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ABSTRACT In this paper, we propose a subband-based ensemble of sequential deep neural net-
works (DNNs) for bandwidth extension (BWE). First, the narrow-band spectra are folded into the high-
band (HB) region to generate the high-band spectra, and then the energy levels of the HB spectra are adjusted
using the DNN-based on the log-power spectra feature. For this, we basically build themultiple DNNs, which
is responsible for each subband of the HB and the DNN ensemble is sequentially connected from lower to
higher subbands. This sequential structure for the DNN ensemble carries out the denoising andHB regression
to better estimate the HB energy levels. In addition, we use the voiced/unvoiced (V/UV) classification to
differently apply the DNN ensemble depending on either V/UV sounds. To demonstrate the performance
of the proposed BWE algorithm, we compare it with a speech production model-based BWE system and a
DNN-based BWE system in which the log-power spectra in the HB are estimated directly. The experimental
results show that the proposed approach provides better speech quality than conventional approaches.

INDEX TERMS Bandwidth extension, sequential deep neural network, ensemble, log-power spectra,
regression, voiced/unvoiced classification.

I. INTRODUCTION
In many digital speech transmission systems, the bandwidth
of telephone speech remains limited to the narrow-band (NB),
which has a frequency range from 300 Hz to 3.4 kHz, espe-
cially when terminals and part of the network have not been
equipped with wide-band (WB) capability. However, users
become aware of the limited intelligibility of NB speech
when they try to understand unknown words or names. These
restrictions can be overcome with an artificial bandwidth
extension (BWE) algorithm, which extends the speech band-
width using only information available from NB speech [1].
Originally, the BWE algorithms proposed in the literature can
be realized in two different ways: with auxiliary transmis-
sions and without transmitting side information [2]. A recent
proposal for BWE using side information was standardized
by 3rd generation partnership project (3GPP) enhanced voice
service (EVS) codec [3], which allocates additional bits for
a special structure on the encoder side. However, the most
challenging application of BWE is improving NB telephone
speech at the receiving end without transmitting any auxiliary

information. Therefore, in this work, we focus on develop-
ing BWE without side information so that no modifications
are necessary for the existing network infrastructure and so
processing can be performed in the terminal device at the
receiving end.

The BWE systems aiming at in this work can be basically
classified into the algorithms with speech production models,
also known as the source-filter model of human speech pro-
duction, and without ones [4]. Many BWE algorithms have
been developed based on the speech production model, moti-
vated by previous studies of the human speech production
system. Two steps are used for speech production model-
based BWE system: estimation of the WB spectral enve-
lope and extension of the excitation signal. Various methods
have been presented in the literature to estimate the WB
spectral envelope from the NB one. For instance, in [5],
Pulakka et al. proposed Gaussian mixture model (GMM)-
based approaches to model the joint distribution of WB and
NB features, estimating the spectral envelope parameters of
WB speech from the NB features using a Bayesian minimum
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mean-square error (MMSE) estimate. The idea of using a
codebook to recover WB spectral information was proposed
in the work of Unno and McCree [6]. Another popular tech-
nique to model the joint distribution of features and retrieve
the missing spectral components is based on the hidden
Markov model (HMM) [7]; the BWE system being modeled
is assumed to be a Markov process with unobserved states.
Pulakka and Alku [8] devised a way to train a neural network
to estimate the mel spectrum in the extension band based on
features derived from the NB signal. Other techniques used to
extend excitation, including spectral shifting and folding [9],
modulation, function generator [10], and non-linear transfor-
mation [11] of NB excitation have been proposed in which
theWB excitation signal is used as the input for the estimated
WB filter when reconstructing the WB speech signal.

On the other hand, the BWE systems without the speech
production model have been developed in different ways.
In the extrapolation method or non-linear mapping [12],
the high-band signal derived from a high pass filter passes
through a shaping filter and is added to the original band-pass
signal. For instance, Yasukawa [12] proposed a non-linear
processing-based expansion method that uses rectification to
produce the extension band of spectral components. Non-
linear processing yields low computational costs, but poor
extension quality, so it does not reproduce the high band
well and also needs subjective power level adjustments. There
has also been an attempt to use the spectral folding method
followed by modification of the high frequency magnitude
spectra using spline curves [13], where the spline control
points are determined using the genetic algorithm. However,
genetic algorithm-based spline control points have a limita-
tion in that it is difficult to estimate the HB energy levels
exactly, especially for sibilant sounds, which sometimes pro-
duces uncomfortable sounds. Also, Choo et al. [14] designed
a way to use an advanced spectral envelope predictor in which
the excitation signal of the WB is estimated using spectral
double shifting, which is regarded as a simplified version of
the adaptive spectral double shifting introduced in [15]. The
spectral envelope of the NB is extended to the WB based on
the spectral shape of the NB determined using a GMM-based
classifier. However, the extension of the spectral envelope is
processed in a heuristic manner and is not verified in noisy
environments. Recently, Li and Lee [16] proposed a novel
BWE algorithm using a deep neural network (DNN) that is
widely used in popular classification and regression tasks,
particularly in automatic speech recognition [17], voice activ-
ity detection [18], sound event classification [19], and packet
loss concealment [20]. In this approach, the HB magnitude
spectra are estimated directly from the NBmagnitude spectra,
which causes artifacts, including annoying sounds, when the
regression of the HB spectra fails. Thus, the direct mapping
method turns out inadequate for BWE systems. There are also
previous studies that combine the speech production model
with deep learning where the spectral envelope information
of WB such as line spectral frequencies (LSFs) are estimated
by various DNN structures, respectively [21]–[24]. However,

FIGURE 1. Flow chart of the proposed BWE algorithm.

speech model parameters such as LSFs are difficult to esti-
mate with DNN because those are known to be sensitive to
regression errors caused by DNN [20].

In this paper, we present a novel BWE algorithm that orig-
inally uses the DNN-based regression approach. Our study,
for the first time as far as we know, proposes the DNN-based
ensemble algorithm using voiced and unvoiced (V/UV)
sounds classification to estimate the energies of the HB spec-
tra. For this, We first apply spectral folding technique to the
boundary between the NB and HB to maintain the spectral
harmonics of the HB and then establish deep generative
models of the log-power spectra features, which are widely
used in regression tasks. The folded spectra of the NB to the
HB are then smoothed to mitigate the sharpness of sounds.
In practice, the HB is split into four subbands, and each
subband is distinctly assigned to a separate DNN by which
the log-power spectra of each subband are estimated in a
sequential fashion. Specifically, the first subband’s DNN
model is fed with the log-power spectra of the NB, and the
first DNN output is then fed into the second DNN. Note
that this step is repeatedly accomplished up to the last DNN,
which aims at estimating the subband energies. In addition,
separate DNNs are designed for V/UV sounds classification,
allowing us to refine DNN ensembles to V/UV conditions.
In a test phase, the DNN being responsible for the V/UV
classification offers the probability of voiced and unvoiced
sounds at each frame and then uses that probability to com-
bine the DNN ensembles on a frame-by-frame basis. We
extensively evaluate the proposed BWE system in terms of
objective and subjective measures and found it to produce
better results than conventional BWE methods. The rest of
this paper is organized as follows: Section II introduces the
proposed BWE method based on DNNs, Section III presents
simulation results, and Section IV presents our conclusions.

II. PROPOSED DNN-BASED BANDWIDTH
EXTENSION ALGORITHM
In this section, we fully describe our proposed BWE sys-
tem, which uses a subband energy level-based HB regression
with a sequential DNN structure including both training and
test phases. Furthermore, V/UV classification-based DNN
ensemble is proposed as shown in Fig. 1, which exhibits the
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FIGURE 2. The proposed sequential DNN structure consists of DNNs for (a) denoising and (b) HB energy regression.

feature extraction, denoising, V/UV classification, sequential
DNN training, the DNN ensemble, and signal synthesis.

A. FEATURE EXTRACTION
In the training phase of the proposed BWE system, the feature
extraction used for the DNNs in both V/UV classification
and BWE is processed. We use the log-power spectra in the
discrete Fourier transform (DFT) domain, known to be well
suited for DNN-based regression tasks, as the feature in this
work. For feature extraction, we first perform the short-time
Fourier transform (STFT) to obtain the DFT coefficients for
each windowed frame such that

Y f (k)=
M−1∑
m=0

y(m)h(m)e−j2πkm/M , k=0, 1, . . . ,M−1 (1)

where k and M are the frequency bin index and window
length, respectively, and h(m) and f denote the window func-
tion and frequency domain, respectively. After the STFT, the
log-power spectra are given as

Y l(k) = log |Y f (k)|2, k = 0, 1, . . . ,K − 1 (2)

where K = M/2 + 1 and l denotes the log-power spectra
domain. For k = K , . . . ,M − 1, Y l(k) is obtained using the
symmetric property given by Y l(k) = Y l(M − k); thus the
dimension of the log-power spectra is given asM/2+1. As for
theWB signal, Y l(k) is further separated into a low-frequency
spectrum, Y lL = [Y l(0), . . . ,Y l(M/4)] and a high-frequency
spectrum, Y lH = [Y l(M/4 + 1), . . . ,Y l(M/2)] where Y lH is
to be recovered by the DNN-based BWE algorithm. Similar
to the log-power spectra, the phase of the DFT domain can be
defined as follows:

Y p(k) , 6 Y f (k), k = 0, 1, . . . ,K − 1 (3)

where p denotes the phase domain.
As for the WB signal, Y p(k) is separated into Y pL (k)

and Y pH (k) in the same way like its corresponding magni-
tude Y l(k) do. The original WB signals (in the frequency
range 0 Hz to 8 kHz) and the NB signals (decoded by the
AMR-NB coder [25] after down-sampling) are used for the

features.When setting the features, our BWE system attempts
to extend the NB signal into the original WB one, which
is limited to 8 kHz, unlike the AMR-WB coder limiting
to 7 kHz [26].

B. SEQUENTIAL DNN TRAINING
We propose the subband-based sequential DNN for the BWE
system as shown in Fig. 2, where the proposed sequential
DNNmodule consists of fiveDNNs: one for denoising as pro-
posed by Xu et al. [27] and four for the subband energy level
regression of the HB. Subband processing splits speech into a
number of different smaller frequency band and each band is
processed independently for which local information is fully
considered distinctly [28]. Four is chosen as the number of
the subbands in this work to consider the trade-off between
the computational complexity and regression performance.

First, when accomplishing denoising, clean and noisy NB
features, decoded by the AMR-NB coder, are used for the
first DNN input while the target is replaced by the clean
NB features. Then, the first DNN output, the enhanced NB
feature, is used as the next DNN input for the energy level
regression at the HB. For the sequential training, the energy
levels of the HB extracted from the WB signal are first used
in the target features. Then, the first subband DNN output is
then fed into the next DNN input, and that process is repeated
until the last subband. Note that not only the previous DNN
output but also the first denoising DNN output are conveyed
into each subband DNN, which can be termed as multiple
ensembles of serial modules. For this, the energy level of the
HB is divided into t (< M/4) sub-levels, which have average
values (M/4t) of consecutive frequency bins as follows:

yn =

∑
k Y

l(k)
M/4t

,
M
4
+ 1 ≤ k ≤

M
4
+
M
4t
· n,

n = 1, 2, . . . , t. (4)

Such yn allows the target vector of the v-th subband energy
level T v to satisfy

T v = {y1, y2, . . . , y tv
4
}, v = 1, 2, 3, 4. (5)

VOLUME 6, 2018 27041



B.-K. Lee et al.: Sequential DNNs Ensemble for Speech BWE

In practice, we employ deep belief networks (DBNs) [29]
for pre-training to initialize the weights and biases of the
DNNs; each DNN is a feed-forward neural network with
many hidden layers mapping the input features to output
features where the features are normalized to zero mean and
unit variance. Next, the pre-training of the DNN is carried
out in an unsupervised manner that uses a contrastive diver-
gence (CD) approximation as the objective criterion [30].
Once the pre-training is finished, the fine-tuning [31] is per-
formed in a supervised manner. In the fine-tuning process,
an MMSE-based back-propagation algorithm is used to min-
imize the error, which is widely used under the regression
tasks [20]. When given an n-dimensional input vector x and
model parameters θ = {W , b}, the final output vector of
the m-th subband through multiple nonlinear hidden layers
is derived as follows:

T̂ v(x, θ )= T̂ v(x,W , b)

= (y1, y2, . . . , y tv
4
)

= W (L)φ(L)(W (L−1)φ(L−1)(· · ·W (1)φ(1)(W (0)x

+ b(0))+ b(1))+ b(L−1))+ b(L) (6)

where T̂ v denotes the estimated v-th subband energy level;
W (l) and b(l) denote the weight and bias terms between two
adjacent layers, the l-th and (l − 1)-th layers, respectively;
and, φ(l) denotes the activation function of the l-th hidden
layer. Note that all activation functions use the logistic func-
tion as stated in [18]. For the DNN training using mini-
batches, the MMSE is used between the estimated and target
subband energy levels for the objective criterion, as given by

Ev =
1
N

N∑
n=1

(
T̂
n
v(x, θ )− T

n
v(x, θ )

)2
, v = 1, 2, 3, 4 (7)

whereEv is the mean squared error of the v-th subband energy
level and N represents the mini-batch size. Then, the updated
estimated weightsW and bias b of each DNN, with a learning
rate λ, can be computed iteratively, as follows:

(W l, bl)← (W l, bl)− λ
∂Em

∂(W l, bl)
, 1 ≤ l ≤ L + 1 (8)

with L indicating the total number of hidden layers and
L + 1 representing the output layer. The proposed sequential
DNN is used to estimate the HB spectral shape for BWE in
a manner similar to that used in the training process. For
example, in Fig. 2, the energy level of the estimated first
subband, T̂1, which is the second DNN output, is fed into the
third DNN input with the enhanced NB feature to estimate
the energy level of the second subband, T̂2. Subsequently,
all the energy levels of the HB are estimated until the last
DNN in the sequential DNN structure, so that T̂4 yields
the final output of the sequential DNN. To prevent over-
fitting during the training phase, the denoising DNN output,
namely, enhanced NB features are fed into all inputs of the
other DNNs. The proposed BWE algorithm, which adopts
the denoising and the sequential DNN structure, offers more

FIGURE 3. The proposed DNN ensemble structure using the V/UV
classification.

exact outcomes in the energy level regression than a structure
using a single DNN to improve the speech quality in the
BWE system. The ensemble structure adopting the V/UV
classification to the BWE systemwill be described in the next
subsections.

C. V/UV CLASSIFICATION
In general, speech can be classified into voiced and unvoiced
sounds in which voiced speech has relatively higher energy
than unvoiced speech and contains periodicity, called the
pitch, so that it has a large effect on speech quality. On
the other hand, unvoiced speech looks like random noise
without periodicity. Because each speech type is clearly dis-
tinct, our BWE algorithm is presented to work with V/UV
classification. Accordingly, as shown in Fig. 3, the log-
power spectra features extracted from the speech samples
are first classified as voiced or unvoiced sounds using the
V/UV classifier, which uses the DNN in a separated fashion.
When training the DNN, the log-power spectra from the NB
speech decoded by the AMR-NB coder are used as the input
for the DNN that uses V/UV labels as the target output.
Unlike sequential DNN training, the V/UV classification
DNN training uses a conjugate gradient (CG)-based back-
propagation algorithm tominimize a cross-entropy error [32].
The DNN-based V/UV classification test is performed in a
similar manner to the training process by which the log-
power spectra of noisy NB speech are fed into the DNN
input. Given a binary classification problem, the estimated
DNN output T̂ class(x, θ ) = {y1, y2} is fed into the softmax
function to obtain the probabilistic soft output qj, as given
by

qj =
exp(yj)∑2
i=1 exp(yi)

(9)

Finally, the probability of a voiced signal, q1, and an
unvoiced signal, 1 − q1, can be obtained and used for
the DNN ensemble in the BWE system so that the char-
acteristics of voiced and unvoiced speech can be fully
considered.
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FIGURE 4. Examples of the log-power spectrum representation of
(a) spectral folding of NB to HB and (b) smoothing of folded spectra, and
(c) HB energy level adjustment.

D. ENSEMBLE OF SEQUENTIAL DNNS FOR BWE
The sequential DNN proposed in the previous subsection
is generated for each voiced and unvoiced sequential DNN
model: SDNNv and SDNNuv, where SDNNv is trained using
the voiced speech frames and SDNNuv is trained using the
unvoiced speech frames, as shown in Fig. 3. Then the final
output of the sequential DNN ensemble is softly calculated
with q1 as follows:

T̂BWE (x, θ ) = q1 · T̂v(x, θ )+ (1− q1) · T̂uv(x, θ )

= {ŷ1, ŷ2, . . . , ŷt } (10)

where T̂v(x, θ ) and T̂uv(x, θ ) are the SDNNv and SDNNuv
outputs, respectively. In this way, the DNN ensemble for the
BWE system can somewhat diminish discontinuities while
well representing the characteristics of voiced and unvoiced
sounds.

E. SIGNAL SYNTHESIS
One strategy for signal synthesis is the spectral folding tech-
nique, by which the NB spectra are folded into the HB region
and the HB energies are then adjusted using the sequential
DNN ensemble. This technique is preferred because the direct
feature mapping method can cause annoying artifacts when
it fails to estimate the HB spectra directly. As shown in
Fig. 4(a), the enhanced NB spectra are folded into the HB
region so that the high frequency spectra are derived such
that Ŷ lH =

[
Ŷ l(M4 ), Ŷ

l(M4 − 1), . . . , Ŷ l(0)
]
. However, in

some frequency bands, speech shows a harmonic structure,
but, in some frequency bands it exhibits a noise-like feature.
Thus, the conventional spectral folding leads to uncomfort-
able noise even if we use the spectral folding for the voiced
segment only. This is why we employ the smoothing scheme
to the folded spectra to mitigate the sounds sharpness, which
is given by (11). In Fig. 4(b), the folded spectra are then

smoothed to mitigate the sharpness of sounds such that

| Ỹ lHs(k) |= (1− α) | Ŷ lH (k) | +α | Ỹ
l
Hs(k − 1) | (11)

where α(= 0.4) is smoothing parameter. We believe that this
method is justified because this algorithm turns out to have
very low computational cost and memory requirement unlike
correction of HB harmonic structure proposed in previous
work [33], which would have made the algorithm much
more complicated, was not obviously superior in terms of the
perceived quality of the BWE processed speech.

To adjust the energy of the HB spectra, we define the level
differences of the n-th sub-level, Dn, between an average of
the subband energy in the folded NB spectra into the HB
region and the estimated one using the sequential DNNmodel
are defined as follows:

Dn=

∑M
4t n

k=1+M
4t (n−1)

Ỹ lHs(k)

M/4t
− yn, n = 1, 2, . . . , t. (12)

Then, the values of the log-power spectra of the HB, X̂ lH (k),
can be obtained as follows:

X̂ lH (k) = Ỹ lHs(k)− Dn, 1+
M
4t

(n− 1) ≤ k ≤
M
4t
n,

n = 1, 2, . . . , t (13)

where the log-power spectra of the HB, Y lH (k), are subtracted
by each level difference Dn, corresponding to the n-th sub-
level. Next, the log-power spectra of theWB are derived such
that Ŷ lW = [Y lL , X̂

l
H ] where the NB spectra are not modified

to prevent quality degradation. For example, the energies of
the HB spectra are adjusted by the proposed algorithm to
match the energies of the original WB spectrum as shown
in Fig. 4(c).

As for the phase, an imaged phase of the NB is used for the
HB phase as given by

Ŷ pH =
[
− Y pL (

M
4
−1), −Y pL (

M
4
−2), . . . ,−Y pL (0)

]
(14)

and the WB is then derived such that Ŷ pW = [Y pL , Ŷ
p
H ].

Finally, theWB signals are reconstructed by applying inverse
DFT (IDFT) to the reconstructed spectrum, Ŷ fW (k) =
eŶ

l
W (k)/2ej

6 Ŷ pW (k), as follows:

ŷw(m) =
1
M

M−1∑
k=0

Ŷ fW (k)ej2πkm/M (15)

where ŷw denotes the time-domain signal in the proposed
BWE algorithm.

III. EXPERIMENTS AND RESULTS
To assess the performance of the proposed algorithm, we used
objective and subjective speech quality measures to compare
it with the BWE algorithms in [14], [16], and [21]. For the
tests, we evaluatedwith the standard TIMIT corpus consisting
of 10 sentences spoken by each of 630 speakers from 8 major
dialect regions of the United States. This speech samples
were divided into 4,620 utterances (3.14 hours long) for the
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TABLE 1. LSD results from the conventional methods and proposed algorithm.

training set and 1,680 utterances (0.97 hours long) for the test
set. In the algorithmwe implemented, theWB signals contain
components up to 8 kHz, and the NB signals decoded by
the AMR-NB codec are up-sampled to 16 kHz. Four types
of noise (office, street, car, and white) were used for the
training stage, and office and babble noises were used for
the test stage to consider both seen and unseen environments,
respectively. The noise signals were electrically added to the
clean speech at various signal-to-noise ratios (SNRs): 5, 10,
and 15 dB. To implement the DFT, we considered frame
lengths of 20 ms with 50% overlap-add using the Hamming
window and 512-point DFT in which 32 sub-levels (M =
512, t = 32) are used for the proposed BWE algorithm
which were defined empirically. Also, the sequential DNNs
and V/UV classification DNN each have three hidden layers,
with 512 hidden nodes activated by the sigmoid function.
We ran 100 epochs for the pre-training and fine-tuning while
training each DNN model. The simulation performed on var-
ious experiments including comparison of the speech quality
measures and graphical comparisons verified the superiority
of the proposed algorithm.

A. SPEECH QUALITY MEASURES
First, we measured the performance by changing the number
of the sub-level as 1, 2, 4, 6, and 8 to investigate how the
performance changes depending on the number of the sub-
levels. For this, objective quality measures such as the log-
spectral distance (LSD) [34] and the perceptual evaluation of
speech quality (PESQ) [35], which are known to be signifi-
cantly correlated with perceptual speech quality are used. As
shown in Fig. 5, the LSD and PESQ decrease as the number
of the sub-levels increases and are saturated at 4, the number
of the sub-levels was thus chosen as 4 in the subsequent tests.

Next, we compared the performance of the proposed BWE
algorithm to that of the AMR-WB with 23.85 kbps, AMR-
NB with 12.2 kbps, and conventional methods including
Choo et al.’s [14], and Li and Lee’s [16], Li and Kang’s [21]

FIGURE 5. LSD and PESQ scores according to the number of the
sub-levels (t).

algorithms via LSD and PESQ. In addition, we investigated
that which part of the proposed BWE structure including
denoising, subband-based sequential DNNs, and ensemble
DNN using V/UV classifier parts contributes in performance
gain. To compare the performance of the normal DNN and
SDNNs, we also added a direct mapping of HB spectra using
SDNNs (SDNN+direct mapping) like a Li’s method. As in
Table 1 showing the evaluation result, the LSD score of the
proposed BWE method is the lowest among the methods,
except for AMR-WB with 23.85 kbps, under both clean and
noisy environments. In addition, the PESQ results, summa-
rized in Table 2, were similar to the LSD results: the proposed
BWE algorithm consistently outperformed the conventional
BWE algorithms in terms of objective speech quality. For
the SDNN+direct mapping method, LSD and PESQ perfor-
mances are slightly better than the Li’s method which uses
vanilla DNN. As a result, it is noted that the SDNN yields
only a slight improvement in performance in case of the direct
mapping method. Based on the results of the comparison
test of the proposed BWE structure including proposed BWE
without denoising, subband, and ensemble, we point out that
the subband-based sequential DNNs contributes more to the
performance improvement than the ensemble DNN structure
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TABLE 2. PESQ results from the conventional methods and proposed algorithm.

FIGURE 6. Overall DMOS test results under the (a) clean and (b) 15 dB
babble environments (95% confidence intervals).

by using the V/UV classifier. Note that the performance of
the proposed BWE system without denoising is not degraded
in the clean speech environment as given in Tables 1 and 2,
which ensures that denoisingDNNdoes not damage the BWE
system in the clean speech environment.

Next, to verify the results of the objective quality tests,
we conducted a degradation category rating (DCR) listening
test [36]. The DCR test uses a degradation opinion scale,
with a high-quality reference condition using the original
WB speech preceding each condition being assessed. The
test consisted of pairwise comparisons between the process-
ing types. Specifically, one sentence, corresponding to the
original WB speech, was presented to the listener in each
test case, and then the listener was asked to evaluate the
quality of the second sample in comparison with the quality
of the first sample. Responses were given using the five-
point degradation mean opinion score (DMOS) scale ranging
from much worse (0) to much better (5). The results of the
subjective speech quality test as shown in Fig. 6 represent
that the DMOS results under both the clean and 15 dB babble
environments are statistically significant; the mean score for
each pair of processing types is shown on the horizontal
axis together with the 95% confidence interval. Note that
the performance of Li’s method is lower than that of Choo’s
method at the 15 dB babble environment, in contrast to the

FIGURE 7. Spectrogram comparison of the speech signals processed by
the (a) AMR-WB codec with 23.85 kbps, (b) Choo’s method [14], (c) Li’s
method [16], (d) Kang’s method [21], and (e) proposed BWE method
under the clean environment.

result in clean environment. This is a different result from
the objective measure result, which implies that the direct
mapping of log-power spectra in a noisy environment may
exhibit more unstable performance.

To summarize, the overall simulation results demonstrate
that the proposed BWE algorithm improves speech quality
compared to the reference BWE algorithms, Choo et al. [14]
and Li and Lee [16].

B. GRAPHICAL COMPARISONS
We also evaluated the spectrograms of the reference WB
speech signal and the speech signals processed using
the Choo’s method in [14], Li’s method in [16], Kang’s
method [21], and the proposed BWE method under a clean
environment. As shown in Fig. 7, the spectrograms of
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FIGURE 8. Spectrogram comparison of the speech signals processed by
the (a) AMR-WB codec with 23.85 kbps, (b) Choo’s method [14], (c) Li’s
method [16], (d) Kang’s method [21], and (e) the proposed BWE method
under the babble environment (SNR = 15 dB).

conventional methods do not represent up to 8 kHz; the
spectrogram from the proposed method is most similar to
the spectrogram in the WB original signal. The results from
the 15 dB babble environment (Fig. 8) are similar to those in
Fig. 7. Note that the spectral gap between 3.4 and 4 kHz are
present in Figs. 6 and 7, but it is known to yield a negligible
perceptual effect which has also been found by the previous
work [37].

IV. CONCLUSIONS
In this paper, we have presented the subband-based sequential
DNN ensemble for use as the BWE algorithm. To do this,
we folded the NB spectra into the HB region and adjusted
the energy levels of the HB using the sequential DNNs.
In the sequential DNN model, the denoising DNN was first
applied to prevent folding noisy components in the NB spec-
tra, and the subband-based energy levels of the HB spectra
were then sequentially estimated using the sequential DNN
ensemble. The sequential DNNs were developed using the
V/UV classification to better represent the characteristics
of speech. In objective and subjective speech quality tests,
the proposed approach (sequential DNN incorporating V/UV
classification) outperformed the reference methods.
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