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ABSTRACT In this paper, the robustness of model-based state observers including extended Kalman
filter (EKF) and unscented Kalman filter (UKF) for state of charge (SOC) estimation of a lithium-ion
battery against unknown initial SOC, current noise, and temperature effects is investigated. To more
comprehensively evaluate the performance of EKF and UKF, two battery models including the first-order
resistor-capacitor equivalent circuit and combined model are considered. A novel method is proposed to
identify the parameters of the equivalent circuit model. The performance of SOC estimation is evaluated
by employing measurement data from a commercial lithium-ion battery cell. The experiment results show
that UKF generally outperforms EKF in terms of estimation accuracy and convergence rate for each battery
model. However, the advantages of UKF over EKF with the combined model is not as significant as with
the equivalent circuit model. Both EKF and UKF demonstrate strong robustness against current noise. The
updates of model parameters corresponding to operational temperatures generally improve the estimation
accuracy of EKF and UKF for both models.

INDEX TERMS Extended Kalman filter, lithium-ion battery, robustness, state of charge, unscented Kalman
filter.

I. INTRODUCTION
In the auto industry, electric vehicles (EVs) have attracted
increasing attention and achieved ever better development
as an important technology to reduce the greenhouse gas
emission and the consumption of natural resources [1].
Battery system, as one of the key parts in EVs, plays signifi-
cant role in determining the efficiency, reliability, and safety
of EVs systems. Due to the demanding driving operations,
a battery management system (BMS) is required to guarantee
the good performance of the battery. An accurate estimation
of state of charge (SOC) is one of the main functions for

a BMS [2], [3]. The SOC quantifies the remaining charge
of the battery, which indicates the remaining available range
for EVs. Correct SOC estimation can decrease the risk of
over-charging/discharging [4], improve the efficiency of the
whole EVs energy management, and extend the battery cycle
life [5]. Nevertheless, the battery is a strong nonlinear and
time-variable system due to its complicated internal electro-
chemical process, whichmakes it difficult to directly measure
the SOC. Moreover, various factors such as ambient tem-
perature, battery aging, and charging/discharging current rate
affect the accuracy of SOC estimation [6], [7]. Thus, a robust
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and time-saving technique is required to estimate the SOC
on-board.

A variety of approaches have been proposed to estimate
the SOC including coulomb-counting methods [8], machine
learning methods [9], and state observer methods [10].
Coulomb-counting is widely used in many commercial bat-
tery management systems as it is simple and can be eas-
ily implemented online. This approach constantly measures
current, and simply integrates the charge and discharge cur-
rent with respect to time, which makes this method highly
depend on the precision of current sensor and the accuracy
of initial SOC [11]. In [12], an enhanced coulomb-counting
method is proposed to improve the SOC estimation effi-
ciency by considering the charging and operating efficiencies.
Moreover, coulomb-counting is an open-loop estimator that
accumulated error and uncertainties can lower the accuracy
of SOC estimation. To reduce initial SOC error and accu-
mulated error, the open-circuit voltage (OCV) method [13],
which estimates SOC according to the mapping between
OCV and SOC, is employed to recalibrate SOC. Unfortu-
nately, the OCV method requires long-time relaxation to
reach steady state, which makes it not suitable for onboard
SOC estimation.

For machine learning methods, nonlinear relationship
between SOC and relative factors is described by powerful
intelligent computational algorithms such as artificial neural
networks (ANNs) [14], fuzzy logic [15], and their hybrid
approaches [16], [17]. Given an appropriate training data set,
machine learning methods can provide good estimation of
SOC. In [18], the measured parameters including current,
voltage, and temperature are used as inputs of a Gaussian
process regression model to predict SOC, and the proposed
method outperformed state-of-the-art techniques for SOC
estimation. However, it’s time consuming to train the model,
and the performance of these methods relies on the amount
and the reliability of the training data set. Once the operating
conditions exceed the training data set, the robustness can be
poor, and the uncertainty of the testing data set can exacerbate
the prediction error.

Recently, model-based state estimating methods are
widely applied into SOC estimation. The accuracy of such
methods highly depends on the battery model and the
observer. The frequently utilized battery models include
physics-based models. References [19], [20], equivalent
circuit models [21], [22], machine learning models [23], [24],
and empirical models [7]. The design of observers to estimate
the state can be in different ways, such as Kalman filter
family [25], [26], sliding observer [10], [24], H-infinity
observer [27], [28], and Luenberger observer [29], [30].
Among all the kinds of observers, Kalman filter family takes
up the largest percentage. Extended Kalman filter (EKF)
was introduced to estimate SOC of a lithium-ion polymer
battery by Plett [31] in 2004. Later, sigma-point Kalman
filter was proposed to improve estimation accuracy [32].
Simultaneously, the methodologies to enhance the Kalman
filter family’s performance on SOC estimation emerged, such

FIGURE 1. Schematic of Lithium-ion battery equivalent circuit.

as adaptive extended Kalman filter (AEKF) [33], adaptive
unscented Kalman filter (AUKF) [34], square root spherical
unscented Kalman filter [35]. In [36], the EKF was applied
into SOC estimation and the performance was improved by
updating the parameters related to aging. Zou et al. [37]
developed a deterministic version of EKF for the estimation
of SOC and state of health (SOH) in a lithium-ion bat-
tery. Meanwhile, studies have been conducted to compare
the performance of different state estimating approaches.
In [7], the performance of EKF, UKF, and particle filter (PF)
were compared in terms of accuracy and computational cost
for SOC estimation under various loading profiles, and the
experimental results show that the UKF was most robust to
unknown initial SOCs.

In this paper, the robustness of EKF and UKF in SOC esti-
mation of lithium-ion battery against unknown initial SOC,
current noise, and temperature will be investigated. In SOC
estimation, incorrect initialization of SOC is inevitable which
is considered as one of the biggest problems of coulomb-
counting for SOC estimation. Moreover, the current sensor
is much more precise in the laboratory than in the indus-
trial applications which requires robust state observers with
strong robustness against current noise. Temperature can
significantly affect the performance of lithium-ion bat-
tery in discharging capacity, OCV-SOC relationship, and
model parameters which can deteriorate the model accuracy.
Thereby, the investigation on the robustness of EKF and
UKF against those factors is of great value for accurate SOC
estimation.

The battery model is essential for SOC estimation
using EKF and UKF, therefore two models namely first-
order RC (resistor-capacitor) equivalent circuit model and
combined model are considered. With first-order RC equiv-
alent circuit model, the recursive least square (RLS) algo-
rithm [36] is frequently applied to identify the model param-
eters. In this paper, multi-swarm particle swarm optimization
(MPSO) [38] will be applied to derive model parameters and
compared with RLS algorithm in terms of modeling accuracy.

The remainder of the paper is organized as follows:
Section II introduces the battery models, the experiments,
and the methods to identify model parameters. In section III,
the EKF and UKF algorithms are briefly introduced, and
this is followed by experiment results and analysis in SOC
estimation. Finally, conclusions of the paper are given in
section IV.
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FIGURE 2. Schematic of Lithium-ion battery test bench.

FIGURE 3. OCV-SOC curves: (a) OCV curve at room temperature; (b) OCV curve at 0 ◦C, 20 ◦C, and 40 ◦C.

II. BATTERY MODELING
A. DEFINITION OF SOC
SOC is defined as the ratio of the remaining charge to the
maximal capacity of an operating battery [39], and it is com-
puted by

SOCt = SOC0 −
1

Cmax

∫ t

0
i (τ )dτ (1)

where SOCt is the SOC at time t , SOC0 is the initial value
of SOC, i(τ ) is the instant loading current assuming positive
for discharging and negative for charging, and Cmax is the
maximal capacity of the battery which can be different from
the nominal capacity due to temperature effect and aging
effect.

B. MODEL STRUCTURE
In this paper, two models are used to characterize the battery
dynamic behavior for EVs’ application.

1) EQUIVALENT CIRCUIT MODEL
The first-order RC model shown in Fig. 1 [40] is considered
and the electrical characteristic of the model can be discretely
expressed as follows:

SOCk+1 = SOCk −
1tk
Cmax

Ik + ω1,k (2)

Up,k+1 = exp
(
−
1tk
RpCp

)
Up,k

+Rp

(
1− exp

(
−
1tk
RpCp

))
Ik + ω1,k (3)

TABLE 1. Specification about the Test Battery.

Uterm,k = Voc,k (SOC)− Up,k − R0Ik + νk (4)

where Uterm is the battery terminal voltage, I is the loading
current, Voc is the battery OCV which is a time varying dc
voltage source related to SOC, and R0 is the internal ohmic
resistance. Battery dynamic characteristics caused by the dif-
fusion effect and a double layer charging/discharging effects
are illustrated by the RC network. Rp is the polarization
resistance, Cp is the polarization capacitor, and Up is the
voltage cross Cp. ω1, ω2 and ν represent the uncertainties
caused by the model and external noise or disturbance, which
are uncorrelated zero-mean Gaussian white noise. 1t is the
sampling interval and the subscript k represents the time step.
With the equivalent circuit model, SOC andUp are considered
as states to be estimated by observers. To simply the model,
it is assumed that the model parameters are independent
of SOC. However, the dependence of model parameters on
temperatures is well studied.

• Parameter identification with RLS

The RLS is applied to identify the model parameters
including R0, Rp, and Cp, and the linear identifiable form (5)
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FIGURE 4. DST test profile: (a) current; (b) voltage.

is obtained by iteratively substituting (3) into (4):

1Uk+1 = a ·1Uk + b · Ik + c · Ik+1 (5)

where 1Uk = Voc,k (SOC) − Uterm,k , a = exp
(
−

1tk
RpCp

)
,

b = Rp−Rp · exp
(
−

1tk
RpCp

)
−R0 · exp

(
−

1tk
RpCp

)
, and c = R0.

Assume 1tk = 1t for k = 1, 2, . . . ,N , then a, b, and c are
constants and linear least square (LLS) is applicable for the
identification of coefficients in (5) thereby the values of R0,
Rp, and Cp.

• Parameter identification with MPSO

The determination of the parameters R0, Rp, and Cp can
be formulated as an optimization problem (6) to minimize
the mean squared error (MSE) between observed1Uk+1 and
values of 1Ûk+1 calculated by (4) - (5):

minMSE =
1

N − 1

N−1∑
i=1

(
1Ûk+1 −1Uk+1

)2
(6)

In this paper, the solution of (6) is obtained by using the
MPSO algorithm [38]. This method required Up,1, and if
its value is unknown it can be considered as an unknow
parameter to be determined together with R0, Rp, and Cp.
The advantages of the proposed method over RLS will be
illustrated with experimental data.

2) COMBINED MODEL
The combined model in (7) is also used to describe the
dynamic characteristics of the battery. This model linearly
depends on parameters k0, k1, k2, k3, k4, and R0, hence the

FIGURE 5. FUDS test profile: (a) current; (b) voltage.

TABLE 2. Identified parameters by two algorithms under DST test profile
at room temperature.

TABLE 3. Modeling errors by two different algorithms.

LLS is applied to derive these parameters.

Uterm,k = k0 −
k1

SOCk
− k2SOCk

+ k3 ln (SOCk)+ k4 (1− SOCk)− R0Ik (7)

C. EXPERIMENTS
The battery test bench consists of a Votsch thermal cham-
ber, an Arbin battery test system BT2000, and a host com-
puter with Arbin’s Mits Pro Software shown in Fig. 2.
This test bench was also used in [6] and [7]. The cylin-
drical B18650CD battery (LiNMC) manufactured by BAK
(Shenzhen, P. R. China) is used in the test, and the key
specifications are shown in Table 1.

1) OCV-SOC TEST
To obtain the relationship between SOC and OCV at various
temperatures, the OCV-SOC test is conducted at temperatures
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TABLE 4. Fitted parameters and modeling errors at different temperatures.

FIGURE 6. Modeling performance by the two algorithms: (a) modeling
voltage; (b) modeling error.

from 0 ◦C to 50 ◦C at an interval of 10 ◦C as well as at
room temperature 25 ◦C. The test procedures are described
in detail in [6]. The OCV-SOC curves are depicted in Fig. 3.
It is observable in Fig. 3(a) that the charging and discharging
curves show hysteresis phenomenon. To mitigate the effects
of hysteresis and internal ohmic resistance, the averaged cell
voltage is used to compute the OCV. The OCV-SOC curves
at three different temperatures in Fig. 3(b) show that the
OCV difference caused by temperature is not very significant
for LiNMC lithium-ion battery especially when the SOC is
greater than 10%. Two approaches are adopted to describe the
OCV-SOC relationship, OCV-SOC table and seventh poly-
nomial function. The former is used by the UKF algorithm
while the latter is employed by the EKF algorithm for SOC
estimation in this study.

2) MODEL IDENTIFICATION AND VALIDATION TESTS
Famous test profiles including the dynamic stress test (DST)
and the federal urban driving schedule (FUDS) are executed
on the battery cells at temperatures from 0 ◦C to 50 ◦C at an

TABLE 5. Fitted parameters of combined model at different temperatures.

interval of 10 ◦C and room temperature. The current profiles
and the corresponding terminal voltage at room temperature
are depicted in Fig. 4 and Fig. 5, respectively. The DST tests
are utilized to identify the batterymodel parameters, while the
FUDS tests are used to evaluate the accuracy of the model as
well as the correctness of SOC estimation.

D. MODEL CALIBRATION
1) EQUIVALENT CIRCUIT MODEL
The performance in parameter identification by the two algo-
rithms, RLS andMPSO, are compared. The identified param-
eters based on the DST test profile at room temperature are
summarized in Table 2 while the measured and modeling
voltages as well as the modeling errors by the two algorithms
are depicted in Fig. 6.

The values of internal resistance R0 obtained by two
algorithms are very close, and the main difference lies in
the values of the first-order RC network which describes
the dynamic behavior of the battery. The time constant
(τ = RpCp) of the RC network derived by the MPSO algo-
rithm is much longer than that by the RLS algorithm. It usu-
ally takes several hours to get the battery totally relaxed, thus
the MPSO algorithm better describes the battery behavior
which can be demonstrated by the voltage errors in Fig. 6(b).

The mean absolute error (MAE) and the root mean
squared error (RMSE) are employed together to evaluate the
goodness-of-fit of the model. In Table 3, the modeling errors
by the two algorithms are compared where the DST and
FUDS are used as the training and test data set, respectively.
The MPSO algorithm greatly improves the model accuracy
in terms of MAE and RMSE on the DST profiles. The MPSO
also performs better on the FUDS profiles as expected. Thus,
the MPSO algorithm is chosen as the algorithm to identify
the parameters at different temperature, and the identified
parameters and modeling errors are summarized in Table 4.
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TABLE 6. Comparison of modeling errors of different battery models.

FIGURE 7. SOC estimation with an initial SOC of 90%: (a) SOC estimation; (b) SOC estimation error.

FIGURE 8. SOC estimation with an initial SOC of 50%: (a) SOC estimation; (b) SOC estimation error.

TABLE 7. Nomination of methods used for SOC estimation.

2) COMBINED MODEL
The parameters at different temperatures are listed
in Table 5 while the comparison of the errors by this model
against equivalent circuit model is shown in Table 6. From
Table 6, it is observable that no model dominates the other
for all the temperatures in terms of MAE and RMSE.

III. SOC ESTIMATION AND ANALYSIS
To estimate the state of a dynamic linear system, Kalman
filter (KF) is an optimal recursive solution, which has been
widely used in various fields such as navigation, target
tracking, and global positioning. Since KF is only available

for linear system, two extensions of KF including EKF and
UKF are applied into lithium-ion battery SOC estimation.
The basic idea of KF is to compare the measured terminal
voltage with the modeling terminal voltage, and the differ-
ence is fed back to correct the predicted SOC by a gainmatrix.
EKF and UKF are developed to deal with the nonlinear
problems. A linearization is realized at each step to approx-
imate the nonlinear system by the EKF algorithm. The UKF
algorithm addresses the approximation problems of EKF by
introducing the concept of weighted sigma points, which are
deterministically selected from the Gaussian approximation.
These points propagate through the true nonlinearity, and the
mean and covariance of the Gaussian approximation are then
re-estimated. The details on the EKF andUKF algorithms and
their applications in SOC estimation are well described in [6]
and [7].

The FUDS tests are employed to evaluate the performance
of SOC estimation. The SOC ranging from 90% to 10% is
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TABLE 8. Comparison of SOC estimation with different initial SOCs.

FIGURE 9. SOC estimation with an initial SOC of 20%: (a) SOC estimation; (b) SOC estimation error.

TABLE 9. Robustness evaluation of soc estimation against current noise.

considered as the parameters vary slightly within the range
and the battery SOC is seldom permitted to exceed this range
in battery management systems for EVs. The performance of
SOC estimation methods handling various practical problems
including unknown initial SOC, current noise, and tempera-
ture effects is studied. To clearly distinct the observers and
models used in each SOC estimation method, the nomination
of different methods is given in Table 7.

A. SOC ESTIMATION WITH UNKNOWN INITIAL VALUE
AT ROOM TEMPERATURE
To illustrate the robustness of EKF andUKF against unknown
initial SOC, the behavior including estimation accuracy and
convergence rate of EKF and UKF in SOC estimation with
unknown initial SOCs is discussed. The accuracy is illus-
trated by RMSE, and the convergence rate is defined as the
time that the estimated SOC converges to the ±3% error
bands.

FIGURE 10. Comparison between the measured current and noisy current.

The estimation accuracy and convergence rate by EKF and
UKF with different settings of initial SOCs from 90% to
10% at the step interval of 10% is summarized in Table 8.
It is observable that the RMSE and convergence rate gener-
ally increases with increasing initial SOC errors. The UKF
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FIGURE 11. Illustration of SOC estimation with and without current noise: (a) SOC estimation with circuit equivalent; (b) SOC
estimation error with circuit equivalent model; (c) SOC estimation with combined model; (d) SOC estimation error with combined
model.

algorithm based on combined model (M4) generally provides
most accurate estimation, while the EKF algorithm based
on equivalent circuit model (M1) performs worst. The UKF
converges much faster than EKF regardless of the lithium-
ion battery model used. The advantage of UKF over EKF
with combined model is not as significant as with equivalent
circuit model. This can be partially explained that with equiv-
alent circuit model the UKF employs OCV-SOC table which
is more accurate than the polynomial OCV-SOC relationship
used by EKF.

The estimation of SOC by different methods with ini-
tial SOC settings of 90%, 50%, and 20% are illustrated in
Figs. 7-9. In Fig. 7, the initial setting of SOC is set to the true
value, however, the EKF and UKF based on the equivalent
circuit model take some time to converge to the true SOC.
This is partially due to that the EKF and UKF based on the
equivalent circuit model should also accurately estimate Up.
From these figures, it’s clear that the convergence of the
estimation of SOC based on combined model is much faster
than that based on the equivalent circuit model. This leads
to the higher accuracy of combined model based estimation
of SOC. However, the combined model based estimation of
SOC is less reliable at low true SOCs due to large errors.

B. SOC ESTIMATION WITH CURRENT NOISE
AT ROOM TEMPERATURE
To illustrate the robustness of EKF and UKF against current
noise due to sensor drift in SOC estimation, a zero-mean

TABLE 10. Battery discharge capacity (Ah) under different loads at
various temperatures.

Gaussian noise whose variance equals 0.25 A2 is added into
the measured current. The comparison between the measured
current and the noisy current is depicted in Fig. 10. The
amplitude of the noise can be as high as 0.5 A which takes
up 12% of the maximal current value under FUDS test.

The performance of SOC estimation by different meth-
ods is given in Table 9. As the noise is randomly added
into the current, the impacts of current noise on SOC
estimation is also random that the performance can be
improved or degraded in terms of estimation accuracy and
convergence rate. From Fig. 11, however, it is observable
that both the EKF and UKF can handle current noise for
SOC estimation regardless of the lithium-ion battery model
used.

C. SOC ESTIMATION AT VARIOUS TEMPERATURES
The OCV-SOC relationship and model parameters depend
on temperature. Moreover, the battery discharging capacity
under different loading profiles are related with temperatures
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TABLE 11. RMSE (%) of SOC estimation by different methods.

FIGURE 12. SOC estimation with and without updates of parameters at 10 ◦C: (a) SOC estimation with circuit equivalent; (b) SOC
estimation error with circuit equivalent model; (c) SOC estimation with combined model; (d) SOC estimation error with combined
model.

as shown in Table 10. At infinitesimal discharging rate (C/25),
the discharging capacity varies less than 4% of the nominal
capacity for various temperatures. However, the situation is
very different for DST and FUDS test profiles in which the
variation can reach 30% of the nominal capacity. At low
temperature (0 ◦C) the discharge capacity under DST and
FUDS is much smaller than that at high temperature (50 ◦C).
This is explained by the battery performance degradation due
to the reducing internal chemical reaction at low temperature,
and that’s why reheating is required for a battery to crank at
low temperature. In this paper, the robustness of EKF and

UKF based on different lithium-ion battery model against
temperature for SOC estimation is also investigated.

The accuracy of SOC estimation at different tempera-
tures with and without updates of parameters are summa-
rized in Table 11. No update means that the parameters at
room temperature are employed to estimate SOC at other
temperatures. It’s observable that the updates of parameters
can greatly improve EKF and UKF based SOC estimation
accuracy with equivalent circuit model at any temperature
regardless of the settings of initial SOC. However, at 0 ◦C
the estimation based on equivalent circuit model is much
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less accurate than at other temperatures. With the combined
model, the updates of parameters improve the estimation
accuracy at all the temperatures except at 50 ◦C due to the
inaccurate model. The UKF generally outperformed EKF
with a given model, but no method dominates the others at
all the temperatures considering the battery model utilized.
Fig. 12 depicts the SOC estimation with and without updates
of parameters at 10 ◦C. It is observable that the updates of
parameters greatly reduce the estimation errors for both UKF
and EKF.

IV. CONCLUSION
In this paper, the robustness of EKF and UKF for lithium-
ion battery SOC estimation against core problems such as
unknown initial SOC, current noise, and temperature effects
is studied. As EKF and UKF are sensitive to the battery
model, twomodels including first-order RC equivalent circuit
model and combined model are utilized to characterize the
dynamic behavior of the lithium-ion battery. The methods
for model parameter identification is also discussed. With
equivalent circuit model, the MPSO outperformed RLS for
model parameter identification in terms of modeling accu-
racy. However, for the considered battery models no one
outperformed the other at all the test temperatures.

The experiment data on a commercial lithium-ion battery
cell (LiNMC) is utilized to evaluate the performance of dif-
ferent methods in SOC estimation. Computational results
illustrate that UKF algorithm generally outperforms EKF
algorithm in terms of SOC estimation accuracy and conver-
gence rate with unknow initial SOC. However, the advantages
of UKF over EKF are more significant with the equivalent
circuit model than with the combined mode. Both UKF algo-
rithm and EKF algorithm show strong robustness against
current noise regardless of the battery model. More impor-
tantly, it’s of great importance to update the parameters at
different temperatures for both EKF and UKF to improve the
estimation accuracy. It also should be noted that the accuracy
of combined model is greatly reduced at high temperature
leading to inaccurate SOC estimation with updates of model
parameters.
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