e-3) (3.75e-3)  (3.04e-2) (1.92e-3) (9.73e-3)

WFG8 3 12

WFGY 3 12

TABLE 15. IGD results (Mean and SD) of the 13 algorithms on the 7-objective WFG problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE GrEA NSGAIII KnEA RVEA Two_Arch2  6-DEA  MOEADD AnD

L1701640 2.1200c40 2.5278e+0 2.4666e+0 11335640 1.3179¢+0 1.5770e+0 1.2925¢+0 1.3695¢+0 1.6191c+0 1.2951e+0 1.8633¢+0 1.2592¢+0
(9.67¢2)  (2.52e-1) (13le-l)  (5.13e2)  (9.70e2)  (1.90e-1) (143e-1) (1.32e-1) (1.27e-1)  (1.57e-1)  (293e-1)  (L.17e-1)  (1.07e-1)
3.1401c40 1.0638e+1 3.8990c+0 2:0458640 6.1501c+0 3.0014c+0 3.3498c+0 21641640 5.3945c+0 20238640 3.6040c+0 8.9116¢+0 3.2923c+0
(7.86e-1)  (118e-1)  (6.24e-1) (3.88e-1)  (1.27e+0)  (6.88¢-1) (2.17e+0) (3.84e-1) (1.05e+0)  (4.16¢-1)  (1.65¢+0) (2.73e-1)  (1.03¢+0)
1.8591e:1 3.0516e+0 9297662 8.7637e-1 1.2527e+0 8.8233¢-1 1.2086e+0 1.5650e+0 1.9303e+0 9.5599¢-1 1.2243¢+0 1.7802¢+0 1.1449+0
40le2)  (1.70e-1)  (9.16e3) (843e2)  (45le-1)  (1.37e-1) (295e-1) (5.84e-1) (532e-1)  (L.1Se-1)  (2.03e-1)  (1.35e-1)  (1.66e-1)
27841c+0 6.0011e+0 4.4275c+0 255209640 2.7668c+0 2AT68EH) 2.6653c+0 2.8293c+0 2.6378c+0 2.5980c+0 2.6539¢+0 2.9280c+0 2.5652¢+0
(3.14¢2)  (1.65e-1)  (5.97e-1) (L.5le-l)  (3.53e2)  (1.66e2) (4.57¢2) (38le2) (1.09¢2) (2.16¢-2)  (1.08¢-2) (7.84¢2)  (235¢-2)
29268¢+0 5.734de+0 2.9075e+0 24616640 2.7503e+0 2:4734e+0 2.6097e+0 2.8500e+0 2.6167e+0 2.5379e+0 2.6104e+0 3.0551e+0 2.5644e+0

WEGl 7 16

WFG2 7 16

WFG3 7 16

WFG4 7 16

WRGs 76 (8.08¢-2)  (1.30e-1)  (7.70e-2)  (1.90e-2)  (4.16e-2)  (2.12¢-2) (7.85¢-3) (3.74e-2) (880e-3) (243e2)  (7.90e-3) (1.05e-1)  (1.97e-2)
WEGS 7 16 2020040 61898640 20564040 2SOAIEH) 28708¢+0 252660 26625040 3041340 2642240 26144e+0 26520040 2987340 2.6353¢+0
(5.61e2)  (1.35e-1) (1.32e-1) (1.66e2) (4.93e2) (233e2) (1.85e2) (8.66e2) (343e2) (3.18¢2) (1.55¢-2) (9.44e2) (3.29-2)
WEGT 7 16 292Het0 61043¢+0 3213040 2ATSHeR0 27981e+0 2506260 26623640 29069c+0 2.6454EH0 2.54SIeH0 26609840 29292e+0 2:6260e+0
(6.22¢2)  (1.34e-1)  (253e-1)  (1.69e2)  (4.18e2)  (1.22e2) (9.73e3) (5.22e2) (1.85e2)  (2.17e-2)  (L.1de-2) (L13e-1)  (3.41e-2)
WEGS 7 1p 2992660 5374060 3396500 27070e+0 2830240 2SOTeR0 26761¢+0 28775¢+0 26752040 28671e40 2607340 28237e+0 2.6307e40
(4.02e2)  (1.53e-1)  (1.90e-1) (1.28e-1)  (3.60e2) (2.52e2) (1.67e-1) (7.35e2) (491e2) (3.88¢-2) (121e-2) (2.0le2) (2.5%-2)
WEGO 27560c+0 5.5685e+0 2.8930c+0 2.5480c+0 2.6709c+0 24286640 2.5417c+0 2.6597c+0 2.5686c+0 2.5832c+0 2.5362c+0 3.1163c+0 24784640

(3.94¢-2)  (4.40e-1) (2.03e-1) (4.65¢-2)  (3.09¢-2)  (1.46e-2) (1.99¢-2) (4.73e-2) (3.13e-2) (3.74e-2)  (7.77e-3) (1.15e-1)  (2.39e-2)

range (IQR) of the lower quartile and the highest datum that outlying values are marked as “4-”°. Taking the WFG prob-
is still within 1.5 IQR of the upper quartile [63]. Moreover, lems as an example, box plots of the HV values are shown
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TABLE 16. IGD results (Mean and SD) of the 13 algorithms on the 2-objective MaF problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA NSGAIIl  KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD
MaFI T 5.6810e-3 B3.5713e-3 3.6811e-3 3.8228e-3 3.9873e-3 7.8323e-3 3.5730e-3 5.0049¢-3 3.6031e-3 4.0003e-3 3.5717e-3 3.5711e-3 4.8193e-3
(2.82e-4) (1.21e-7) (1.28e-5) (3.90e-5)  (6.27e-5)  (6.05e-5) (2.33e-6) (2.14e-4) (3.29e-5) (3.10e-6)  (4.88e-7) (9.24e-8) (2.25e-4)
MaF2 2 11 3.0294e-3 2.5850e-3 2.0589%e-3 2.2134e-3  2.3771e-3  3.9900e-3 2.0506e-3 2.4517e-2 2.7615e-3 2.2410e-3  2.0178e-3 4.4431c-3  2.5245e-3
(1.52¢-4)  (1.54e-4) (1.27e-5) (3.00e-5)  (6.38e-5)  (8.78e-5) (7.13e-5) (7.69e-3) (1.61le-4)  (2.06e-5)  (7.51e-6) (1.38e-4) (9.47e-5)
MaF3 2 11 1.8291e+0 6.6597e-1 1.6633e+0 2.1880e+2 [7.548le-1 1.0699e+0 3.2158e+0 9.2754e-1 1.9819e+2 2.0891e+1 1.0912e+1 4.1478e+1 1.2351e+4
(243e+0) (1.32e+0) (2.68e+0) (1.38e+2) (1.20e+0)  (2.08e+0) (7.66e+0) (1.16e+0) (2.81e+2) (2.46e+1) (3.26e+1) (3.78e+1) (1.91e+4)
MaFd 2 11 29184e-1 7.4127e-1 2.1209e-1 9.795%-1 3.4737e-1  7.0168e-1 7.5005e-1 4.6349e-1 2.3290e+0 2.1026e+0 2.1240e-1 2.1883e+0 2.9545e+0
(3.55e-1)  (6.20e-1) (3.69e-1) (1.05e+0)  (4.34e-1)  (6.75e-1) (9.42e-1) (3.83e-1) (1.80e+0) (2.61e+0) (3.12e-1) (1.83e+0) (1.5le+0)
MaFs 2 11 5.4905¢-1 1.4614e-1 6.2759e-1 1.4596e-1  1.6317e-1  3.2002e-2 1.4533¢-1 5.7085e-1 [1.3733¢-2 1.609%e+0 4.1147e-1 1.3105¢-2 1.5941e-2
(9.11e-1)  (5.15e-1)  (8.8%-1) (5.15e-1)  (5.10e-1) ~ (1.18e-3) (5.15e-1) (8.97e-1) (1.25e¢-3)  (8.25e-1)  (8.26e-1)  (1.20e-6)  (1.23e-3)
MaF6 2 11 7.5531e-2 4.1426e-3 9.5642¢-3 4.5703e-3 1.0576e-2 9.8516e-3 4.0193e-3 1.4833e-1 7.5484e-3 5.1792e-3 4.0186e-3 4.0359%-3 6.2367¢-3
(5.84e-2) (1.52e-4) (3.88e-3) (3.10e-4)  (1.32e-3)  (6.53e-4) (3.97e-5) (1.80e-2) (8.55e-4)  (1.66e-4) (6.45e-5) (4.73e-5) (7.01e-4)
MaE7 7.7581e-2 7.0297e-2 3.2599e-1 3.467le-2 5.2226e-3 2.9774e-2 6.8521e-3 3.4033e-2 2913le-2 6.3284e-2  5.1101e-3 2.0118e-2 9.3801e-3
(1.52e-1)  (1.53e-1) (2.01e-1) (l.l14e-1)  (2.02e-4)  (7.39e-3) (1.74e-4) (1.48e-2) (4.64e-3) (1.54e-1) (7.25e-5) (1.15e-3) (8.54e-4)

TABLE 17. IGD results (Mean and SD) of the 13 algorithms on the 3-objective MaF problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Problem M D MSOPSII MOEAD HypE PICEA-g SPEA2SDE  GrEA NSGAIII KnEA RVEA  Two_Arch2 6-DEA MOEADD AnD
MaF1 31 5.4087e-2  7.0482¢-2 8.5055e-2 4.1616e-2 4.2015e-2 4.0369e-2 6.1660e-2 4.8449¢-2  8.2252¢-2  4.1494e-2  8.0433¢-2  7.8236e-2 4.3822¢-2
(5.31e-3)  (1.70e-5)  (5.82e-3) (4.72e-4)  (6.20e-4)  (9.0le-4) (191e-3) (7.05e-3) (2.56e-4)  (4.28¢-4)  (9.6de-4) (1.97e-3)  (6.16e-4)
MaE2 3 12 3.7213e-2 4.1389%e-2 4.5576e-2 3.0403e-2 3.0958e-2 3.1316e-2 3.6691e-2 3.4179e-2 4.2260e-2 29120e-2 3.6560e-2 5.5815e-2 3.0384e-2
(1.18e-3)  (1.20e-3) (1.71e-3) (7.07e-4)  (7.86e-4)  (6.91e-4) (8.54e-4) (1.66e-3) (1.36e-3) (4.68e-4) (4.26e-4) (2.08e-3) (4.94e-4)
MaF3 3 12 5.4802¢+0 9.0333e-1 3.7068¢+0 2.6300e+1 5.5117e-1 2.3723e+0 4.0919e+0 2.3301e+0 8.0373e+2 1.246le+1 2.8153e+0 2.6562e+1 7.9681e+3
(7.03e+0) (1.18e+0) (5.44e+0) (1.8le+1)  (9.40e-1)  (3.09e+0) (3.51e+0) (5.10e+0) (1.33e+3) (1.32e+1) (4.86e+0) (2.73e+1) (9.75e+3)
MaFd 3 12 2.1426e+0 2.2734e+0 2.6851e+0 6.2649¢+0 [1.8903e+0 3.0299e+0 4.6438e+0 [1.5476e+0 3.7054e+0 5.4989e+0 [1.7999e+0 2.0123e+0 8.6721e+0
(1.56e+0)  (1.05e+0) (2.48e+0) (5.48e+0)  (1.98e+0) (3.21e+0) (3.28¢+0) (1.60e+0) (5.88e+0) (3.6le+0) (2.72e+0) (2.42e+0) (5.21e+0)
MaES 3 12 7.7765¢-1 1.5838e+0 1.6413e+0 7.7898e-1  6.6023e-1  5.3953e-1 4.9540e-1 3.111le-1 2.6045e-1 2.5404e-1 6.6639¢-1 2.9684e-1 2.6257e-1
(6.97e-1)  (1.22e+0) (1.09¢+0) (6.90e-1)  (6.28e-1)  (5.10e-1) (6.22e-1) (9.91e-3) (9.96e-4)  (6.40e-3)  (7.1le-1) (1.89e-4) (5.32e-3)
MaF6 3 12 2.7059e-2  9.9411e-2 1.9634e-1 4.5807e-3 9.5724e-3  2.0980e-2 1.4992e-2 4.740le-2 5.1103e-2 5.8424e-3 3.3400e-2  3.0559¢-2  6.2634e-2
(5.22¢-2)  (1.48e-1) (2.54e-2) (3.02e-4)  (1.19e-3)  (5.3le-4) (1.56e-3) (3.94e-2) (243e-2) (2.83e-4) (2.28e-3) (1.45e-3) (1.53e-2)
MaF?T 3 22 1.4040e-1  1.5432¢-1 8.2187e-1 3.7759¢e-1 5.8598e-2 8.2876e-2 7.6744e-2 6.8147e-2 1.0807e-1 9.6961e-2 1.1040e-1 5.0578e-1 8.5394e-2
(1.21e2)  (1.74e-3)  (5.03e-3) (2.65e-1)  (2.56e-3)  (4.07e-3) (2.96e-3) (6.14e-3) (2.83e-3)  (1.03e-1)  (6.96e-2) (2.54e-1) (3.08e-3)

TABLE 18. IGD results (Mean and SD) of the 13 algorithms on the 7-objective MaF problems. The top-ranked algorithms for each problem instance are
highlighted in grey background, the worst algorithms highlighted in boldface.

Probem M D MSOPSII MOEAD  HypE  PICEA-g SPEA2SDE GrEA  NSGAIl  KnEA  RVEA Two_Arch2 6-DEA MOEADD  AnD
MaFl 7 g 23936l 47689l 209991 216171 2052edl 221431 255921 20477l 49956e-l 207500 262821 334031 217351
(1.83e2)  (3.74e2) (6.63¢3) (334e3) (250e3)  (4.66e3) (1.70e2) (5.09-3) (7.00e2) (4.22¢:3)  (5.71e-3) (3.01e2)  (1.24e-3)
MaF2 7 16 OS2 209851 429591 26101 L6039l 6573l 196321 1632l 45886e-1 L6222 202721 227631 [L5TS9
(4.50e3)  (295¢-3)  (2.29¢2) (4.08e2)  (7.08¢3)  (3.06e-3) (1.60e2) (7.03e-3) (147e-1)  (3.64e-3)  (132e-2)  (2.34e2)  (5.08¢-3)
MaFs 7 g 23079e+! MGITEL 1099945 13124e+9 2089640 27940c+5 44695c+2 6.3674e+6 STATGerl 2.0884e+5 20947+l 20362042 74302043
(5.05e+1)  (454e-1)  (1.62e45) (1.32e49)  (5.61e40)  (6.58e+5) (5.91e42) (1.69%+7) (5.02e41) (7.07e+5) (1.80e+1) (1.63e+2) (1.38e+4)
Mapt 7 g 0132 T23%%erl 75916e+l 29488ex2 D4AVGH] GAlIZer] 13026042 30335er2 40914erl 15007e+2 49970+l 4.5604erl 9.2275e+1
(1.33¢42)  (5.27e40) (5.92e+1) (3.36e42)  (1.37e+1)  (6.69e+1) (1.42e42) (2.66e42) (1.97e+1) (1.35e+2) (40le+l) (1.04e+l) (8.02e+1)
s 7 g 208Slerl 44755erl 19667+l 10756+l [10998exl 6030t 12110c+]1 12917+l 15123+l BOSH0EH0 1182Se+l 39432+l 9.5665¢+0
(8.71e+0) (2.70¢40) (3.79¢+0) (3.50e40)  (2.47e40)  (24de-1)  (947e-1)  (S.lle-1) (3.26e40)  (23%-1)  (5.89¢-1) (2.30¢+0)  (4.03¢-1)
MaFs 7 1p 145332 4136del 201971 AIFITE3  10290e2  82390e2 20767e-1 45005e-1 13148e-1 647063 14603¢-1 12960¢-1 119le-d
(229¢3)  (2.02e-1)  (3.26e2) (1.77e-4)  (1.33e3)  (1.54e-1) (2.67e-1) (1.62e+0) (2.53e2) (745¢4)  (593¢-2) (1.10e2)  (6.39%-2)
MaF7 7 g O2THdel 13566040 32770e+0 3.0301e+0 540306 7.1338e-l 7249de-] 50694l 12352040 5SS 713641 2.0982e+0 5i6616e7]
(2.52e-1)  (175e-1)  (232e-1)  (823e-1)  (9.29¢3)  (7.15¢2) (3.74e2) (1.38e2) (24le-l)  (3.59-2) (791e-2) (5.77e-1)  (2.63¢-2)

in Fig. 2. From the box plots, the ranks of different algorithms
can be graphically inferred, consistent with the statistical
results obtained by the method above.

A. PERFORMANCE COMPARISONS ON WFG PROBLEMS

The WFGI1 problem is designed with a flat bias and a PF
containing both convex and concave segments. This test prob-
lem is used to assess whether EMO algorithms are capable

VOLUME 6, 2018

of dealing with PFs of complicated mixed geometries. GrEA
and SPEA2+SDE are jointly ranked in the first class on the
2-objective WFG1. SPEA2+SDE also outperforms the other
algorithms on the 3-objective WFGI1. For the 7-objective
WFG1, MSOPS-II and HypE perform the best. However,
MOEA/D, together with RVEA, exhibits the worst perfor-
mance on the 2-objective WFG1. Moreover, PICEA-g has the
lowest HV value for the 3- and 7-objective WFG1.
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FIGURE 2. Box plots of the distribution of the 31 HV values for the WFG1, WFG4, WFG7, and WFG9 problems

with 7 objectives of the 13 test algorithms.

TABLE 19. HV results of MOEA/D with normalization on 3- and
7-objective WFG problems. The top-ranked algorithms for each
problem instance are highlighted in grey background, the worst
algorithms highlighted in boldface.

Problem M D MOEA/D-normalization Problem M D MOEA/D-normaliztion

WFG1
WFG2
WFG3
WFG4
WFG5
WFG6
WFG7
WFG8
WFG9

12 5.4485e+1 (2.42e+0) WFG1
12 5.6872e+1 (4.28e-1) WEGI
12 6.4578e+0 (3.10e-2) WEGI
12 3.3519e+1 (3.00e-1) WEGI
3.0441e+1 (2.00e-1) WEFGI
12 2.9770e+1 (1.33e+0)  WFG1
12 3.3413e+1 (2.5%-1) WEFGI
12 2.8746e+1 (1.91e-1) WEGI
12 3.1458e+1 (2.15e+0)  WFGI

16 4.5272e+5 (6.49¢+4)
16 1.1056e+6 (1.10e+5)
16 1.6112e-1 (4.02¢-2)
16 6.4908e+5 (5.19¢+4)
5.9850e+5 (3.83e+4)
16 5.4729e+5 (8.61e+4)
16 6.0718e+5 (6.16e+4)
16 5.3131e+5 (1.73e+4)
16 4.9883e+5 (6.85¢+4)

wlwlw|lw|w|w|w|w|w
5}

[CN G U O (R G RO ) IS
>

The WFG2 problem has a scaled disconnected PF, which
enables an assessment of whether EMO algorithms are capa-
ble of dealing with scaled disconnected PFs. Most of the
test algorithms work well on the 2-objective WFG2, and
KnEA performs the worst. In terms of the 3-objective WFG2,
HypE, SPEA24-SDE, and Two_Arch?2 are the top-performing
algorithms, whereas MOEA/D performs the worst. Notably,
MOEA/D shows the worst performances on most of the WFG
test problems with 3 and 7 objectives. In addition, HypE,
AnD, and MSOPS-II are ranked first on the 7-objective
WEFG2.

WFG3 is a difficult problem with a partially degener-
ate front and non-separable decision variables. Whereas
WEFG3 was proposed as a degenerate test problem, its Pareto
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front is not a degenerate Pareto front as studied in [64].
In terms of the 2-objective WFG3, most algorithms have
comparable performance. However, seven of the testing algo-
rithms, including MOEA/D and SPEA2+SDE, fail to solve
the 7-objective WFG3, and HypE performs the best. HypE is
also ranked first for the 3-objective WFG3.

The WFG4-WFG9 problems have an identical PF shape
with different characteristics. For example, the characteristic
of multimodality is introduced in the WFG4 problem, which
can make MOEAs trap in local optima easily. WFGS is a
deceptive problem with the global optimum in an unlikely
place, which increases the difficulty of searching the true
optimum. WFGH6 is a non-separable problem with decision
variables that are linked with other variables; this type of
problem can be more difficult to tackle than separable prob-
lems. WFG7-9 adopt some bias, which increases the chal-
lenge of maintaining diversity. WFG7 is a unimodal and
separable problem. By contrast, WFG8 and WFG9 are non-
separable problems. WFG9 is a non-separable, multimodal,
deceptive and bias problem and thus is the most difficult
among the WFG problems.

For problems WFG4 to WFG9 with 2 objectives, the test-
ing algorithms show similar performance: most of the algo-
rithms show comparable performance, except MOEA/D,
KnEA and RVEA. For the 3-objective WFG4-9, HypE is
always among the top-performing algorithms, except for
WEGS, for which SPEA2+-SDE and GrEA perform the best.
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HypE on WFG4

PICEAg on WFG4

FIGURE 3. Distribution of solutions obtained by HypE and PICEA-g on a 3-objective WFG problem.

SPEA24-SDE and GrEA are also ranked in the first class
for the 3-objective WFG7. In addition, both NSGA-III and
0-DEA are ranked first for the 3-objective WFGS5 and WFG7.
Moreover, Two_Arch2 and AnD are both ranked first for the
3-objective WFG6 and WFG7. For the 7-objective WFG4-9,
HypE, NSGA-III and 6-DEA exhibit comparable perfor-
mance. NSGA-III and 6-DEA show similar behaviour,
and both work well on WFG4-7. For the most difficult
WEFG9 problem, HypE outperforms the other algorithms,
whereas MOEA/D performs the worst.

Overall, several interesting and insightful conclusions on
the performance of the 13 test algorithms on the WFG prob-
lem suite can be drawn, and the IGD metric is also taken
into consideration. Here, we assume the PF of WFG3 is a
degenerate line to facilitate the calculation of the IGD value,
although this assumption may not be true, as pointed out by
Ishibuchi et al. [64].

1) For some test problems, the results for the IGD met-

ric show a different behaviour compared with the
HV metric. For instance, in terms of the HV value,
HypE is among the top-performing algorithms on most
3-objective WFG problems (WFG2-7 and WFG9).
However, HypE obtains the worst IGD values for
those problems, e.g., WFG4-7 and WFG9. More-
over, PICEA-g achieves the best IGD values for the
3-objective WFG4 and WFG6 but the worst HV values
for those problems.

The dissimilar performances of the HV and IGD met-
rics can be explained as follows. If the convergence to
the Pareto front of a test problem is not difficult, the per-
formance comparison results are mainly based on the
diversity of solutions over the Pareto front. However,
the diversity assessment mechanism of the HV metric
differs from that of the IGD metric, as can be inferred
from their calculation formulas. To provide a more intu-
itive explanation, Fig. 3 shows the solutions of HypE
and PICEA-g for the 3-objective WFG4 problem. For
this problem, HypE achieves the best HV value and the
worst IGD value, whereas PICEA-g achieves the best
IGD value and the worst HV value. The results show
that the solutions of the two algorithms both converge
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2)

3)

4)

well (with values of GD [65], a convergence metric,
of 0.00215 and 0.00220, respectively). However, they
show obviously different behaviours in the distribution
of solutions, with the HV metric preferring solutions
located on the boundary. In this case, the IGD metric
shows a more conceivable behaviour of the diversity
measure. Therefore, for problems in which the con-
vergence of solutions to the Pareto front is relatively
easy (like most WFGs), the difference in the diversity
assessment mechanisms of HV and IGD is the key
reason for the dissimilar performances of the HV and
IGD metrics.

Most of the test algorithms work well and show compa-
rable performance on the 2-objective WFG problems.
However, KnEA and RVEA exhibit slightly lower per-
formance than the other algorithms.

This poorer performance might occur because the knee
points concept used during mating selection and envi-
ronmental selection in KnEA and the angle-penalized
distance adopted in RVEA are specifically designed to
solve MaOPs in the high-dimensional objective space.
Consequently, these mechanisms may not work well
for easy problems, such as a WFG with 2 objectives.
Moreover, the behaviours of the HV and IGD values
are nearly identical for the 2-objective WFG problems.
In terms of the HV metric, HypE performs the best for
the 3-objective WFG problem suite (ranked first for
7 problems). SPEA24-SDE shows good performance
as well (ranked first for 4 problems). In terms of the
IGD metric, PICEA-g and NSGA-III perform the best
on the 3-objective WFG problem suite (both ranked
first for 6 problems). Two_Arch2 and 6-DEA also work
well and are ranked first for four and five of the nine
3-objective WFG problems, respectively.

In terms of the HV metric, HypE exhibits the best
performance for the 7-objective WFG problem suite
(ranked first for 7 problems). NSGA-III and 6-DEA
are also among the top-performing algorithms for
WFG4-7. By contrast, PICEA-g and GrEA perform
the best for the 7-objective WFG problem suite in
terms of the IGD metric. In terms of both the HV and
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IGD metrics, MOEA/D performs the worst among the
13 algorithms on most 7-objective WFG problem:s.
The lack of a normalization mechanism may be the
reason for the poor performance of MOEA/D. How-
ever, after conducting experiments to test the perfor-
mance of MOEA/D with normalization, the results in
Table 19 show that MOEA/D with normalization still
performs the worst on most problem instances among
the 13 algorithms. It even shows a worse performance
on some problems than MOEA/D without normaliza-
tion. This phenomenon is also pointed out by [66], that
the incorporation of a normalization mechanism into
MOEA/D possibly has unexpected negative and posi-
tive effects on the performance of MOEA/D. Note that
the normalization is performed by using the estimated
nadir and ideal point that are constructed by Pareto
optimal solutions in the offline archive, which is a naive
normalization procedure. We think the main reason for
the poor performance of MOEA/D may be the inappro-
priate setting of the number of neighbourhood size T,
as explained in [41]. It could also be the use of the naive
normalization procedure.

5) In conclusion, HypE achieves the top-ranked HV val-
ues for most 2-, 3- and 7-objective WFG problems.
HypE may have an unfair advantage over other algo-
rithms as it was developed based on the HV indicator.
By comparison, PICEA-g always achieves the top-
ranked IGD values on the WFG2 and WFG4-7 prob-
lems with all 2, 3 and 7 objectives. For PICEA-g,
the advanced idea of coevolving a family of preferences
simultaneously with the population of candidate solu-
tions is responsible for its excellent ability to generate a
diverse distribution of solutions. As the convergence of
solutions to the Pareto front is not difficult for most of
the WFG1-9 problems, the superiority of PICEA-g in
maintaining diversity makes it a top algorithm for most
WEFG problems.

6) In addition, some of the recently proposed approaches,
such as MOEA/DD, did not show outstanding perfor-
mance, in contrast to their initial reports. A likely rea-
son is the setting of the maximum number of function
evaluations (FEvals™*") [51]. For example, for HypE,
a value of FEvals™® of 1 x 10* was applied in its paper
published in [21]. However, in more recent papers, such
as those for MOEA/DD, FEvals™® is set to 5.5 x 10°,
55 times larger. As users cannot always set FEvals™**
to a large number for real-world problems due to the
large computational cost, FEvals™® is set to 2.5 x 10*
for all algorithms in this work. This difference in the
value of FEvals™* might be responsible for the poor
performance of some recently proposed algorithms.

B. PERFORMANCE COMPARISONS ON MAF PROBLEMS

MaF1 is a linear problem with an inverted PF, which
means that there is no single optimal solution in any sub-
set of objectives. Most algorithms perform comparably on
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the 2-objective MaF1, for which GrEA exhibits slightly
worse performance. For the 3-objective MaFl, the top-
performing algorithms are PICEA-g, SPEA24-SDE, GrEA
and Two_Arch2. SPEA2+SDE and Two_Arch2 are also
ranked in the first class for the 7-objective MaF1.

MaF?2 is also a problem with no single optimal solution
in any subset of objectives. In contrast to MaF1, MaF2 is
a concave problem. Most of the test algorithms have com-
parable performance for the 2-objective MaF2, for which
KnEA performs slightly worse. The behaviour of the test
algorithms on the 3-objective MaF2 is similar to that for
MaF1, with SPEA2+4-SDE, GrEA and Two_Arch2 showing
the best performance. In contrast to the results for MaFI,
HypE outperforms the other algorithms on the 7-objective
MaF2, whereas RVEA performs the worst.

MaF3 is a multimodal problem with a convex PF. In gen-
eral, the chosen test algorithms show worse performance on
MaF3 than on the other MaFs. SPEA2+SDE performs the
best on all of the 2-, 3- and 7-objective MaF3 problems.
MSOPS-II and MOEA/D are also ranked in the first class
for the 7-objective MaF3, whereas the other algorithms fail
to achieve a converged solution for this problem. Moreover,
AnD fails to converge for all of the 2-, 3- and 7-objective
MaF3 problems.

MaF4 is a multimodal problem with a badly scaled PF.
It also has no single optimal solution in any subset of objec-
tives, similar to MaF1 and MaF2. In terms of the 2-objective
MaF4, HypE and 6-DEA show the best performance. 9-DEA
is also ranked first on the 3- and 7-objective MaF4. Interest-
ingly, MOEA/DD is among the top-performing algorithms
on the 3-objective MaF4 but performs the worst on the
2-objective MaF4. SPEA24-SDE and KnEA also work well
on the 3-objective MaF4. In addition, AnD performs the worst
for all of the 2-, 3- and 7-objective MaF4 problems.

MaFS5 is a biased problem with a convex and badly scaled
PF. When the objective number is two or three, most algo-
rithms have comparable performance. Two_Arch2 shows
the worst performance on the 2-objective MaF5, whereas
MOEA/D and HypE exhibit poor performance on the
3-objective MaF5. In terms of the 7-objective MaF5,
the top-performing algorithms are GrEA, NSGA-IIIL, 6-DEA,
and AnD.

MaF6 has a degenerate PF. Most algorithms exhibit sim-
ilar performance on the 2-objective MaF6, for which KnEA
performs the worst. For both the 3- and 7-objective MaF6,
MSOPS-II, PICEA-g, SPEA2+4SDE and Two_Arch2 are
always the top-performing algorithms. KnEA is also ranked
in the first class on the 7-objective MaF6.

MaF7 has a mixed disconnected Pareto front and is
also characterized by a multimodal property. As shown in
Tables 6 and 7, there are respectively five top-performing
algorithms for the 2- and 3-objective MaF7, with
SPEA2+SDE, NSGA-III and Two_Arch2 working well for
both the 2- and 3-objective MaF7. In terms of the 7-objective
MaF7, only GrEA and AnD exhibit superior performance
compared to the other algorithms. AnD, which shows a poor
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performance on MaF3 and MaF4, is always among the top-
performing algorithms on MaF7 problem.

In summary, several interesting and insightful conclusions
on the 13 test algorithms can be drawn based on the results
for the MaF problem suite:

1) In contrast to the WFG problems, there is no severe
difference between the behaviours of the HV metric
and the IGD metric on the MaF problems, primarily
because the convergence of the solutions to the Pareto
front is more difficult for most MaFs compared to the
WEFG problems. In this case, the performance compari-
son results are mainly based on the convergence ability
of each algorithm. As a result, the difference in the
performance comparison results between HV and IGD
is small since the distance of the solutions to the Pareto
front may have much larger effects on the performance
comparison results than the distribution of solutions
over the Pareto front.

2) AnD shows a poor performance on MaF3 and
MaF4 problems, both having a large number of local
Pareto-optimal fronts. However, it can always perform
the best on MaF7 problem, which has a disconnected
PE. We can see that the combination of angle-based
selection strategy and SDE strategy makes AnD a top
algorithm for solving problems with disconnected PFs.
However, it is not a good choice for highly multimodal
problems.

3) Although MOEA/D performs poorly on the WFG prob-
lem suite due to the lack of objective space normal-
ization, it is ranked first for four problems of the
2-objective MaF in terms of both HV and IGD.

4) In contrast to the WFG suite, for which KnEA
and RVEA perform poorly in most instances, RVEA
achieves the top-ranked performance for most of the
2-objective MaF problems, whereas KnEA is ranked in
the first class for nearly half of the 3- and 7-objective
MaF problems.

5) Compared to the WFG suite, HypE shows much worse
performance for the 3- and 7-objective MaF problems
even when evaluated by the HV metric, even though
HypE was developed based on the HV value. The
reason for this poor performance may be that the con-
vergence ability of HypE is not as strong as those of the
other algorithms.

6) For the 3-objective MaFs, SPEA2+-SDE ranks first for
all of the problems in terms of the HV metric, followed
by Two_Arch2, which performs the best for five of
the problems. PICEA-g and GrEA are also ranked in
the first class for approximately half of the 3-objective
MaFs based on both the HV and IGD metrics.

7) In terms of MaF problems with 7 objectives,
SPEA2+SDE achieves the top-ranked performance for
nearly half of the problems considering the HV metric
and for most problems considering the IGD metric,
whereas most of the other algorithms perform the best
on at least one problem. Two_Arch2 and KnEA also
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perform well and are ranked first on approximately half
of the 7-objective MaFs.

SPEA24-SDE exhibits strong convergence ability due
to its SDE strategy, which virtually places individu-
als with poor convergence in crowded regions, thus
easily eliminating individuals that are poorly con-
verged during the evolution. As the convergence of
solutions to the Pareto front can be difficult for most
MaFs, SPEA2+4-SDE consequently shows outstanding
performance.

8) In conclusion, even though SPEA24-SDE exhibits top-
ranked performance for most of the MaF test instances,
other algorithms also work well for some of the MaFs.
None of the test algorithms outperforms the others on
all MaFs.

C. PERFORMANCE COMPARISONS ON

PARETO-BOX PROBLEM

Due to the relation of the crowding between the objective
space and the decision space, the behaviour of algorithms in
the objective space can be directly inferred by viewing the
distribution of solutions in the decision space.

Fig. 4 depicts the solutions obtained by the 13 test algo-
rithms in the decision space in a single run. It is clear that
the 13 test algorithms show different behaviour character-
istics. As presented in Fig 4, MOEA/D, RVEA, 6-DEA,
MOEA/DD, and NSGA-III concentrate on only one or several
subregion(s) of the decision space, resulting in poor diver-
sity maintenance. Notably, these five algorithms all belong
to decomposition-based approaches with weight vectors.
Therefore, their poor diversity maintenance is attributable
to the inverted triangular shape of the Pareto front of the
Pareto-Box problem. Due to this shape, only a small num-
ber of weight vectors intersect with the Pareto front [67].
In MOEA/D, when a weight vector is outside the Pareto
front, only the best solution for the weight vector is obtained.
Thus, many solutions are obtained in a small region of the
Pareto front, as shown in Fig. 4. In MOEA/DD and 6-DEA,
when a weight vector is outside the Pareto front, no solution
is assigned to this weight vector. The second best solution
to another weight vector inside the Pareto front is included
in the population. Since the second best solution is almost
(or exactly) the same as the best solution for each weight vec-
tor, the diversity of the obtained solutions becomes very small
(i.e., the number of obtained solutions appears very small).
In NSGA-III, when a weight vector is outside the Pareto front,
no solution is assigned to this weight vector. A solution from
non-dominated solutions is randomly selected and included
in the population. Consequently, the obtained solution set has
greater diversity. However, the uniformity or regularity of
solutions of MOEA/D decreases due to the random selection
mechanism.

As a decomposition-based method, MSOPS-II shows
greater diversity maintenance than the above five algo-
rithms. In addition, the distribution of solutions obtained by
GrEA and HypE is not satisfactory. Although some solutions
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FIGURE 4. The distribution of solutions obtained by the 13 test algorithms in the decision space on the Pareto-Box problem.

obtained by HypE can reach each angle of the heptagon, many
vacant places remain.

In this single run, PICEA-g, SPEA2+-SDE, Two_Arch2,
KnEA, and AnD show better performance compared with
the other algorithms, with much better diversity mainte-
nance. However, these algorithms have their own drawbacks.
For Two_Arch2, PICEA-g, KnEA, and AnD, several solu-
tions fail to converge into the Pareto optimal region. More-
over, SPEA2+SDE shows difficulty in keeping the boundary
solutions.

Although the Pareto-Box is a relatively “easy” problem,
none of the test algorithms provides an acceptable balance
of convergence and diversity. Producing a set of solutions
that are both well-converged and well-distributed remains
a challenging problem. In this respect, perhaps a localized
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concept-based decomposition [68] or a constrained decom-
position [69] can help balance convergence and diversity.

D. OVERALL DISCUSSION ON THE PERFORMANCE

OF THE 13 ALGORITHMS

Unsurprisingly, the results described above show that the
performance of the 13 algorithms significantly depends on
the problem type and the number of objectives. Thus, fur-
ther analysis of the performance of the algorithms can be
conducted in connection to their characteristics and also in
connection to the features of the test problems. For exam-
ple, MaF3 has a convex PF with a large number of local
fronts. Most algorithms fail to achieve a converged solu-
tion for this problem with 7 objectives. However, the two
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decomposition-based algorithms, MSOPS-II and MOEA/D,
show a good performance on it. The idea of decompos-
ing a MaOP into a set of scalar optimization subproblems
may work well for such problems with a high dimension.
Moreover, MSOPS-II also show a competitive behaviour on
WEFGI, which has a PF of complicated mixed geometries.
This finding is similar with the conclusion in [14], that com-
plex objective spaces can be analyzed easily and efficiently
using multiple target vector approaches. Moreover, WFG3 is
a difficult problem with a partially degenerate front and non-
separable decision variables. Most algorithms show a poor
performance on this problem especially when the dimension
increases. However, HypE performs the best on WFG3 with
all 2, 3 and 7 objectives, evaluated by both the IGD and HV
metrics. To some extent, the indicator-based approach may
have a competitive advantage on such difficult problems with
a degenerate front and non-separable decision variables.

The advanced idea of coevolving a family of preferences
simultaneously with the population of candidate solutions
gives PICEA-g an excellent ability to maintain diversity.
Such superiority of PICEA-g makes it a top algorithm for
different types of problems, such as most WFG problems
and the Pareto-Box problem. However, PICEA-g shows a
relatively worse performance on WFG1, WFG3, WFGS,
and WFG9 when the dimension of problems increases. It is
interesting that WFG3, WFGS8, and WFG9 are all non-
separable problems, with their decision variables linked with
other variables. In this sense, it should be careful to select
the preference-based approach to solve such non-separable
problems.

From the results, we can see that SPEA2+SDE shows a
better behaviour on MaF problems compared with the WFG
problems. Itis primarily because the convergence of solutions
to the Pareto front is more difficult for most MaFs compared
to the WFG problems. The SDE strategy, which virtually
places individuals with poor convergence in crowded regions,
can easily eliminate individuals that are poorly converged
during the evolution. Thus SPEA24-SDE exhibits a strong
convergence ability due to its SDE strategy and it is suitable
for those problems which are hard to converge.

Moreover, it can be concluded from the results that
decomposition-based approaches have a poor ability of main-
taining diversity for problems with inverted PFs. In contrast,
solutions obtained by Pareto-based approaches are better
distributed. For instance, regarding the Pareto-Box problem,
MOEA/D, RVEA, 6-DEA, MOEA/DD, and NSGA-III con-
centrate on only one or several subregion(s) of the decision
space, resulting in poor diversity maintenance. In addition,
those decomposition-based approaches, MOEA/D, RVEA,
6-DEA, MOEA/DD, and NSGA-III show a poor performance
on MaF1 and MaF2, which have inverted PFs. It is pri-
marily because that, for problems with inverted PFs, only
a small number of weight vectors intersect with the Pareto
front, thus leading to a bad diversity maintenance. Hence,
the decomposition-based approach is not a good choice for
problems with inverted PFs.
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In order to show the relative performance of the compared
algorithms in an overall aspect, the average ranks of the
algorithms for the different types of problems are shown
in Table 11 and 12, based on HV and IGD respectively. Here,
a smaller rank indicates a better performance.

V. CONCLUSION AND FUTURE DIRECTIONS

Thirteen state-of-the-art evolutionary algorithms of various
categories for many-objective optimization are compared in
this work. Most of these algorithms have been published in
top journals in the last four years, a time period during which
studies on the solution of MaOPs have increased greatly. Sev-
enteen test instances involving the popular WFG, MaF and
Pareto-Box problem suites, which encompass different types
of problem properties, are used in this study to evaluate the
investigated algorithms. The performances of the algorithms
are evaluated by the HV and IGD metrics.

The experimental studies demonstrate that none of the
compared algorithms outperforms the others for all types
of test problems. Different algorithms have advantages for
different problems. Interestingly, the experimental studies
also show that the behaviours of the IGD and HV metrics
may differ in some cases, particularly for the HypE and
PICEA-g algorithms on the WFG test suite. HypE has an
unfair advantage over other algorithms when using the HV
metric, as this algorithm was developed based on the HV
indicator. However, HypE fails to show such overwhelming
performance when using the HV metric on MaF problems.

There is no champion algorithm that works well for dif-
ferent problems. Several algorithms show competitiveness
for a large number of test instances. For WFG problems,
HypE, SPEA2+4-SDE, NSGA-III, and 6-DEA perform well
in terms of the HV metric. PICEA-g, GrEA, Two_Arch2,
0-DEA and NSGA-III perform well in terms of the IGD
metric. For the MaF problems, SPEA2+-SDE, Two_Arch2,
KnEA, and GrEA perform well in terms of both the HV and
IGD metrics.

In addition, even for some easy problems, such as the
Pareto-Box problem, most of the algorithms fail to generate
a set of well-converged and well-distributed solutions. Com-
pared to other algorithms, PICEA-g and Two_Arch2 show
better diversity maintenance but are still unable to converge
all solutions into the Pareto optimal region.

Evolutionary many-objective algorithms have been devel-
oped and evaluated mainly for the DTLZ [70] and WFG [57]
test problems with special characteristic features [67]. As a
result, as demonstrated in this paper, in computational exper-
iments (e.g., Figure 4), these algorithms do not always work
well on other test problems. One important future research
direction is to create a set of test problems with various
characteristic features. Some attempts have been proposed
recently [71]-[73]. The creation of such a set of test problems
will lead to the development of more versatile many-objective
algorithms. The performance evaluation of many-objective
algorithms on real-world problems is also an important future
research topic. Moreover, another important future direction
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for MaOP study is the search for the knee front, instead of
just searching for the whole Pareto front, as the approxi-
mation of the whole front always requires a large number
of points. With respect to algorithm development, diversity
maintenance in the decision space has not been discussed in
the context of many-objective optimization in the literature.
This is an interesting and promising future research topic
since no algorithms work well on a simple Pareto-Box prob-
lem in Figure 4. This research direction includes automated
adaptation of weight vectors in MOEA/D and its variants.

APPENDIX

IGD RESULTS

IGD results of the 13 algorithms on WFG and MaF test suites
are listed in Tables 13, 14, 15, 16, 17, and 18. The HV results
of MOEA/D with normalization is shown in Table 19.
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