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ABSTRACT Max–min fuzzy relation equations could be used to describe three-tier multimedia streaming
architecture. To make all the regional servers take part in the system, we define a strong solution concept.
The corresponding weighted minimax problem is studied in this paper. A novel resolution is developed for
obtaining the optimal strong solution of our proposed fuzzy relation weighted minimax problem.

INDEX TERMS Fuzzy relation equation, strong solution, max-min composition, weighted minimax
problem, discrimination matrix.

I. INTRODUCTION
A. FUZZY RELATION EQUATION AND THE
CORRESPONDING OPTIMIZATION PROBLEM
Afuzzy relation is a natural extension of the classical 0-1
relation. In such an extension, the relation between two
objectives is represented by a real number lying in [0, 1] to
describe the relative degree. One of the most commonly used
operations between two fuzzy relations is composition, such
as max-min and max-product. A fuzzy relation equation is
usually in the form of

Am×n ∗ xn×1 = bm×1, or x1×m ∗ Am×n = b1×n,

where ∗ represents the composition operation. The max-
min fuzzy relation equation was first proposed and inves-
tigated by Sanchez [1]. He focused on the resolution of
this equation, as well as its potential application in medical
diagnoses [2]. Searching all of the solutions of this equation
produces the most important targets for the fuzzy relation
equation [4]–[14]. It is now well known that a consistent
system of fuzzy relation equations or inequalities, composed
by a t-norm (triangular norm), has a unique maximum solu-
tion and a finite number of minimal solutions. Moreover,
any vector between the maximum solution and a minimal
solution is always a solution [15]–[18]. Hence the resolu-
tion of fuzzy relation equations depends on solving all the
minimal solutions [19]–[23]. It is easy to verify that the

complete solution is non-convex when its minimal solution is
not unique. Consequently, an optimization problem subject to
fuzzy relation equations or inequalities is often non-convex.
However, due to the specific structure of the feasible domain,
i.e., the complete solution set of the fuzzy relation system,
the resolution of the corresponding optimization problem
was studied, which is different from the typical convex
optimization problem [18]. Optimizing a linear [26]–[35] or
nonlinear [36]–[41] objective function with a fuzzy relation
constraint was investigated with application in various man-
agement fields.

B. MOTIVATION OF OUR WORK
A system of max-min fuzzy relation equations was intro-
duced to describe the three-tier multimedia streaming archi-
tecture in [3]. In such an architecture, multimedia server,
regional server and client workstation represent three tiers.
The multimedia streaming data are transmitted from the
multimedia server to the regional servers. As the relay
stations, the regional servers then relay the data to the
client workstations. Suppose there are n regional servers,
i.e., RS1,RS2, · · · ,RSn, and m client workstations in the
architecture, i.e., CW1,CW2, · · · ,CWm. The multimedia
server is the source supplying the multimedia stream-
ing services. The streaming data are transmitted to each
regional server on the networks through the virtual circuit cj,
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j ∈ J = {1, 2, · · · , n}. The jth regional server further relays
the data to every client workstation with data transmission
quality level (measured as bits per second) xj. On the other
hand, each client workstation will select at least one regional
server fulfilling its quality requirement, denoted by bi > 0,
i ∈ I = {1, 2, · · · ,m}, to receive the multimedia streaming
data. Since RSj is wire connected to CWi, there exists a
bandwidth limitation aij between them. Consequently, the ith
client workstation CWi receives streaming data from RSj
with quality level aij ∧ xj. Therefore, the quantitative relation
lying in the three-tier multimedia streaming services can be
described by the followingmax-min fuzzy relation equations:

(a11 ∧ x1) ∨ (a12 ∧ x2) ∨ · · · ∨ (a1n ∧ xn) = b1,
(a21 ∧ x1) ∨ (a22 ∧ x2) ∨ · · · ∨ (a2n ∧ xn) = b2,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(am1 ∧ x1) ∨ (am2 ∧ x2) ∨ · · · ∨ (amn ∧ xn) = bm,

(1)

where aij, bi, xj ∈ [0, 1] and bi > 0, i ∈ I = {1, 2, · · · ,m},
j ∈ J = {1, 2, · · · , n}. The matrix form of (1) is

A ◦ xT = bT ,

where A = (aij)m×n, x = (x1, x2, · · · , xn),
b = (b1, b2, · · · , bm). Scheduling of the quality levels
x1, x2, · · · , xn is an important issue for the multimedia
streaming service supplier. The following two distinguish-
ing points of view are commonly considered: utilitarianism
versus egalitarianism [24], [25].

In this paper, we denote X = [0, 1]n and

X (A, b) = {x ∈ X |A ◦ xT = bT }.

Hence X (A, b) represents the complete solution set of system
(1). A solution of system (1) is in fact a feasible schedule of
the quality levels, indicating that all the client workstations
are supplied by the multimedia services.

1) Utilitarianism : considered in the existing work [3]
Under consideration of utilitarianism, the administra-
tor only pays attention to the efficiency. In the above
three-tiered multimedia streaming services, highest
efficiency means minimizing the total cost of the mul-
timedia service suppler. Based on such a considera-
tion, Lee and Guu [3] proposed the following linear
programming with max-min fuzzy relation equation
constraints:

min c1x1 + c2x2 + · · · + cnxn
s.t. A ◦ xT = bT . (2)

In problem (2), cjxj is the service cost per unit time
spent by the jth regional server. An optimal solution
of problem (2) is an optimal scheduling of the quality
levels to reach the minimum total cost

c1x1 + c2x2 + · · · + cnxn. (3)

Although the total cost is minimized, the cost spent on
each regional server might not be egalitarian. More-
over, it is possible that some of the regional servers are

non-occupational. These regional servers are scheduled
by xj = 0 and have no client workstation to delay
their local streaming data. On the other hand, there
might exist some overloaded regional servers, which
are scheduled to supply too many client workstations.
This leads to the unbalanced scheduling on the regional
servers. In order to avoid such unbalanced supply-
demand relationship, we introduce the following con-
cept of ‘‘Egalitarian’’.

2) Egalitarian: considered in our work
To overcome the above shortage, we try to establish
another model in which every regional server plays a
part in the system. That is, in our model, the jth regional
server RSj is scheduled by xj > 0, enabling RSj to delay
the streaming of data to at least one client workstation,
∀j ∈ J . Moreover, to balance the cost among all the
regional servers, we replace the total cost by the highest
cost, i.e.,

c1x1 ∨ c2x2 ∨ · · · ∨ cnxn. (4)

Before establishing our model, we should define a
concept that enables every regional server to take part
in the system.
Definition 1 (Strong Solution): A solution xs ∈

X (A, b) is called a strong solution of system (1) if,
for every j ∈ J , there exists an ij ∈ I such
that aijj ∧ x

s
j = bij .

It is obvious that a strong solution of system (1) is a
feasible schedule of the quality levels, making the fol-
lowing true: (i) all the client workstations are supplied
by the multimedia services; (ii) every regional server is
able to supply its own multimedia streaming data to at
least one client workstation.
Denote the set of all strong solutions of system (1) by

X s(A, b).

Then, our target model could be formulated as

min z(x) = c1x1 ∨ c2x2 ∨ · · · ∨ cnxn
s.t. x ∈ X s(A, b). (5)

In our proposed model, all regional servers are treated
equally. Each regional server has the chance to delay
streaming of its own data, and the highest cost z(x) is
minimized. Hence, our model is based on the consider-
ation of egalitarianism.

C. NOVELTY AND STRUCTURE OF OUR WORK
To avoid some of the regional servers becoming unservice-
able, we define the concept of a strong solution for the max-
min fuzzy relation equations in this paper. The corresponding
weighted minimax problem is established and investigated
based on practical application. A novel approach is devel-
oped to find the optimal solution, carried out via a step-
by-step detailed algorithm. The remaining sections of this
paper are arranged as follows. In Section 2, we study the
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strong solution set of system (1), including its properties and
structure. In Section 3, we provide a resolutionmethod for our
proposed problem (5). Section 4 presents a detailed algorithm
and an illustrative example. Advantages of the algorithm are
discussed in Section 5, while a simple conclusion is presented
in Section 6.

II. STRONG SOLUTION SET OF SYSTEM (1)
A. THE EXISTENCE OF A STRONG SOLUTION
In this subsection, we first introduce some related concepts
and results on system (1). Then, we will discuss the existence
of the strong solution in Theorems 2-5.
Definition 2: System (1) is said to be consistent if

X (A, b) 6= ∅. Otherwise, it is said to be inconsistent.
Definition 3: For any x = (x1, x2, · · · , xn) and y =

(y1, y2, · · · , yn) ∈ X , x ≥ y when xj ≥ yj for all j ∈ J .
Furthermore, x > y if x ≥ y and there exists j0 ∈ J such that
xj0 > yj0 . The symbols ‘‘≤’’ and ‘‘<’’ are defined in a similar
way.
Definition 4: A solution x̂ ∈ X (A, b) is said to be the

maximum solution of system (1) when x ≤ x̂ for all x ∈
X (A, b). A solution x̌ ∈ X (A, b) is said to be a minimal
solution of system (1) when x ≤ x̌ implies x = x̌ for any
x ∈ X (A, b).

To determine the maximum of system (1), the classic
method is as follows:

Denote x̂ = (x̂1, x̂2, · · · , x̂n). For any j ∈ J , x̂j =
∧
i∈I

(aij ~

bi), where the operator ‘‘~’’ is defined as

aij ~ bi =

{
bi aij > bi,
1, aij ≤ bi.

(6)

Then, x̂ is the maximum solution when system (1) is consis-
tent, as the following theorem describes.
Theorem 1 [2]: System (1) is consistent if and only if

x̂ ∈ X (A, b). Furthermore, if x̂ ∈ X (A, b), then x̂ is the unique
maximum solution of system (1).
Remark 1: i) A strong solution is certainly a solution, but

not all of the solutions are a strong solution of system (1). For
example, in the fuzzy relation equation (0.3∧x1)∨(0.5∧x2) =
0.4, the solution set is {(x1, x2)|x1 ∈ [0, 1], x2 = 0.4}. Any
solution in the set is not a strong solution since 0.3∧x1 6= 0.4
for any x1.
ii) Any strong solution is less than or equal to x̂ since x̂ is

the maximum solution of system (1).
The properties of strong solutions will be further discussed

with the aid of two kinds of index sets as follows:

Ij(x) = {i ∈ I |aij ∧ xj = bi}, j = 1, 2, . . . , n,

Ji(x) = {j ∈ J |aij ∧ xj = bi}, i = 1, 2, . . . , n

for any x = (x1, x2, . . . , xn) ∈ X .
Proposition 1: A solution xs ∈ X (A, b) is a strong solution

of system (1) if Ij(xs) 6= ∅ for any j ∈ J .
Proof: For any j ∈ J , since Ij(xs) 6= ∅, there exists at

least an ij ∈ I such that aijj ∧ x
s
j = bij , which means xs is a

strong solution.

Corollary 1: If xs ∈ X is a strong solution of system (1),
then Ij(xs) 6= ∅ for any j ∈ J and Ji(xs) 6= ∅ for any i ∈ I .

Proof: For any i ∈ I , since xs = (xsj )1×n is a solution of
system (1), it satisfies

(ai1 ∧ xs1) ∨ (ai2 ∧ xs2) ∨ · · · ∨ (ain ∧ xsn) = bi,

which implies that there exists some ji ∈ J such that
aiji ∧ x

s
ji = bi, i.e., Ji(xs) 6= ∅.

Furthermore, xs is a strong solution, so Ij(xs) 6= ∅ for any
j ∈ J by Proposition 1.
Proposition 2: If xs ∈ X s(A, b), then xsj > 0 for any j ∈ J ,

where xs = (xs1, x
s
2, . . . , x

s
n) .

Proof: If xsj0 = 0 for some j0 ∈ J , aij0 ∧ x
s
j0
= 0 6= bi

for any i ∈ J , which implies Ij0 (x) = ∅. Thus, x
s /∈ X s(A, b).

This is contradictory to the assumption.
Proposition 3: If x ∈ X (A, b) and xs ∈ X s(A, b), then

x ∨ xs ∈ X s(A, b). That is, in system (1), the maximum of
a solution and a strong solution is a strong solution.

Proof: First, x ∨ xs ∈ X (A, b). In fact, since x, xs ∈
X (A, b), by the solution structure of system (1), there exists
some minimal solution x̌1, x̌2 ∈ X (A, b) such that x̌1 ≤ x ≤ x̂
and x̌2 ≤ xs ≤ x̂. Then, x̌1 ≤ x̌1 ∨ x̌2 ≤ x ∨ xs ≤ x̂, which
means x ∨ xs ∈ X (A, b).
Furthermore, x ∨ xs ∈ X s(A, b). Considering that xs is a

strong solution, for any j ∈ J , there exists ij ∈ I such that
aijj ∧ x

s
j = bij by definition. Since x ∈ X (A, b), aijj ∧ xj ≤∨

j∈J
aijj∧xj = bij . Thus, aijj∧(xj∨x

s
j ) = (aijj∧xj)∨(aijj∧x

s
j ) =

bij , which implies Ij(x ∨ xs) 6= ∅. Hence, x ∨ xs ∈ X s(A, b)
by Proposition 1.
Corollary 2: The maximum of any two strong solutions is

a strong solution.
Theorem 2 (Existence Theorem 1): X s(A, b) 6= ∅ if and

only if x̂ ∈ X s(A, b), where x̂ is the maximum solution of the
consistent system (1).

Proof: The sufficiency of the theorem is clear. We just
need to prove the necessity of the theorem.

Suppose X s(A, b) 6= ∅ and xs ∈ X s(A, b). Since x̂ is the
maximum of X (A, b) in the consistent system (1), x̂ = x̂ ∨
xs ∈ X s(A, b) by Proposition 3.
Remark 2: The maximum solution of X (A, b) is not always

a strong solution. For example, in the fuzzy relation equation
(0.3∧x1)∨(0.5∧x2) = 0.4, the maximum solution is (1, 0.4),
which is not a strong solution. In this case, X s(A, b) = ∅ by
Theorem 2.
Example 1: Judge the existence of a strong solution of the

following fuzzy relation equations.

(0.3 ∧ x1) ∨ (0.2 ∧ x2) ∨ (0.7 ∧ x3) ∨ (0.8 ∧ x4) = 0.7,
(0.5 ∧ x1) ∨ (0.4 ∧ x2) ∨ (0.4 ∧ x3) ∨ (0.9 ∧ x4) = 0.4,
(0.7 ∧ x1) ∨ (0.3 ∧ x2) ∨ (0.2 ∧ x3) ∨ (0.7 ∧ x4) = 0.4,
(0.9 ∧ x1) ∨ (0.6 ∧ x2) ∨ (0.1 ∧ x3) ∨ (0.2 ∧ x4) = 0.3,
(0.8 ∧ x1) ∨ (0.5 ∧ x2) ∨ (0.6 ∧ x3) ∨ (0.4 ∧ x4) = 0.6.

(7)
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Solve: Let

A =


0.3 0.2 0.7 0.8
0.5 0.4 0.4 0.9
0.7 0.3 0.2 0.7
0.9 0.6 0.1 0.2
0.8 0.5 0.6 0.4

 and bT =


0.7
0.4
0.4
0.3
0.6

;
then,

A~ b = (aij ~ bi) =


1 1 1 0.7
0.4 1 1 0.4
0.4 1 1 0.4
0.3 0.3 1 0.7
0.6 1 1 0.7

.
Thus, x̂ = (0.3, 0.3, 1, 0.4). It becomes easy to verify that x̂
is a solution of system (7), which implies that system (7) is
consistent and x̂ is the maximum solution by Theorem 1.

Since I1(x̂) = {4}, I2(x̂) = {4}, I3(x̂) = {1, 2, 5},
I4(x̂) = {2, 3, 5}, i.e., Ij(x̂) 6= ∅ for every j ∈ {1, 2, 3, 4},
x̂ is a strong solution of system (7) by Theorem 2 .
Definition 5 (Discrimination Matrix): A matrix

D = (dij)m×n is called the discrimination matrix of system
(1) if

dij =

{
bi aij ∧ x̂j ≥ bi,
0, aij < bi,

∀i ∈ I , j ∈ J , (8)

where x̂ = (x̂j)1×n is the the maximum solution of system (1).
Theorem 3: If system (1) is consistent, then each row in

discrimination matrix D has at least one nonzero element.
Proof: If system (1) is consistent, then x̂ = (x̂j)1×n is

the maximum solution by Theorem (1). Thus, for each i ∈ I ,
the following holds:

(ai1 ∧ x̂1) ∨ (ai2 ∧ x̂2) ∨ · · · ∨ (ain ∧ x̂n) = bi,

which means that at some j0 ∈ J , aij0 ∧ x̂j0 = bi. Then,
dij0 = bi > 0 by definition 5, i.e., the ith row of D has
nonzero element dij0 . Based on the arbitrariness of i, each row
in discrimination matrix D has at least one nonzero element.
Theorem 4 (Necessary Condition): Let D be the discrimi-

nationmatrix and X s(A, b) be the strong solution set of system
(1). If X s(A, b) 6= ∅, then
i) each row in D has at least one nonzero element;
ii) each column in D has at least one nonzero element.
Proof: i) If X s(A, b) 6= ∅, then system (1) is consistent.

By Theorem 3, it holds that each row in D has at least one
nonzero element.

ii) Let xs ∈ X s(A, b); then, by Proposition 1,

Ij(x) = {i ∈ I |aij ∧ xj = bi} 6= ∅, j = 1, 2, . . . , n.

Thus, for any j ∈ J , there exists some i0 ∈ I such that
ai0j ∧ x

s
j = bi0 . Then, ai0j ∧ x̂j ≥ ai0j ∧ x

s
j = bi0 > 0.

Hence, di0j = bi0 > 0 by definition 5, i.e., the jth column
of D has nonzero element di0j. Based on the arbitrariness of
j, each column in discrimination matrix D has at least one
nonzero element.

Theorem 5 (Existence Theorem 2): Let D be the discrim-
ination matrix and X s(A, b) be the strong solutions set of
system (1). Then X s(A, b) 6= ∅ if and only if
i) X (A, b) 6= ∅;
ii) each row in D has at least one nonzero element;
iii) each column in D has at least one nonzero element.
Proof: The necessity is clear by Theorems 2-4. The

following proves the sufficiency.
Since X (A, b) 6= ∅, x̂ = (x̂j)1×n is the maximum solution

of system (1) by Theorem 1. We will prove that x̂ is a strong
solution.

Since each column in D has at least one nonzero element,
∀j ∈ J , ∃ i0 ∈ I such that ai0j ∧ x̂j ≥ bi0 . On the other hand,
as a solution x̂ satisfies

(ai01 ∧ x̂1) ∨ (ai02 ∧ x̂2) ∨ · · · ∨ (ai0n ∧ x̂n) = bi0 ,

which indicates ai0j ∧ x̂j ≤ bi0 , ai0j ∧ x̂j = bi0 . In this way,
we have proved that Ij(x̂) 6= ∅ for any j ∈ J , or x̂ is a strong
solution by Proposition 1.
Both Theorem 2 and Theorem 5 are used to judgewhether a

max-min fuzzy relation equation system has a strong solution,
which is illustrated for Theorem 5.
Example 2: The existence of a strong solution of sys-

tem (7) is presented in Example 1.
Solve: In system (7),

A =


0.3 0.2 0.7 0.8
0.5 0.4 0.4 0.9
0.7 0.3 0.2 0.7
0.9 0.6 0.1 0.2
0.8 0.5 0.6 0.4

, b = (0.7, 0.4, 0.4, 0.3, 0.6)

and x̂ = (0.3, 0.3, 1, 0.4). By definition, the discrimination
matrix is

D = (dij) =


0 0 0.7 0
0 0 0.4 0.4
0 0 0 0.4
0.3 0.3 0 0
0 0 0.6 0

.
It is easy to verify that x̂ ∈ X (A, b) and D has a nonzero
element in any row and column. Therefore, system (7) has a
strong solution by Theorem 5.

B. STRUCTURE OF THE STRONG SOLUTION SET
In this subsection, we discuss the structure of the strong
solution set of system (1). First, we prove Proposition 4,
which allows us to define the ‘‘Minimal strong solution.’’
Next, to find the minimal strong solutions, we introduce some
concepts: the strong solutionmatrix, strong solution corre-
sponding to matrix and pseudo minimal strong solution.
Finally, it is shown in Theorem 8 that the structure of the
strong solution set of system (1) is completely determined
by its minimal strong solution set X̌ s(A, b) and the maximum
solution.
Proposition 4: If xs1 , xs2 ∈ X s(A, b), then y ∈ X s(A, b)

holds for any y satisfying xs1 ≤ y ≤ xs2 . That is, any vector
between two strong solutions is a strong solution.
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Proof: As xs1 ≤ y ≤ xs2 and xs1 , xs2 ∈ X s(A, b) ⊂
X (A, b), y ∈ X (A, b) by the structure of X (A, b). Thus,
y = y ∨ xs1 ∈ X s(A, b) by Proposition 3.
Corollary 3: If xs ∈ X s(A, b) and, ∀y , xs ≤ y ≤ x̂, then

y ∈ X s(A, b).
Proof: The proof is trivial.

Definition 6 (Minimal Strong Solution): A strong solu-
tion x̌s ∈ X s(A, b) is said to be a minimal strong solution
of system (1) when xs ≤ x̌s implies xs = x̌s for any
xs ∈ X s(A, b).
Denote X̌ s(A, b) as the set of all the minimal strong solu-

tions of system (1).
Definition 7 (Strong Solution Matrix): Let D = (dij)m×n

be the discrimination matrix and E = (eij)m×n. E is called a
strong solution matrix belonging to D if
i) eij ∈ {dij, 0} for any i ∈ I , j ∈ J ;
ii) each row in E has at least one nonzero element;
iii) each column in E has at least one nonzero element.
Let E = (eij)m×n be a strong solution matrix belonging

to D. We denote xE = (xEj )1×n, where

xEj =
∨
i∈I

eij, ∀j ∈ J . (9)

It is proved in the following theorem that xE is a strong
solution of system (1).
Theorem 6 (Strong Solution Corresponding to E): Let

E = (eij)m×n be a strong solution matrix belonging to
discrimination matrix D. Then, xE is a strong solution in
system (1) if X s(A, b) 6= ∅. We call xE the strong solution
corresponding to E.

Proof: Two steps are used to prove the theorem.
Step 1. We prove that xE is in X (A, b).
According to the definition of E , each row in E has at least

one nonzero element, i.e., for any i ∈ I , there exists j0 ∈ J
such that eij0 = dij0 = bi > 0. Then,

(ai1 ∧ xE1 ) ∨ (ai2 ∧ xE2 ) ∨ · · · ∨ (ain ∧ xEn )

= (ai1 ∧
∨
i∈I

ei1) ∨ (ai2 ∧
∨
i∈I

ei2) ∨ · · · ∨ (ain ∧
∨
i∈I

ein)

≥ aij0 ∧ eij0 = aij0 ∧ bi = bi. (10)

The last equation holds since bi > 0 when aij0 ∧ x̂j ≥ bi by
Definition 5.

On the other hand, since xE ≤ x̂, by Corollary 3,

(ai1 ∧ xE1 ) ∨ (ai2 ∧ xE2 ) ∨ · · · ∨ (ain ∧ xEn )

≤ (ai1 ∧ x̂1) ∨ (ai2 ∧ x̂2) ∨ · · · ∨ (ain ∧ x̂n) = bi. (11)

Thus, (ai1 ∧ xE1 ) ∨ (ai2 ∧ xE2 ) ∨ · · · ∨ (ain ∧ xEn ) = bi for
any i ∈ I , i.e., xE is a solution of system (1).
Step 2. We show that xE is in X s(A, b).
Since each column in E has at least one nonzero element,

for any j ∈ J , there exists i0 ∈ I such that ei0 j =
∨
i∈I
eij =

xEj > 0. Thus, ai0j ∧ xEj = ai0j ∧ ei0 j = ai0j ∧ bi0 =
bi0 , which indicates Ij(xE ) 6= ∅. Therefore, xE is a strong
solution.

Remark 3: A strong solution matrix does not always exist.
It depends on the discrimination matrix D. D is a strong
solution matrix belonging to itself when D satisfies any row
and any column having nonzero elements.
Example 3: Find all the strong matrices belong to dis-

crimination matrix D in Example 2, as well as their strong
solutions accordingly.

Solve: In system (7), the discrimination matrix is

D =


0 0 0.7 0
0 0 0.4 0.4
0 0 0 0.4
0.3 0.3 0 0
0 0 0.6 0

.
All the strong matrices belonging to D are as follows:

E1 =


0 0 0.7 0
0 0 0 0.4
0 0 0 0.4
0.3 0.3 0 0
0 0 0.6 0

,

E2 =


0 0 0.7 0
0 0 0.4 0
0 0 0 0.4
0.3 0.3 0 0
0 0 0.6 0

 , E3 = D.

It is easy to obtain xE1 = xE2 = xE3 = (0.3, 0.3, 0.7, 0.4),
which is the only strong solution.
Theorem 7: For any x∗ ∈ X s(A, b), there exists some

strong solution matrix E∗ belonging to D such that xE
∗

≤ x∗,
where D is the discrimination matrix of system (1) and xE

∗

is
the strong solution corresponding to E∗.

Proof: For any strong solution x∗ = (x∗1 , x
∗

2 , . . . , x
∗
n ) in

X s(A, b), we are going to find a strong matrix E∗ belonging
to D such that x∗ ≤ xE

∗

.
Let E∗ = (e∗ij), where

e∗ij =

{
dij, aij ∧ x∗j = bi,

0, others.
(12)

Since x∗ is a strong solution, Ji(x∗) 6= ∅ for i ∈ I and
Ij(x∗) 6= ∅ for j ∈ J by Corollary 1. Thus, E∗ has nonzero
elements for any row and column. Furthermore, according to
the definition, e∗ij = dij or e∗ij = 0. Therefore, E∗ is a strong
matrix belonging to D.
The rest is proving x∗ ≤ xE

∗

. In fact, for any j ∈ J ,

xE
∗

j =
∨
i∈I

e∗ij =
∨

{i∈I |aij∧x∗j =bi}

dij =
∨

{i∈I |aij∧x∗j =bi}

bi ≤ x∗j ,

(13)

which means xE
∗

≤ x∗ in the sense of a fuzzy relation.
Definition 8 (Pseudo Minimal Strong Solution): For any

strong solution matrix E belonging to discrimination
matrix D, xE is the strong solution corresponding to E .
We call xE a pseudo minimal strong solution of system (1).
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Denote X̄ s(A, b) as all the pseudo minimal strong solutions
of system (1).
Proposition 5: i) X̄ s(A, b) is a finite set;
ii) X̌ s(A, b) ⊆ X̄ s(A, b) ⊆ X s(A, b) ⊆ X (A, b).
Proof: i) Note that all the matrices belonging to D are

finite. Then, the pseudo minimal strong solutions are finite as
well.

ii) This is clear by definition.
Corollary 4 X̌ s(A, b) is a finite set.
Theorem 8 (Structure Theorem): If X s(A, b) 6= ∅, then the

strong solution set of system (1) is

X s(A, b) =
⋃

x̌s∈X̌ s(A,b)

{xs|x̌s ≤ x ≤ x̂}, (14)

where X̌ s(A, b) is a finite set.
Proof: Based on Propositions 4-5, Corollaries 3-4, and

Theorem 7, the proof is trivial.

III. RESOLUTION OF PROGRAMMING (5)
In this section, we focus on the resolution of program-
ming (5). A novel method is developed to find the optimal
solution of (5).

Suppose cj > 0 for any j ∈ J , which was explained
in Subsection 1.2–Motivation of our work. We will find the
optimal solution by a matrix approach. First, we define an
operatorC�D; then, ‘‘the minimummatrix’’ is found, which
is helpful for achieving the optimal value.

Let D = (dij)m×n be the discrimination matrix and
C = (c1, c2, . . . cn) be the coefficient vector. Define an
operator of C and D as follows:

C � D = (cjdij)m×n =


c1d11 c2d12 ... cnd1n
c1d21 c2d22 ... cnd2n
... ... ... ...

c1dm1 c2dm2 ... cndmn

.
(15)

By (8), we have

cjdij =

{
bicj aij ∧ x̂j ≥ bi,
0, aij < bi,

∀i ∈ I , j ∈ J , (16)

where x̂ = (x̂j)1×n is the the maximum solution of system (1).
Proposition 6: For any fixed i0 ∈ I , j0 ∈ J , the sign of

element cj0di0j0 and the sign of element di0j0 are the same.
That is, the signs of elements of the same subscript are exactly
the same in the two matrices C � D and D.

Proof: Note that cj > 0 for any j ∈ J ; the proof is
trivial.

In the remainder of this section, we assume that
D = (dij)m×n is the discrimination matrix that satisfies
Theorem 5, i.e., each row and each column of D have at
least one nonzero element. By Proposition 6, we have the
following:

i) each row in C � D has at least one nonzero element;
ii) each column in C�D has at least one nonzero element.
We define some sparse matrices S(1), S(2) and S.

Since each row in C �D has at least one nonzero element,
we construct S(1) by taking the minimum of the nonzero ele-
ment of each row inC�D as the element of the corresponding
coordinates in S(1) and zero for the others. Similarly, we use
the columns for S(2), i.e.,

S(1) = (s(1)ij )m×n, S
(2)
= (s(2)ij )m×n,

where

s(1)ij =

{
cjdij, cjdij = min{ckdik > 0|k ∈ J},
0, others.

(17)

s(2)ij =

{
cjdij, cjdij = min{cjdlj > 0|l ∈ I },
0, others.

(18)

i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
We also denote S = (sij)m×n, where

sij = s(1)ij ∨ s
(2)
ij , ∀i ∈ I , j ∈ J . (19)

Proposition 7: Let S be the sparse matrix defined above.
Then,
i) each row in S has at least one nonzero element;
ii) each column in S has at least one nonzero element.
Proof: Note that each row in S(1) = (s(1)ij )m×n has at

least one nonzero element; each column in S(2) = (s(2)ij )m×n
has at least one nonzero element; and S = (sij)m×n, where
sij = s(1)ij ∨ s

(2)
ij . Then, each row and each column in S have

at least one nonzero element.
Proposition 8: Denote C−1 = (c−11 , c−12 , . . . , c−1n ). Then,

the matrix C−1�S is a strong solution matrix belonging to D,
where D is the discriminant matrix, and S is the sparse matrix
defined above.

Proof: Note that C−1� (C �D) = D and S is a matrix
belonging toC�D. Thus, any tij ∈ C−1�S is equal to dij or 0.
Moreover, S has a nonzero element for both any row and any
column, which means C−1 � S has the same nature. Thus,
C−1 � S is a strong matrix belonging to D by Definition 7.
Corollary 5: i) xC

−1
�S is in X s(A, b);

ii) z(xC
−1
�S ) =

∨
i∈I

∨
j∈J

sij.

Proof: i) Note that C−1�S is a strong matrix belong to
D. The proof is trivial.
ii) z(xC

−1
�S ) =

∨
j∈J

cjx
C−1�S
j =

∨
j∈J

xSj =
∨
j∈J

∨
i∈I
sij.

Theorem 9: If X s(A, b) 6= ∅, then the optimal value of
Programming (5) is

∨
i∈I

∨
j∈J

sij, and xC
−1
�S is an optimal strong

solution, where S = (sij)m×n is the sparse matrix defined
by (19) and xC

−1
�S is the strong solution corresponding

to C−1 � S.
Proof: For any x∗ = (x∗1 , x

∗

2 , . . . , x
∗
n ) ∈ X s(A, b),

according to Theorem 7, there exists some strong solution
matrix E∗ belonging to D such that xE

∗

≤ x∗, where D is
the discrimination matrix of system (1) and xE

∗

is the strong
solution corresponding to E∗. Hence, we have

z(x∗) ≥ z(xE
∗

).
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Let E∗ = (e∗ij)m×n. Then

z(xE
∗

) =
∨
j∈J

cjxE
∗

j =
∨
j∈J

∨
i∈I

cjeij.

For any i ∈ I ,
∨
j∈J

cjeij ≥
∨
j∈J

s(1)ij by definition of S(1).

Similarly, for any j ∈ J ,
∨
i∈I
cjeij ≥

∨
i∈I
s(1)ij by definition of

S(2). Hence,∨
j∈J

∨
i∈I

cjeij ≥
∨
j∈J

∨
i∈I

(s(1)ij ∨ s
(2)
ij ) =

∨
j∈J

∨
i∈I

sij.

Therefore,

z(x∗) ≥ z(xE
∗

) ≥
∨
j∈J

∨
i∈I

sij.

Especially, according to Corollary 5, xC
−1
�S is a strong

solution in system (1) and z(xC
−1
�S ) =

∨
i∈I

∨
j∈J

sij.

Thus, we have found an optimal strong solution of
Programming (5).

IV. ALGORITHM FOR PROGRAMMING (5)
Step 1: Check the consistency of system (1) by Theorem 1.

If inconsistent, then Programming (5) has no solution, so stop.
Otherwise, go to Step 2.
Step 2: Calculate the characteristic matrixD, and judge the

existence of a strong solution by Theorem 5, i.e., if D has
a nonzero element for both any row and any column, then
X s(A, b) 6= ∅.
Step 3: Calculate C � D by (15).
Step 4:Compute the sparsematrices S(1) and S(2), and then,

obtain S = (sij)m×n by S(1) ∨ S(2).
Step 5: Find the optimal value, which is

∨
i∈I

∨
j∈J

sij of

Programming (5) by Theorem 9 .
Step 6: Obtain an optimal strong solution xC

−1
�S of

Programming (5) by Theorem 10.
Example 4: The fuzzy relation equations with the max-

min operator are

A ◦ x = b, (20)

where

A =


0.25 0.18 0.48 0.25 0.19 0.22
0.72 0.80 0.74 0.64 0.92 0.56
0.48 0.32 0.82 0.48 0.43 0.38
0.89 0.94 0.87 0.45 0.57 0.49
0.64 0.75 0.95 0.80 0.90 0.90

,

b =


0.25
0.64
0.48
0.57
0.80

.

Denote by X s(A, b) the strong solution set of system (20).
i) Prove X s(A, b) 6= ∅ .
ii) Solve the optimization problem

min z(x) = x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6
s.t.x ∈ X s(A, b). (21)

iii) Solve the optimization problem

min z(x) = 0.9x1 ∨ 0.6x2 ∨ 0.8x3 ∨ 0.7x4 ∨ 0.5x5 ∨ 0.4x5
s.t. x ∈ X s(A, b). (22)

Solve:
i) Step 1. Check the consistency of system (20).
Since

(aij ~ bi) =


1 1 0.25 1 1 1

0.64 0.64 0.64 1 0.64 1
1 1 0.48 1 1 1

0.57 0.57 0.57 1 1 1
1 1 0.80 1 0.80 0.80

,
x̂ = (0.57, 0.57, 0.25, 1, 0.64, 0.80). It is easy to check that
x̂ is the solution of system (20).
Step 2. Calculate the characteristic matrix D by

Definition 5.

D =


0.25 0 0.25 0.25 0 0
0 0 0 0.64 0.64 0

0.48 0 0 0.48 0 0
0.57 0.57 0 0 0.57 0
0 0 0 0.8 0 0.8

.
Each row and each column have nonzero elements in D;

thus, the strong solution set X s(A, b) 6= ∅.
ii) In Steps 1-2 of Question i), we checked the existence

of system (20).
Step 3.C�D = D, asC = (1, 1, 1, 1, 1, 1) in the situation.
Step 4. Compute the sparse matrices S(1) and S(2) as

follows.

S(1) =


0.25 0 0 0 0 0
0 0 0 0.64 0 0

0.48 0 0 0 0 0
0.57 0 0 0 0 0
0 0 0 0.8 0 0

,

S(2) =


0.25 0 0.25 0.25 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.57 0 0 0.57 0
0 0 0 0 0 0.8

.
Hence,

S = (sij) =


0.25 0 0.25 0.25 0 0
0 0 0 0.64 0 0

0.48 0 0 0 0 0
0.57 0.57 0 0 0.57 0
0 0 0 0.8 0 0.8

 .
Step 5. Obtain the optimal value, which is

∨
i∈I

∨
j∈J

sij = 0.8.
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Step 6. An optimal strong solution is xS = (0.57,
0.57, 0.25, 0.8, 0.57, 0.8).

iii) Compared with Question ii), the objective function of
the model has changed while the constraint conditions remain
unchanged. We start it from Step 3.

Step 3.

C � D =


0.225 0 0.2 0.175 0 0
0 0 0 0.448 0.32 0

0.432 0 0 0.336 0 0
0.513 0.342 0 0 0.285 0
0 0 0 0.56 0 0.32

.
Compute the sparse matrices S(1) and S(2) as follows.

S(1) =


0 0 0.2 0 0 0
0 0 0 0 0.32 0
0 0 0 0.336 0 0
0 0 0 0 0.285 0
0 0 0 0 0 0.32

,

S(2) =


0.225 0 0.2 0.175 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0.342 0 0 0.285 0
0 0 0 0 0.32

.
Hence,

S = (sij) =


0.225 0 0.2 0.175 0 0
0 0 0 0 0.32 0
0 0 0 0.336 0 0
0 0.342 0 0 0.285 0
0 0 0 0 0 0.32

 .
Step 5. Obtain the optimal value, which is∨

i∈I

∨
j∈J

sij = 0.342.

Step 6. Since

C−1 � S =


0.25 0 0.25 0.25 0 0
0 0 0 0 0.64 0
0 0 0 0.48 0 0
0 0.57 0 0 0.57 0
0 0 0 0 0 0.8

 ,

an optimal strong solution is xC
−1
�S
= (0.25, 0.57, 0.25,

0.48, 0.64, 0.8).
Example 5: In this example we consider a Three-tier Mul-

timedia Streaming Architecture with three regional servers
and five client workstations (See Fig. 1).

The bandwidth limitation that the ith client workstation
CWi receives multimedia streaming from the jth regional
server RSj is aij, shown in the following Table 1, where
j ∈ {1, 2, 3}, i ∈ {1, 2, 3, 4, 5}. The quality requirements
of the five client workstations are 300, 250, 200, 250, 200,
respectively, with measure unitMbps. The jth regional server
RSj relays the multimedia streaming data to every client
workstation with data transmission quality level xj Mbps,
j = 1, 2, 3.

FIGURE 1. The Three-tier Multimedia Streaming Architecture.

TABLE 1. Value of aij (measure unit: Mbps).

According to the above-given information, we are able to
obtain the equations describing the Three-tier Multimedia
Streaming Architecture as follows,

(200 ∧ x1) ∨ (300 ∧ x2) ∨ (250 ∧ x3) = 300,
(200 ∧ x1) ∨ (250 ∧ x2) ∨ (200 ∧ x3) = 250,
(200 ∧ x1) ∨ (200 ∧ x2) ∨ (150 ∧ x3) = 200,
(150 ∧ x1) ∨ (200 ∧ x2) ∨ (250 ∧ x3) = 250,
(200 ∧ x1) ∨ (200 ∧ x2) ∨ (150 ∧ x3) = 200.

(23)

The target is to search a strong solution of Eq. (23) mini-
mizing the highest cost 3.5x1 ∨ 2x2 ∨ 2.5x3. Furthermore,
we equivalently change Eq. (23) into a system of fuzzy rela-
tion equations by setting a′ij =

aij
500 , x

′
j =

xj
500 , b

′
i =

bi
500 . Then

we have

(0.4 ∧ x1) ∨ (0.6 ∧ x2) ∨ (0.5 ∧ x3) = 0.6,
(0.4 ∧ x1) ∨ (0.5 ∧ x2) ∨ (0.4 ∧ x3) = 0.5,
(0.4 ∧ x1) ∨ (0.4 ∧ x2) ∨ (0.3 ∧ x3) = 0.4,
(0.3 ∧ x1) ∨ (0.4 ∧ x2) ∨ (0.5 ∧ x3) = 0.5,
(0.4 ∧ x1) ∨ (0.4 ∧ x2) ∨ (0.3 ∧ x3) = 0.4.

(24)

Denote the strong solution set of system (24) by
XS (A′, b′). Then we get the corresponding weighted minimax
programming

min z′(x ′) = 3.5x ′1 ∨ 2x ′2 ∨ 2.5x ′3
s.t. x ′ ∈ XS (A′, b′). (25)

Following the resolution algorithm provided in this section,
we find an optimal strong solution of programming (25) that

x ′∗ = (x ′∗1 , x
′∗

2 , x
′∗

3 ) = (0.4, 0.6, 0.5).
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Considering x ′j =
xj
500 , j = 1, 2, 3, we get an optimal strong

solution of the original problem that

x∗ = (x∗1 , x
∗

2 , x
∗

3 ) = (200, 300, 250),

with measure unit Mbps. Under this optimal strong solution,
All the three regional servers are active. One possible service
scheduling is as follows: RS1 services CW3 and CW5, RS2
services CW1 and CW2, while RS3 services CW4. There is no
non-occupational regional server.

Optimal service scheduling, searched from the strong solu-
tion set, is compared to that searched from the classical
solution set, in the following Example 6. The advantage of
our proposed optimization model in this paper also lies in this
example.
Example 6: In the above Example 5, if we do not consider

the strong solution set, but just search the optimal solu-
tion minimizing objective function from the solution set of
Eq. (23), then the unbalanced service scheduling could not be
avoid. When searching the optimal solution from the solution
set of (23), we could establish the optimization problem as

min z(x) = 3.5x1 ∨ 2x2 ∨ 2.5x3
s.t. x ∈ X (A, b), (26)

or as

min z(x) = 3.5x1 + 2x2 + 2.5x3
s.t. x ∈ X (A, b), (27)

where X (A, b) denotes the solution set of (23). Both problems
26 and 27 own the same optimal solution, i.e.

x̄∗ = (0, 300, 250).

Under the optimal solution x̄∗ = (0, 300, 250), the service
scheduling is that RS1 services no client workstation, while
RS2 services CW1, CW2, CW3, CW5, and RS3 services CW4.
In this situation, the second regional server RS2 is overloaded,
since it need to service four client workstations. But however,
the second regional server RS1 is non-occupational, since it
services no client workstation. This leads to an unbalanced
service scheduling.

V. ADVANTAGES OF THE ALGORITHM
A traditional method for solving programming (5) is to find
all the pseudo minimal strong solutions of system (1) and
choose the optimal strong solution(s) by comparing their
objective function values, which will be proved in the fol-
lowing theorem.
Theorem 10: If X s(A, b) 6= ∅, there exists some pseudo

minimal strong solutions x̄ such that x̄ is an optimal strong
solution of Programming (5).

Proof: Let x∗ be an optimal strong solution. According
to Theorem 7, there exists some strong solution matrix E∗

belonging to D such that xE
∗

≤ x∗, where D is the discrim-
ination matrix and xE

∗

is the strong solution corresponding
to E∗, i.e., xE

∗

∈ X̄ (A, b).

Let x̄ = xE
∗

. On the one hand, z(x̄) ≥ z(x∗) since x∗ is
an optimal strong solution. On the other hand z(x̄) ≤ z(x∗)
since x̄ ≤ x∗. Thus, z(x̄) = z(x∗), which implies that one
of the pseudo minimal strong solutions is an optimal strong
solution.
Corollary 6: If X s(A, b) 6= ∅, there exists xs ∈ X s(A, b)

such that xs is an optimal strong solution of Programming (5).
Proof: By the structure of the strong solution set in

Theorem 8, there exists some minimal strong solution xs

of system (1) such that xs ≤ x̄, where x̄ is the pseudo
minimal strong solution in the proof of Theorem 10. It is clear
that z(xs) = z(x̄). Thus xs is an optimal strong solution of
Programming (5).

However, it is more complex to solve the Programming (5)
by Theorem 10, as we will see in the next example.
Example 7: Solve the optimization programming problem

min z(x) = 0.9x1 ∨ 0.6x2 ∨ 0.8x3 ∨ 0.7x4 ∨ 0.5x5 ∨ 0.4x5
s.t. x ∈ X s(A, b), (28)

where A, b is the matrices in Example 4.
Solve: The characteristic matrix is

D =


0.25 0 0.25 0.25 0 0
0 0 0 0.64 0.64 0

0.48 0 0 0.48 0 0
0.57 0.57 0 0 0.57 0
0 0 0 0.8 0 0.8

.
By searching all over the matrix D with the aid of the

software ‘‘MATLAB’’, we will obtain 10 strong matrices
belonging toD, which we denotes as E1,E2, . . .E10. Accord-
ingly, there are 10 pseudo minimal strong solutions accord-
ing to E1,E2, . . .E10, which we denote as xE1 , xE2 , . . . xE10 .
By calculation, the pseudo minimal strong solutions are as
follows:

xE1 = (0.25, 0.57, 0.25, 0.64, 0.57, 0.8),

xE2 = (0.25, 0.57, 0.25, 0.64, 0.64, 0.8),

xE3 = (0.25, 0.57, 0.25, 0.80, 0.57, 0.8),

xE4 = (0.25, 0.57, 0.25, 0.80, 0.64, 0.8),

xE5 = (0.48, 0.57, 0.25, 0.25, 0.64, 0.8),

xE6 = (0.48, 0.57, 0.25, 0.48, 0.64, 0.8),

xE7 = (0.48, 0.57, 0.25, 0.80, 0.64, 0.8),

xE8 = (0.57, 0.57, 0.25, 0.48, 0.64, 0.8),

xE9 = (0.57, 0.57, 0.25, 0.64, 0.64, 0.8),

xE10 = (0.57, 0.57, 0.25, 0.80, 0.64, 0.8).

Accordingly, the objective function values are

z(xE1 ) = 0.342, z(xE2 ) = 0.448,

z(xE3 ) = 0.560, z(xE4 ) = 0.560,

z(xE5 ) = 0.432, z(xE6 ) = 0.432,

z(xE7 ) = 0.560, z(xE8 ) = 0.513,

z(xE9 ) = 0.513, z(xE10 ) = 0.513.
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Among them, the only optimal strong solution is
xE1 = (0.25, 0.57, 0.25, 0.48, 0.64, 0.8), and the optimal
value of the Programming (28) is 0.342.

Comparing the algorithm proposed in Example 4 with that
in Example 7, we find that the former is more convenient
and effective. In the former way, we are able to find an
optimal solution of the programming (5) without solving
all the pseudo strong minimal solutions. However, in the
latter approach, we have to search all the potential matrices
belonging to D all over the discrimination matrix D.
A comparison of the complexities between the proposed

algorithm and the algorithm in Example 7 was conducted.
Consider that the number of variables is n and the number
of equations ism. Then, the complexity of the proposed algo-
rithm T1(m, n) = O(mn), while the complexity of the algo-
rithm in Example 7 is T2(m, n) = O(m2n2). The algorithm
based on matrices can significantly reduce the computational
complexity.

VI. CONCLUSION
In this paper, we introduced the concept of strong solutions
for max-min fuzzy relation equations with the application
background of three-tier multimedia streaming architecture.
A matrix approach is developed to discuss the sufficient and
necessary conditions of the existence of a strong solution in
Theorems 2-5. We used the concept of the discrimination
matrix of system (1) to describe the properties of the strong
solution set. As shown in Theorem 8, we found the structure
of the strong solution set, which is completely determined
by its minimal strong solution set X̌ s(A, b) and the maxi-
mum solution. Furthermore, we discussed the optimization
programming problem (5) and developed a matrix algorithm
to obtain the optimal value and an optimal strong solution
in Theorem 9. Numerical examples are given to support the
algorithm. Finally, we compared the matrix algorithm with
the traditional method in Section 5. As proved in Theorem 10,
we can find an optimal strong solution from the pseudo strong
solution set X̄ (X , a). However, a great effort was required
to do so, as finding all the pseudo minimal strong solutions
is usually an NP hard problem. Comparing Example 4 with
Example 7, we find the feasibility and efficiency of the algo-
rithm proposed in Section 5.

Reliability based design optimization (RBDO) for complex
systems with fuzzy sets is a promising research region in
recent years. Many important works have been published.
As far as we know, RBDO with the background mentioned
in this paper has not been reported yet. In the future we
will consider the RBDO problem in the three-tier multimedia
streaming services.
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