
Received April 2, 2018, accepted April 25, 2018, date of publication May 7, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2833552

Application of Grey Wolf Optimization for
Solving Combinatorial Problems: Job Shop
and Flexible Job Shop Scheduling Cases
TIANHUA JIANG 1 AND CHAO ZHANG2
1School of Transportation, Ludong University, Yantai 264025, China
2Department of Computer Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China

Corresponding author: Tianhua Jiang (jth1127@163.com)

This work was supported in part by the Training Foundation of Shandong Natural Science Foundation of China under Grant ZR2016GP02,
in part by the Project of Shandong Province Higher Educational Science and Technology Program under Grant J17KA199, and in part by
the Special Research and Promotion Program of Henan Province under Grant 182102210257.

ABSTRACT Grey wolf optimization (GWO) algorithm is a new population-oriented intelligence algorithm,
which is originally proposed to solve continuous optimization problems inspired from the social hierarchy
and hunting behaviors of grey wolves. It has been proved that GWO can provide competitive results
compared with some well-known meta-heuristics. This paper aims to employ the GWO to deal with two
combinatorial optimization problems in the manufacturing field: job shop and flexible job shop scheduling
cases. The effectiveness of GWO algorithm on the two problems can give an idea about its possible
application on solving other scheduling problems. For the discrete characteristics of the scheduling solutions,
we developed a kind of discrete GWO algorithm with the objective of minimizing the maximum completion
time (makespan). In the proposed algorithm, searching operator is designed based on the crossover operation
tomaintain the algorithmwork directly in a discrete domain. Then an adaptivemutationmethod is introduced
to keep the population diversity and avoid premature convergence. In addition, a variable neighborhood
search method is embedded to further enhance the exploration. To evaluate the effectiveness, the discrete
GWO algorithm is compared with other published algorithms in the literature for the two scheduling
cases. Experimental results demonstrate that our algorithm outperforms other algorithms for the scheduling
problems under study.

INDEX TERMS Job shop, flexible job shop, makespan, discrete grey wolf optimization, genetic operator,
variable neighborhood search.

I. INTRODUCTION
Swarm intelligence optimization algorithms imitate the evo-
lutionary processes in nature on the basis of the collective
intelligence of swarms. In general, these algorithms start
with a population of individuals (solutions), which attempt
to survive and reproduce in a given environment. During the
evolutionary process, the collective intelligence is built up
by the interaction between individuals with each other and
with the environment. After a number of generations, the
expected solutions will be obtained for the problem. Two
classical swarm intelligence algorithms are Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO),
which are respectively inspired by the behaviors of birds and
ants. With the continuous exploration and understanding of
the world, more and more swarm intelligence optimization

algorithms are gradually developed involving Artificial Bee
Colony (ABC) Algorithm [1], Fruit Fly Optimization Algo-
rithm (FFOA) [2], Cat Swarm Optimization (CSO) [3], Bat
Algorithm (BA) [4], Grey Wolf Optimization (GWO) [5],
Migrating birds optimization (MBO) [6], and so on. Due to
their inherent advantages, these algorithms have been suc-
cessfully applied to solve various optimization problems in
different research areas.

Grey wolf optimization (GWO) is a novel swarm-based
intelligence algorithm on the basis of the social hierarchy and
huntingmechanism of natural grey wolves. It has been proved
that GWO is competitive to other well-known meta-heuristic
algorithms such as differential evolutionary algorithm and
particle swarm optimization [5]. Due that GWO is a very effi-
cient intelligence algorithm, it has been successfully used to

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26231

https://orcid.org/0000-0002-9260-4041

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

deal with economic dispatch problem [7], [8], the capacitated
vehicle routing problem [9], power dispatch problem [10],
system reliability optimization [11], and so on. However, as
far as authors’ knowledge, there are few literature involving
the application of GWO on the workshop scheduling prob-
lems in the manufacturing field. Lu et al. [12] proposed a
multi-objective discrete grey wolf optimization (MODGWO)
for a real-world scheduling case in a welding workshop
with the objective of optimizing production efficiency and
machine load. Komaki and Kayvanfar [13] designed a hybrid
multi-objective grey wolf optimization (HMOGWO) to solve
the multi-objective dynamic welding scheduling problem.
Asadzadeh [14] developed a grey wolf optimizer to solve the
two-stage assembly flow shop scheduling problem consid-
ering the release time of jobs. The application of GWO in
the aspect of production scheduling problems should be paid
more attention.

As one of the most important problems in the manufac-
turing area, production scheduling concerns with optimizing
the allocation of manufacturing resources in order to achieve
the optimal production targets. The job shop scheduling (JSP)
and flexible job shop scheduling problems (FJSP) are both
viewed as one of the most difficult combinatorial optimiza-
tion problems. For the JSP, it is an important topic in pro-
duction management, which concentrates on determining the
job permutation on each machine subject to the processing
constraints in order to achieve some expected targets. As an
extension of the JSP, FJSP provides a closer approximation to
the real-world production, where each operation is allowed to
be processed on more than one machine from its alternative
machine set. Compared with the JSP, the complexity lies on
the addition of the machine assignment for operations. Due to
the NP-hard characteristics of the two problems, it is difficult
to acquire the global optimum by exact algorithms even for a
small-size instance. Under this situation, various intelligence
algorithms have been proposed for solving those problems.

For the JSP, Asadzadeh [14] proposed an agent-based local
search genetic algorithm. In his study, a multi-agent sys-
tem was presented to realize the algorithm. Zhao et al. [15]
developed a hybrid differential evolution and estimation of
distribution algorithm combining the merits of estimation
of distribution algorithm and differential evolution algo-
rithm. Baykasoglu et al. [16] tested the performance of the
teaching-learning based optimization algorithm on the job
shop scheduling problem. Wang and Duan [17] presented a
hybrid biogeography-based optimization algorithm for solv-
ing the job-shop scheduling problem. Chassaing et al. [18]
introduced an efficient GRASP×ELS approach to solve some
JSPs with a number of hard constraints. Zhao et al. [19] pro-
posed a chemotaxis-enhanced bacterial foraging optimization
based on a new chemotaxis for dealing with the job shop
scheduling problem. Peng et al. [20] developed an algorithm
introducing a tabu search into the path relinking to solve
the job shop scheduling problem. Sels et al. [21] proposed
a genetic algorithm and a scatter search to deal with the
job shop scheduling problem. The scatter search splits the

population in a diverse and high-quality set between indi-
viduals in a controlled way. Seo and Kim [22] developed an
ant colony optimization algorithm with parameterised search
space for solving the job shop scheduling problem to mini-
mize the makespan.

For the FJSP, Nouiri et al. [23] used the particle
swarm optimization algorithm to minimize the makespan.
Rahmati and Zandieh [24] developed a biogeography-based
optimization algorithm for solving the flexible job shop
scheduling problem aiming to minimize the maximum
completion time. Karthikeyan et al. [25] proposed a hybrid
discrete firefly algorithm to solve the multi-objective flex-
ible job shop scheduling problem, where three objectives-
the maximum completion time, the workload of the critical
machine and the total workload of all machines are consid-
ered simultaneously. Gao et al. [26] developed an effective
discrete harmony search to solve the FJSP aiming to mini-
mize the weighted combination of two minimization criteria
namely, the maximum of the completion time (makespan)
and the mean of earliness and tardiness. Wu and Wu [27]
proposed an elitist quantum-inspired evolutionary algorithm
with the objective of minimizing the maximum comple-
tion time (makespan). Henchiri and Ennigrou [28] presented
a multi-agent model based on the hybridization of the tabu
search and particle swarm optimization in order to solve
the flexible job shop. Xu et al. [29] proposed an effective
teaching-learning-based optimization algorithm aiming to
solve the flexible job-shop problem with fuzzy processing
time. Kaplanoglu [30] presented an object-oriented approach
for the multi-objective FJSP along with simulated annealing
optimization. Chang et al. [31] developed a hybrid Taguchi-
genetic algorithm for solving the flexible job shop scheduling
problem with makespan minimization. Zandieh et al. [32]
proposed an improved imperialist competitive algorithm for
the FJSP scheduling problem under condition-based main-
tenance with the objective of minimizing the makespan.
Shen et al. [33] addressed the flexible job shop scheduling
problem with sequence-dependent setup times and developed
a tabu search algorithm with specific neighborhood functions
and a diversification structure.

Although JSP and FJSP are hot topics in the production
management area, many intelligence algorithms usually trap
into local optimum and could not get the global optimum.
Therefore, the research on these two problems is still impor-
tant in the production scheduling field. As far as we know,
theGWOalgorithm is seldom adopted for solving the JSP and
FJSP. As mentioned above, the original GWO is proposed for
dealingwith the continuous optimization problems. However,
JSP and FJSP are typical discrete combinatorial optimiza-
tion problems. Therefore, the GWO need to be redesigned
beginning with a discrete encoding method according to the
characteristics of the problems. Then, a discrete individual
updating approach was subsequently proposed to maintain
the algorithm work directly in a discrete domain. In addi-
tion, a type of adaptive mutation method was used to keep
the diversity of the population and avoid the premature

26232 VOLUME 6, 2018

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

convergence. To further enhance the performance of the pro-
posed algorithm, a variable neighborhood search was embed-
ded into the algorithm and performed on the decision-layer
individuals. Finally, the proposed discrete GWO algorithm
was tested with the benchmark cases available in the existing
literature.

The rest of this paper is organized as follows: the JSP and
the FJSP scheduling problems are described in Section II.
The overview of the original GWO algorithm is described
in Section III. The implementation of the discrete GWO
algorithm for JSP and FJSP is addressed in Section IV. In
Section V, we report the experimental results, summarize the
findings of this study and present the research directions in
the further work.

II. PREPARATION SCHEDULING STATEMENT
In this study, we aimed to minimize the makespan in the
classical JSP and FJSP. The descriptions of the two problems
are shown in the following sub-sections.

A. JOB SHOP SCHEDULING PROBLEM
In the JSP, n jobs and m machines are considered in the
workshop, where each job is composed of m operations to
be processed. The required machine and the fixed processing
time of each operation are fixed and known. In addition, no
preemption is allowed once a job is started. Each machine
can only process a job at the same time. The problem is
aiming to determine the operation sequence on each machine
with the objective of optimizing the makespan, which can be
represented by (1), where Ci is the completion time of Job i
and Cmax defines the makespan.

minCmax = min max
1≤i≤n

(Ci) (1)

B. FLEXIBLE JOB SHOP SCHEDULING PROBLEM
For the FJSP, due to the addition of the machine assign-
ment, it can be divided into two sub-problems, i.e., machine
assignment and job permutation. In the workshop, there are
n jobs and m machines to be scheduled. Each job consists
of a sequence of precedence constrained operations, whose
processing times depend on the assigned machines. In addi-
tion, some constraints should be also considered. Machine
can process only one operation simultaneously. Job cannot be
interrupted once it starts. Each operation must be processed
after its predecessor is completed. The problem is aiming to
assign each operation to an appropriate machine and to deter-
mine the operation sequences on all machines. The objective
is to minimize the makespan, which can also be represented
by (1).

III. OVERVIEW OF GREY WOLF OPTIMIZATION
The GWO can be viewed as a typical population-based intel-
ligence algorithm, which mimics the hierarchy structure and
hunting mechanism of wolf pack in nature. Like other swarm
algorithms, it also starts with a predefined size of population,
in which wolves are hierarchically classified into four types

according to their fitness values [5]. The best wolf is denoted
as the alpha (α), the second and third best ones are named
beta (β) and delta (δ), respectively. All other individuals are
regarded as omega (ω), whose search behaviors are mainly
guided by α, β and δ.

During the hunting process, wolves tend to encircle the
victim at first, which can be formulated by (2)-(5).

D = |C · Xp(t)− X(t)| (2)

X(t + 1) = Xp(t)− A · D (3)

A = 2ar1 − a (4)

C = 2r2 (5)

t is the current iteration number, Xp indicates the position
vector of the prey, and X denotes the current position of an
individual wolf. A and C are coefficient vectors, by which
wolves can reach different situations around the prey. D is
distance from prey location. r1 and r2 are random vectors
inside [0,1]. The elements of a are linearly decreased from
2 to 0 over the course of iterations and used to coordinate the
exploration and exploitation ability.

Although the hunting process is mainly guided by α, β and
δ, the actual position of the prey is unknown in an abstract
search space. To imitate the hunting process, it is assumed that
α, β and δ can guesstimate the possible location of the prey.
Therefore, the three best individuals on the decision level are
saved and guide the others to update their positions in each
iteration, which can be formulated by (6)-(8). The detailed
description of the algorithm can be found in [5].

Dα = |C1 · Xα(t)− X(t)|,
Dβ = |C2 · Xβ (t)− X(t)|,

Dδ = |C3 · Xδ(t)− X(t)| (6)

X1 = Xα(t)− A1 · Dα,

X2 = Xβ (t)− A2 · Dβ ,

X3 = Xδ(t)− A3 · Dδ (7)

X(t + 1) =
X1 + X2 + X3

3
(8)

IV. IMPLEMENT OF DISCRETE GWO ALGORITHM
A. ENCODING AND DECODING
As mentioned before, the original GWO is proposed for solv-
ing the continuous optimization problems. However, the JSP
is a typical discrete combinatorial problem. Therefore, we
firstly developed a discrete encoding scheme according to the
characteristics of the JSP. Here, an operation-based encoding
method was employed to represent the scheduling solutions.
Taking a 3× 3 JSP (3 jobs, 3 machines) shown in Table 1 for
example, the encoding method is illustrated in Fig.1, where
each element corresponds to a code of the candidate job. The
same values represent the different operations of the same job.
For example, the second ‘1’ means the 2nd operation of Job 1.

By scanning the permutation with job index from left to
right, a schedule scheme can be decoded. Seen from Fig.1,
the first ‘3’ corresponds to the first operation of Job 3, which

VOLUME 6, 2018 26233

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

TABLE 1. The correspondence between jobs and machines of 3× 3 JSP.

FIGURE 1. An example of encoding for JSP.

will be processed on Machine 1; the first ‘1’ corresponds
to the first operation of Job 1, which will be processed on
Machine 3; the first ‘2’ corresponds to the first operation of
Job 2, which will be processed on Machine 2; the second ‘2’
corresponds to the second operation of Job 2, which will
be processed on Machine 3; the second ‘1’ corresponds to
the second operation of Job 1, which will be processed on
Machine 1; the second ‘3’ corresponds to the second oper-
ation of Job 3, which will be processed on Machine 2; the
third ‘3’ corresponds to the third operation of Job 3, which
will be processed on Machine 3; the third ‘2’ corresponds
to the third operation of Job 2, which will be processed on
Machine 1; the third ‘1’ corresponds to the third operation of
Job 1, which will be processed on Machine 2.

After the scanning, the operation sequence can be rep-
resented by (O1

31,O
3
11,O

2
21,O

3
22,O

1
12,O

2
32,O

3
33,O

1
23,O

2
13),

whereO2
13 represents the third operation of Job 1 on Machine

2, and so on. For the feasible schedule, it must meet the
process constraints O11 → O12 → O13, O21 → O22 →

O23 and O31 → O32 → O33. In addition, the operation
sequences on Machine 1 isO31→ O12→ O23, Machine 2 is
O21→ O32→ O13andMachine 3 isO11→ O22→ O33. So
the first operations which can be processed on the Machine
1, 2, 3 are O31,O21,O11 respectively. By considering the
process constraint, we scheduled O31 on Machine 1, O21
on Machine 2 and O11 on Machine 3 one after another at
the earliest allowable time. Then the operations which can
be processed on Machine 1, 2, 3 are O12,O32,O22, respec-
tively. By considering the process constraint, we scheduled
O12,O32,O22 on machine 1, 2, 3 one after another at the
earliest allowable time. And then the operations which can
be processed on Machine 1, 2, 3 are O23,O13,O33, respec-
tively. By considering the process constraint, we scheduled
O23,O13,O33 on machine 1, 2, 3 one after another at the
earliest allowable time. Then the corresponding schedule can
be shown in Fig. 2.

As the extension version of the JSP, FJSP can be divided
into two sub-problems: machine assignment and operation

FIGURE 2. Decoding of the scheduling scheme.

FIGURE 3. An example of encoding for FJSP.

permutation. Thus, a two-phase discrete encodingmechanism
was adopted in Fig. 3. The former segment aims to assign an
appropriate machine to each operation, and the latter tries to
get an operation permutation on each machine. Fig. 2 shows
the encoding method of a 3 × 3 FJSP (3 jobs, 3 machines),
where each job contains two operations to be processed. In
Fig. 3, the value of each element in the first segment defines
the machine assignment, which are stored in a fixed order.
In the second component, the elements with the same value
represent the operations of the same job, e.g., the second ‘2’
means the 2nd operation of Job 2.

By scanning the operation permutation from left to right
and reading the machine assignment of each operation, a
schedule scheme can be decoded. Seen from Fig.3, the
first ‘1’ in the operation permutation section corresponds
to the first operation of Job 1, which will be processed
on Machine 1; the second ‘1’ in the operation permuta-
tion section corresponds to the second operation of Job 1,
which will be processed on Machine 2; the first ‘2’ in the
operation permutation section corresponds to the first oper-
ation of Job 2, which will be processed on Machine 3; the
first ‘3’ in the operation permutation section corresponds
to the first operation of Job 3, which will be processed
on Machine 1; the second ‘2’ in the operation permuta-
tion section corresponds to the second operation of Job 2,
which will be processed on Machine 3; the second ‘3’ in
the operation permutation section corresponds to the second
operation of Job 3, which will be processed on Machine 3.
After the scanning, the operation sequence can be represented
by (O1

11,O
2
12,O

3
21,O

1
31,O

3
22,O

3
32). The decoding process can

be implemented by the mentioned method above.

B. POPULATION INITIALIZATION
For a swarm intelligence algorithm, the initial solutions are
crucial for the convergence speed and solution quality. Thus,
it is very important to generate an effective initial population.
For the JSP, five priority rules were employed to generate

26234 VOLUME 6, 2018

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

good initial solutions as follows: Most Work Remaining
(MWR), Most Operation Remaining (MOR), Shortest Pro-
cessing Time (SPT), Longest Processing Time (LPT) and
RandomRule (RR). They were randomly selected to generate
initial solutions.
MWR: The job with the most amount of work remaining

has the high priority.
MOR: The job with the most number of operations remain-

ing has the high priority.
SPT: The job with the shortest processing time has the high

priority.
LPT: The job with the longest processing time has the high

priority.
RR: Jobs are randomly selected for the permutation.
For the FJSP, the population initialization can be composed

by machine assignment and operation scheduling phases. For
the machine assignment phase, the global selection (GS),
local selection (LS) and random selection (RS) were com-
bined to get the initial machine assignment [35]. For the
operation permutation component, a predefined number of
operation sequence schemes were generated at random for
each obtained machine assignment. Then the combination of
the two components with the best fitness value was treated as
an initial solution in the population. This procedure will be
repeated until all the initial scheduling solutions are gener-
ated.

C. DISCRETE SEARCH OPERATOR FOR THE PREY
The GWO cannot be directly employed to deal with com-
binatorial optimization problems by (2)-(8). To ensure the
feasibility of the scheduling solutions, a modified discrete
search operator is developed based on the crossover operation
of genetic algorithm, which can be formulated as (9). X̄k
represents the discrete scheduling solution corresponding to
kth wolf; X̄α, X̄β , X̄δ define the scheduling solutions of α,
β and δ; f defines the proposed discrete crossover operation,
rand is a random number inside [0, 1].

X̄k (t + 1) =

f (X̄k (t), X̄α(t)), rand ≤ 1

3

f (X̄k (t), X̄β (t)),
1
3
< rand <

2
3

f (X̄k (t), X̄δ(t)), rand ≥
2
3

(9)

For the operation permutation in JSP and FJSP, the prece-
dence preserving order-based crossover (POX) [36] was
adopted to realize the crossover operation in this study, which
can be described by the following procedure and illustrated by
Fig. 4.

(1) Create two subsets SUB1 and SUB2.
(2) Randomly select jobs into the subset SUB1, the other

jobs are filled into SUB2.
(3) Copy the selected jobs in SUB1 from Parent 1 to

Child 1 and from Parent 2 to Child 2, and keep their position
unchanged.

(4) Copy the jobs in SUB2 from Parent 2 to Child 1 and
from Parent 1 to Child 2, and keep their position unchanged.

FIGURE 4. POX crossover operation.

FIGURE 5. Swap mutation.

For the machine assignment in the FJSP, a two-point
crossover was used in this study, that is, two positions were
randomly selected from parent individuals, and the elements
between them in parents were exchanged with each other to
get two children.

D. ADAPTIVE MUTATION OPERATOR
In the above section, the discrete updating of individuals
was implemented according to (9). Although it maintained
the partial characteristics the original GWO, each current
individual was just updated based on the information of the
three best wolves α, β and δ, which tends to result in the
loss of population diversity and make the algorithm appear
premature convergence.

To overcome this drawback, an adaptive mutation operator
was developed in our algorithm, where the mutation rate can
be formulated by (10). pk denotes the mutation rate of the
kth individual; fit defines the fitness and equals to M

/
Cmax

,
where M is a constant. fitmax and fitmin mean the maximum
andminimum values of fitness in the current generation. Seen
from (10), the mutation rate of each wolf varies according to
the fitness during the evolution process. If the individual has a
better fitness, a slight mutation will be imposed on it to avoid
its moving away from the global optimum, and vice versa.

pk (t) = 1−
fitmax(t)− fitk (t)
fitmax(t)− fitmin(t)

(10)

The mutation operators for the operation permutation
section are shown as below and illustrated in Figs. 5-7.
Swap: Randomly choose two operations e1 and e2 corre-

sponding to different jobs, and exchange their positions.
Insert: Randomly choose two operations e1 and e2, and

insert e2 into the front of e1.
Inverse: Randomly choose two operations e1 and e2, and

inverse the order between them.
In addition, a mutation operator for the machine assign-

ment in the FJSP was developed as below.

VOLUME 6, 2018 26235

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

FIGURE 6. Insert mutation.

FIGURE 7. Inverse mutation.

FIGURE 8. The mutation process for JSP.

FIGURE 9. The mutation process for FJSP.

Assignment: Randomly choose an operation with more
than one alternative machine. Choose a different machine
at random from the alternative machine set to replace the
original one.

Because the FJSP consists of two sub-problems, the muta-
tion operators can be represented as Swap + Assignment ,
Insert + Assignment and Inverse+ Assignment , which were
selected according to the values of mutation rate.

The pseudo-codes of the mutation processes for the JSP
and FJSP can be respectively shown in Figs. 8 and 9.

E. VARIABLE NEIGHBORHOOD SEARCH
In GWO, the search process is guided by the three best
individuals (α, β and δ) towards the potential optimum,which

FIGURE 10. Basic framework of VNS.

FIGURE 11. The framework of local search.

means that the quality of α, β and δ is crucial for the perfor-
mance of the algorithm. Therefore, a variable neighborhood
search (VNS) was performed on the three best individuals
by considering their important effects. It is well-known that
the variable neighborhood search can pinpoint the optimal
solution by changing the neighborhood structures. The basic
framework of VNS is shown in Fig.10. To implement the
procedure, the mutation operators above are taken as the
neighborhood structures in the VNS. In addition, the local
search is shown in Fig.11.

F. PROCEDURE OF THE DISCRETE GWO
With the above design, the procedure of the discrete GWO is
illustrated in Fig. 12.

V. RESULTS AND DISCUSSION
In this section, our proposed discrete GWO was eval-
uated by using various problems, which cover 39 and
15 benchmark instances respectively belonged to JSP and
FJSP. We implemented the algorithm in FORTRAN on
a VMWare Workstation with 2GB main memory under
WinXP.

26236 VOLUME 6, 2018

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

FIGURE 12. The framework of the discrete GWO.

FIGURE 13. Box plot for algorithms in JSP.

A. EFFECTIVENESS FOR SOLVING THE JSP
We first evaluated the effectiveness of our algorithm for solv-
ing the JSP. The parameters for the discrete GWO algorithm
were defined as follows: population size 200, the maximum
iteration 5× m× n, qmax = 10 and ρmax = 30.
To implement the adaptive mutation, three operators were

adopted according the mutation rate and selected according
to the mutation rate. We first test the effectiveness of this
adaptive mutation method in Table 2. GWO1 represents the
algorithm where only the Swap mutation is used. GWO2
represents the algorithm where only the Insert mutation is
used. GWO3 represents the algorithm where only the Inverse
mutation is used. ‘Time’ is the average run time (in seconds)
of 10 replications for each instance. ‘Mean’ defines the aver-
age value of ‘ARPD’ and ‘Time’. ‘ARPD’ defines the average

TABLE 2. Comparison between the ARPD results of different algorithms.

relative percentage deviation (RPD) of 10 replications for
each instance, which can be obtained as follows:

ARPD =
R∑
r=1

100× (Alr − BKS)
BKS

/
R (11)

where R is the number of runs, BKS is the best known solu-
tions in the current literature, Alr is the obtained value in the
r th run by the algorithm for each instance. The bold values
correspond to better results.

It can be seen from Table 2 that the proposed GWO can
yield better ARPDvalues than other algorithms. Fig.13 shows
the box plot for the experimental results in Table 2. It can be
seen from the figure that the proposed GWO is statistically
better than the other algorithms. In addition, the average CPU
times consumed by the proposed GWO algorithms are only
more than those of GWO1.

VOLUME 6, 2018 26237

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

TABLE 3. Comparison between the results of different algorithms.

Furthermore, the proposed GWO was compared
with other published algorithms such as LSGA [14],
NS-HDE/EDA [15], TLBO [16], BFO [19] and PaGA [37].
The computational results are given in Tables 3, in which
the instance names, the problem sizes (n × m), the best-
known solutions (BKS), the best results obtained by existing
algorithms and our proposed algorithm are listed. In Table 3,
the boldface means the BKS, and the symbol ‘-’ means that
the value was not listed in the corresponding literature. Seen
from Table 3, our proposed GWO obtained the best-known
results for 23 out of 39 instances. In themeantime, the number
of the best-known results obtained by our algorithm is more
than or equal to all other algorithms under the same instances.

Table 4 shows the number of solved instances (NI) and the
ARPD′ of all compared algorithms. The value of ARPD′ can
be calculated as follows:

ARPD′ =
NI∑
l=1

100× (Best − BKS)
BKS

/
NI (12)

TABLE 4. The comparison of ARPD′ for JSP.

TABLE 5. Computational data for the Brandimarte instances.

where Best means the best result found by algorithms from
10 replications for each instance. Table 4 shows the ARPD′

of the proposed algorithm and other published algorithms
(Others). The column defined ‘Improvement’ shows the
reduction of ARPD′ obtained by our algorithm with respect
to other algorithms. Seen from Table 4, the proposed
GWO yields the better ARPD′, except for TLBO and
NS-HDE/EDA. However, the number of BKS values
obtained by our algorithm is more than NS-HDE/EDA and
equal to TLBO. Based on the comparison results, it can
be concluded that our algorithm has good effectiveness for
minimizing the makespan in JSP.

B. EFFECTIVENESS FOR SOLVING THE FJSP
In this section, we verified the performance of our proposed
algorithm for solving the FJSP. The parameters for the pro-
posed discrete GWO algorithm are defined as follows: pop-
ulation size is 200, the maximum iteration is 10 × m × n,
qmax = 10 and ρmax = 30.
The effectiveness of the adaptive mutation method is also

first tested in Table 5. GWO1 represents the algorithm where
only the Swap + Assignment mutation is used. GWO2 rep-
resents the algorithm where only the Insert + Assignment

26238 VOLUME 6, 2018

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

FIGURE 14. Box plot for algorithms in FJSP.

TABLE 6. Computational data for the Kacem instances.

TABLE 7. Computational data for the Brandimarte instances.

mutation is used. GWO3 represents the algorithm where only
the Inverse + Assignment mutation is used. It is clear that
the proposed GWO can yield better ARPD values than other
algorithms. Fig.14 shows the box plot for the experimental
results in Table 5. It can be seen from the figure that the pro-
posed GWO is statistically better than the other algorithms.

In order to test the performance of our algorithm,
it was compared with other published algorithms, such
as edPSO [23], MATSPSO [28], GENACE [38] and
HA [39]. A summary of computational results is given
in Tables 6 and 7. Tables also listed the instance names, the
problem sizes, the best-known solutions (BKS) and the
results obtained by published algorithms and our algorithm.
In Tables 6 and 7, the boldface represents the BKS, and the
symbol ‘-’ means that the value was not available in the
literature. Seen from the data, our discrete GWO obtained
more BKS values than other algorithms except for TLBO.

TABLE 8. The comparison of ARPD′ for FJSP.

In addition, the comparison of ARPD′ obtained by pro-
posed algorithm and other algorithms is also listed in Table
8. It can be seen from the comparison results that the pro-
posed algorithm yields an improvement compared with other
algorithms, except for the GENACE and TLBO. However,
our algorithm can obtain more BKS values than GENACE.
Based on the comparison results, it can be concluded that our
algorithm has good effectiveness for the FJSP.

VI. CONCLUSIONS
GWO was developed as a new swarm-based intelligence
algorithm for dealing with optimization problems. It has
been successfully used to solve continuous problems. Here,
the original GWO algorithm was modified and tested on
JSP and FJSP with typical discrete characteristics. As far as
we know, these two scheduling problems are amongst the
most complicated combinatorial optimization problems in the
manufacturing field. Therefore, the performance of GWO
algorithm on these two problems can provide an idea about its
possible application on solving other production scheduling
problems.

Extensive experiments were conducted to demonstrate that
our proposed discrete GWO algorithm has some potential
when compared to some existing published algorithms in
the literature. According to the comparison results, our dis-
crete GWO is capable of providing better solutions for some
instances, similar or comparable results for others. It seems
that the searching mechanism of GWO algorithm has some
potential for solving combinatorial optimization problems
and it deserves further exploration in our future work.

REFERENCES
[1] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for

numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Apr. 2007.

[2] W.-T. Pan, ‘‘A new fruit fly optimization algorithm: Taking the financial
distress model as an example,’’ Knowl.-Based Syst., vol. 26, pp. 69–74,
Feb. 2012.

[3] S.-C. Chu and P.-W. Tsai, ‘‘Computational intelligence based on the behav-
ior of cats,’’ Int. J. Innov. Comput., Inf. Control, vol. 3, no. 1, pp. 163–173,
Feb. 2007.

[4] X.-S. Yang and A. H. Gandomi, ‘‘Bat algorithm: A novel approach
for global engineering optimization,’’ Eng. Comput., vol. 29, no. 5,
pp. 464–483, 2012.

[5] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[6] E. Duman, M. Uysal, and A. F. Alkaya, ‘‘Migrating birds optimization:
A new metaheuristic approach and its performance on quadratic assign-
ment problem,’’ Inf. Sci., vol. 217, pp. 65–77, Dec. 2012.

[7] M. Pradhan, P. K. Roy, and T. Pal, ‘‘Grey wolf optimization applied to
economic load dispatch problems,’’ Int. J. Elect. Power Energy Syst.,
vol. 83, pp. 325–334, Dec. 2016.

VOLUME 6, 2018 26239

T. Jiang, C. Zhang: Application of GWO for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases

[8] H. M. Song, M. H. Sulaiman, and M. R. Mohamed, ‘‘An application of
grey wolf optimizer for solving combined economic emission dispatch
problems,’’ Int. Rev. Model. Simul., vol. 7, no. 5, pp. 838–844, May 2014.

[9] L. Korayem,M. Khorsid, and S. S. Kassem, ‘‘Using grey wolf algorithm to
solve the capacitated vehicle routing problem,’’ Mater. Sci. Eng., vol. 83,
no. 1, pp. 12–14, Jan. 2015.

[10] M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, ‘‘Using the
gray wolf optimizer for solving optimal reactive power dispatch problem,’’
Appl. Soft Comput., vol. 32, pp. 286–292, Jul. 2015.

[11] A. Kumar, S. Pant, and M. Ram, ‘‘System reliability optimization using
gray wolf optimizer algorithm,’’ Quality Reliab. Eng. Int., vol. 33, no. 7,
pp. 1327–1335, Nov. 2017.

[12] C. Lu, S. Xiao, X. Li, and L. Gao, ‘‘An effective multi-objective discrete
grey wolf optimizer for a real-world scheduling problem in welding pro-
duction,’’ Adv. Eng. Softw., vol. 99, pp. 161–176, Sep. 2016.

[13] G. M. Komaki and V. Kayvanfar, ‘‘Grey wolf optimizer algorithm for
the two-stage assembly flow shop scheduling problem with release time,’’
J. Comput. Sci., vol. 8, pp. 109–120, May 2015.

[14] L. Asadzadeh, ‘‘A local search genetic algorithm for the job shop
scheduling problem with intelligent agents,’’ Comput. Ind. Eng., vol. 85,
pp. 376–383, Jul. 2015.

[15] F. Zhao, Z. Shao, J. Wang, and C. Zhang, ‘‘A hybrid differential evolution
and estimation of distribution algorithm based on neighbourhood search
for job shop scheduling problems,’’ Int. J. Prod. Res., vol. 54, no. 4,
pp. 1039–1060, Apr. 2016.

[16] A. Baykasoǧlu, A. Hamzadayi, and S. Y. Köse, ‘‘Testing the performance
of teaching–learning based optimization (TLBO) algorithm on combinato-
rial problems: Flow shop and job shop scheduling cases,’’ Inf. Sci., vol. 276,
pp. 204–218, Aug. 2014.

[17] X. Wang and H. Duan, ‘‘A hybrid biogeography-based optimization algo-
rithm for job shop scheduling problem,’’ Comput. Ind. Eng., vol. 73,
pp. 96–114, Jul. 2014.

[18] M. Chassaing, J. Fontanel, P. Lacomme, L. Ren, N. Tchernev, and
P. Villechenon, ‘‘A GRASP × ELS approach for the job-shop with a
web service paradigm packaging,’’ Expert Syst. Appl., vol. 41, no. 2,
pp. 544–562, Feb. 2014.

[19] F. Zhao, X. Jiang, C. Zhang, and J. Wang, ‘‘A chemotaxis-enhanced
bacterial foraging algorithm and its application in job shop scheduling
problem,’’ Int. J. Comput. Integr. Manuf., vol. 28, no. 10, pp. 1106–1121,
Aug. 2015.

[20] B. Peng, Z. Lü, and T. C. E. Cheng, ‘‘A tabu search/path relinking algorithm
to solve the job shop scheduling problem,’’ Comput. Oper. Res., vol. 53,
pp. 154–164, Jan. 2015.

[21] V. Sels, K. Craeymeersch, and M. Vanhoucke, ‘‘A hybrid single and dual
population search procedure for the job shop scheduling problem,’’ Eur.
J. Oper. Res., vol. 215, no. 3, pp. 512–523, Dec. 2011.

[22] M. Seo and D. Kim, ‘‘Ant colony optimisation with parameterised search
space for the job shop scheduling problem,’’ Int. J. Prod. Res., vol. 48,
no. 4, pp. 1143–1154, Apr. 2010.

[23] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, ‘‘An effective
and distributed particle swarm optimization algorithm for flexible job-
shop scheduling problem,’’ J. Intell. Manuf., vol. 29, no. 3, pp. 603–615,
Mar. 2018.

[24] S. H. A. Rahmati and M. Zandieh, ‘‘A new biogeography-based optimiza-
tion (BBO) algorithm for the flexible job shop scheduling problem,’’ Int.
J. Adv. Manuf. Technol., vol. 58, nos. 9–12, pp. 1115–1129, Feb. 2012.

[25] S. Karthikeyan, P. Asokan, S. Nickolas, and T. Page, ‘‘A hybrid discrete
firefly algorithm for solving multi-objective flexible job shop scheduling
problems,’’ Int. J. Bio-Inspired Comput., vol. 7, no. 6, pp. 386–401, 2015.

[26] K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai, and
C. S. Chong, ‘‘Discrete harmony search algorithm for flexible job shop
scheduling problem with multiple objectives,’’ J. Intell. Manuf., vol. 27,
no. 2, pp. 363–374, Apr. 2016.

[27] X. Wu and S. Wu, ‘‘An elitist quantum-inspired evolutionary algorithm for
the flexible job-shop scheduling problem,’’ J. Intell. Manuf., vol. 28, no. 6,
pp. 1441–1457, Aug. 2017.

[28] A. Henchiri and M. Ennigrou, ‘‘Particle swarm optimization combined
with tabu search in a multi-agent model for flexible job shop problem,’’
in Proc. ICSI, 2013, pp. 385–394.

[29] Y. Xu, L. Wang, S.-Y. Wang, and M. Liu, ‘‘An effective teaching–learning-
based optimization algorithm for the flexible job-shop scheduling problem
with fuzzy processing time,’’ Neurocomputing, vol. 148, pp. 260–268,
Jan. 2015.

[30] V. Kaplanoǧlu, ‘‘An object-oriented approach for multi-objective flexible
job-shop scheduling problem,’’ Expert Syst. Appl., vol. 45, pp. 71–84,
Mar. 2016.

[31] H.-C. Chang, Y.-P. Chen, T.-K. Liu, and J.-H. Chou, ‘‘Solving the flexible
job shop scheduling problem with Makespan optimization by using a
hybrid Taguchi-genetic algorithm,’’ IEEE Access, vol. 3, pp. 1740–1754,
Oct. 2015.

[32] M. Zandieh, A. R. Khatami, and S. H. A. Rahmati, ‘‘Flexible job shop
scheduling under condition-basedmaintenance: Improved version of impe-
rialist competitive algorithm,’’ Appl. Soft Comput., vol. 58, pp. 449–464,
Sep. 2017.

[33] L. Shen, S. Dauzère-Pérès, and J. S. Neufeld ‘‘Solving the flexible job shop
scheduling problem with sequence-dependent setup times,’’ Eur. J. Oper.
Res., vol. 265, no. 2, pp. 503–516, Mar. 2018.

[34] B. Giffler and G. L. Thompson, ‘‘Algorithms for solving production-
scheduling problems,’’ Oper. Res., vol. 8, no. 4, pp. 487–503, Aug. 1960.

[35] G. Zhang, L. Gao, and Y. Shi, ‘‘An effective genetic algorithm for the
flexible job-shop scheduling problem,’’ Expert Syst. Appl., vol. 38, no. 4,
pp. 3563–3573, Apr. 2011.

[36] Y. Demir and S. K. Işleyen, ‘‘An effective genetic algorithm for flexible
job-shop scheduling with overlapping in operations,’’ Int. J. Prod. Res.,
vol. 52, no. 13, pp. 3905–3921, Feb. 2014.

[37] L. Asadzadeh and K. Zamanifar, ‘‘An agent-based parallel approach for
the job shop scheduling problem with genetic algorithms,’’Math. Comput.
Model., vol. 52, nos. 11–12, pp. 1957–1965, Dec. 2010.

[38] N. B. Ho, J. C. Tay, and E. M.-K. Lai, ‘‘An effective architecture for
learning and evolving flexible job-shop schedules,’’ Eur. J. Oper. Res.,
vol. 179, no. 2, pp. 316–333, Jun. 2007.

[39] M. Ziaee, ‘‘A heuristic algorithm for solving flexible job shop scheduling
problem,’’ Int. J. Adv. Manuf. Technol., vol. 71, nos. 1–4, pp. 519–528,
Mar. 2014.

TIANHUA JIANG was born in Weihai, China,
in 1983. He received the B.S. degree in automa-
tion from the University of Jinan, Jinan, China,
in 2007, the M.S. degree in control science and
engineering from the Sichuan University of Sci-
ence and Engineering, Zigong, China, in 2010, and
the Ph.D. degree with the MOE Key Laboratory
of Measurement and Control of Complex Systems
of Engineering, School of Automation, Southeast
University, China, in 2015.

Since 2015, he has been a Lecturer with the School of Transportation,
Ludong University, Yantai, China. His research interests include produc-
tion scheduling and intelligence algorithm. His recent publications have
appeared in some peer-reviewed journals such as the Journal of Intelligent &
Fuzzy Systems, the International Journal of Industrial Engineering: Theory,
Applications and Practice, and Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture.

CHAO ZHANG was born in Xinxiang, China,
in 1983. He received the B.S. degree in automa-
tion from the Zhongyuan University of Technol-
ogy, Zhengzhou, China, in 2007, and the M.S.
degree in control science and engineering from
the University of Science and Technology Beijing,
Beijing, China, in 2010. He is currently pursuing
the Ph.D. degree with the MOE Key Laboratory
of Measurement and Control of Complex Systems
of Engineering, School of Automation, Southeast

University, China.
Since 2014, he has been a Lecturer with the Department of Computer Sci-

ence and Technology, Henan Institute of Science and Technology, Xinxiang,
China. His research interests include adaptive control and intelligence
algorithm.

26240 VOLUME 6, 2018

	INTRODUCTION
	PREPARATION SCHEDULING STATEMENT
	JOB SHOP SCHEDULING PROBLEM
	FLEXIBLE JOB SHOP SCHEDULING PROBLEM

	OVERVIEW OF GREY WOLF OPTIMIZATION
	IMPLEMENT OF DISCRETE GWO ALGORITHM
	ENCODING AND DECODING
	POPULATION INITIALIZATION
	DISCRETE SEARCH OPERATOR FOR THE PREY
	ADAPTIVE MUTATION OPERATOR
	VARIABLE NEIGHBORHOOD SEARCH
	PROCEDURE OF THE DISCRETE GWO

	RESULTS AND DISCUSSION
	EFFECTIVENESS FOR SOLVING THE JSP
	EFFECTIVENESS FOR SOLVING THE FJSP

	CONCLUSIONS
	REFERENCES
	Biographies
	TIANHUA JIANG
	CHAO ZHANG

