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ABSTRACT Epilepsy is a health problem that seriously affects the quality of humans for many years.
Therefore, it is important to accurately analyze and recognize epilepsy based on EEG signals, and for a long
time, researchers have attempted to extract new features from the signals for epilepsy recognition. However,
it is very difficult to select useful features from a large number of them in this diagnostic application. As the
development of artificial intelligence progresses, unsupervised feature learning based on the deep learning
model can obtain features that can better describe identified objects from unlabeled data. In this paper,
the deep convolution network and autoencoders-based model, named as AE-CDNN, is constructed in order
to perform unsupervised feature learning fromEEG in epilepsy.We extract features byAE-CDNNmodel and
classify the features based on two public EEG data sets. Experimental results showed that the classification
results of features obtained by AE-CDNN are more optimal than features obtained by principal component
analysis and sparse random projection. Using several common classifiers to classify features obtained by
AE-CDNN model results in high accuracy and not inferior to the research results from most recent studies.
The results also showed that the features of AE-CDNN model are clear, effective, and easy to learn. These
features can speed up the convergence and reduce the training times of classifiers. Therefore, the AE-CDNN
model can be effectively applied to feature extraction of EEG in epilepsy.

INDEX TERMS EEG, unsupervised learning, feature extraction, CNN, epileptic seizure.

I. INTRODUCTION
Epilepsy is a noninfectious chronic brain disease, which
affects people of all ages. There are about 50 million epileptic
patients at present, which results in becoming one of the most
common neurological diseases in the world [1]. Seizures can
cause cognitive dysfunction such as loss of consciousness,
which leads to great physical harm to patients, e.g. fracture
and injury. Moreover, patients may suffer from great mental
pain because of shame and discrimination. Because epileptic
seizures can cause irreversible damage to the brain and may
result in unprovoked recurrent attack, it is of great signifi-
cance to analyze epilepsy.

Electroencephalogram (EEG) is a measure of the voltage
fluctuation generated by the ion current of neurons in the
brain, which reflects the activity of the brain’s bioelectric-
ity and contains a large number of physiological and dis-
ease information [2]. Because the frequency and rhythm

of brain activity can change during seizures, the EEG has
become the most common used epilepsy diagnostic meth-
ods. After the first study using EEG to detect epileptic by
Gotam [3], researchers have done many experiments on
this technique [4]–[6]. The essence of EEG-based epilep-
tic detection is the classification of patients’ EEG signals.
Other studies [7]–[9] mentioned the EEG during the pres-
ence and absence of epileptic seizures. Then, some stud-
ies [10]–[12] aimed at studying healthy persons, as well as
patients with epileptic seizures during the onset and absence
of the seizures. Their method follows the steps of data
acquisition and preprocessing, feature extraction, classifica-
tion model training and EEG signals classification. In data
acquisition, researches focused on physiological signal sen-
sor [13]–[15]. In data preprocessing, Sharma et al. [16] sub-
tracted EEG signals of adjacent channels to reduce the effect
of noise. Anindya et al. [17] filtered frequencies that are
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higher than 64HZ by means of a 6th order Butter-worth filter.
Feature extraction has always been the focus of EEG classifi-
cation, which greatly reduces the dimension of data. A small
number of features can describe EEG data well and improve
classification performance greatly. There are many EEG fea-
ture extraction methods, such as time-domain, frequency-
domain, time-frequency analysis, and chaotic features.
Zandi et al. [18] proposed an algorithm based on wavelet for
real-time detection of epileptic seizures. Polat and Güneş [19]
extracted features using fast Fourier transform and classified
the EEG using a decision tree classifier. Acharya et al. [20]
mentioned the Entropy-based feature extractionmethod in his
review of the application of Entropy in epilepsy detection,
such as Approximate Entropy, Sample Entropy, and Spectral
Entropy.

The core of these common methods is to perform effective
feature extraction for EEG.However, the process of designing
new feature is complex and not easily verifiable. It is also
extremely difficult to select a number of optimal charac-
teristics from a large number of time-domain, frequency-
domain, time-frequency analysis, and chaotic features. At the
same time, some wavelet transform, empirical mode analysis
and trend multifractal feature extraction process are compli-
cated and time-consuming. In recent years, deep learning has
become the research hotspot in machine learning and has
achieved high efficiency in computer vision. In EEG classi-
fication, Tabar and Halici [21] used the short time Fourier
transform to transform EEG into 2D images, and then per-
formed independent feature learning and classification based
on a deep learning method. Xun et al. [22] dissected the
EEG into smaller sections through a small window and used
a context-learning model for each small section in order to
form various ‘‘EEG word’’, so as to compile them into an
‘‘EEG dictionary’’ and resulting in a new feature. Then, they
used the original data to attain new features from the ‘‘EEG
dictionary’’ and present them in the classifier by using two
parts of these features. Deep learning can independently learn
features from data, which greatly improves the performance
of the classification model. Because of the powerful fea-
ture learning ability, deep convolution neural network (CNN)
has become an important research hotspot in image field
and has significant influences in EEG classification. Masci
et al. [23] proposed a convolutional auto-encoder, which is
an unsupervised learning method for features learning based
on CNN. Chen et al. [24] presented several descriptors for
feature-based matching using convolution and pooling auto-
encoders. Noh et al. [25] proposed a novel semantic segmen-
tation algorithm by implementing a deconvolution network.
However, these unsupervised feature learning methods are
mostly used in the image analysis field. This paper presents an
unsupervised feature learning method based on convolution,
deconvolution and autoencoders, and applies it on epilepsy
detection.

Although some experienced experts can identify EEG in
epilepsy heuristically, and scholars have performed research
widely on EEG based epilepsy detection, there are still many

challenges in automatic epilepsy detection. Feature design
and selection is difficult, and whether these methods can
be applied to new patients is still unknown. Compared with
improving classification accuracy by existing techniques,
we still need a model with independent feature learning
ability. Facing this challenge, we propose an auto-coding
framework- based deep network by combining it with con-
volution and deconvolution in order to perform unsupervised
feature learning fromEEG signals. Thismodel can effectively
learn low-dimensional features from high-dimensional EEG
data in order to help classifier achieve a higher detection
accuracy and faster speed.

The structure of this paper is as follows: in Section II,
we will detail the deep learning-based unsupervised feature
learning model. Experiment and results will be presented in
Section III. In this section, we describe the source and struc-
ture of the datasets, and the classification result by applying
the proposed model. Section IV is based on the discussion of
features and classification results. Besides, we will compare
our model with other well-established models in analyzing
EEG. Finally, Section V concludes this paper.

FIGURE 1. Flowchart for unsupervised learning method whereby the light
green and the light blue dashed frames represent the training and testing
phrases respectively.

II. METHODOLOGY
The paper adopts unsupervised learning method for the EEG
of epilepsy patients so as to automatically obtain features
that can better describe the recognized objects. In other
words, it extracts a number of features from the original high-
dimensional data by means of the dimension reduction algo-
rithms. The light green dashed frame in Fig.1 is the training
stage of the model, which uses unlabeled EEG signals to
train the deep convolution network. The light blue dashed
frame represents the testing phrase, in which the test data
is input into the model to obtain the relevant features. After
this stage, we use different common classifiers to verify the
validity of the test data features. The classifier validation will
be described in the experimental results in Section 3 and
to be discussed in Section 4. Then, Section 2.1 describes
the Autoencoders framework used in the model, and
the structure and detail of the model will be shown
in Section 2.2.
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A. AUTOENCODERS FRAMEWORK
Autoencoders [26] is a special neural network structure,
which has input layer, output layer and hidden layer. It adjusts
the weights of hidden layer by training to enable the input
and output value to be as close to each other as possible.
Therefore, the hidden layer has important features of original
signal in order to realize unsupervised feature extraction.
Autoencoders is similar to the Principal Component Analy-
sis (PCA), which can reduce data dimension [27].

FIGURE 2. Autoencoders framework that includes input layer
(x1, x2, . . . , xn), hidden layer (h1, h2, . . . , hm), and output layer
(y1, y2, . . . , yn) whereby the weights of hidden layer represent features
of the input signal.

Fig.2 illustrates the basic framework of autoencoders,
which has two data process phases, encoding and decoding.
During encoding, the original input signal data is x ∈ [0, 1]n.
Then we obtain the hidden layer h by encoding function
h = encoder(x)(h ∈ [0, 1]m), whereby the encoding function
is defined as follows:

h = encoder (x) = g(W · x + b). (1)

In the function, W ∈ Rm×n is the weight matrix connecting
input layer and hidden layer. b ∈ [0, 1]m is the bias vector, and
g is activation function. In decoding phase, hidden layer h is
the input of the decoding function y = decoder(h) in order to
obtain the output layer y. The decoding function is:

y = decoder (x) = g
(
W ′ · x + b′

)
. (2)

Here, the weight matrix between hidden layer and output
layer is W ′ ∈ Rn×m, and the bias vector is b′ ∈ [0, 1]n. For
the model training process, we let each output signal y(i) to be
as close in value as possible to the original input signal x(i).
Then, the object function of the model is given byčž

min
∑∣∣∣y(i) − x(i)∣∣∣. (3)

B. DEEP NETWORK BASED UNSUPERVISED
FEATURE LEARNING MODEL
Because it is easy to directly copy the input vector to out-
put vector during the traditional autoencoders’ training pro-
cess, the model has inferior performance. When the test

samples and training samples do not meet the same dis-
tribution, the prediction result of the model will decrease
dramatically [28]. However, the EEG signal sample is high-
dimensional and their dimensions are not independent. There-
fore, autoencoders is difficult to extract effective features
fromEEG signals. On the other hand, CNN can perceive adja-
cent dimension of the signal (i.e. local perception) to attain
local features by receptive field and parameter sharing. This
process is based on the kernel’s convolution. Using multiple
convolution kernels to construct the sample signals can allow
us to obtain a variety of local features. At the same time,
the features of the model can be reduced by down-sampling.
Therefore, the final features of the sample signals can be
extracted by iterative convolution and down-sampling. Our
autoencoders framework-based unsupervised feature learn-
ing is described as follows. In the encoder part, we extract
features by CNN, which constantly iterates multiple convo-
lution kernels’ convolution and down-sampling to reduce the
number of features to our preset. Then, in the decoder part,
we use the extracted features to reconstruct sample signals
by deconvolution and up-sampling. This means that we will
carry out deconvolution first, and then iterate up-sampling
and deconvolution so as to restore the signal.
We presents a fusion model based on the deep convo-

lution network and autoencoders-based (AE-CDNN). The
structure of the AE-CDNN model is as shown in Fig.3. The
model mainly has two stages: 1) The encoder stage has sam-
ple input, convolution layer, pooling layer (down-sampling
layer), reshape operation, full connection layer, and the fea-
ture coding; 2) The decoder stage includes feature coding
input, full connection layer, reshape operation, deconvolution
layer, up-sampling layer and the reconstruction samples. The
following presents a specific description of each layer of the
model.
Assume that we input a one-dimension EEG data into the

model. Let x represent the input data, and the convolution
layer is the feature extractor. It uses multiple convolution
kernels to perform convolution calculation of x (multiple
convolution kernels perceive x locally), so as to attain more
feature maps, which canmaintain themain components of the
input samples. The k-th feature map fmk in the convolution
layer is calculated as follows:

fmk = g (w_ck ∗ x+ b_ck). (4)

In the k-th convolution kernel of the convolution layer,
w_ck and b_ck represent filters and biases of the convolution
kernel, and ∗ is convolution computation. The pooling layer
is a down-sampling process, which samples upper layer’s
feature maps to obtain pooled feature maps for reducing data
dimension. The pooling operation uses a window of length l
to allow sliding and extraction of the sample feature maps.
Each sampling interval does not overlap each other, and we
sample the maximum value within the window to obtain the
pooled feature maps. The calculation process is as follows:

pmk = Maxpooling (fmk , l). (5)
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FIGURE 3. Structure of the AE-CDNN model that consists of the encoder and decoder stages whereby the left
and right show processing flow and data flow respectively.

Here, we can iterate multiple processes of convolution and
pooling to reduce the number and dimension of the pooled
feature maps to result in m pooled feature maps. Reshape
operation reflects pooled feature maps to one dimensional
vector and then achieve feature coding by the operation of
full connection layer, which synthesize information of all
pooled feature maps. The reshape operation makes all pooled
feature maps to generate a one-dimension vector v of length r .
Therefore, after the calculation of full connection layer,
the vector v becomes feature coding as follows:

c = g (wv ∗ v+ bf). (6)

In the above equation, wv and bf represent the weight
and bias of full connection layer respectively. Here, c is
the achieved feature. The decoding (signal reconstruction)

starts after the encoding. Firstly, the feature coding becomes
a one-dimension vector v′ of length r by the calculation of
the second full connection layer. The associated equation is
as follows:

v′ = g
(
w′v ∗ c

)
. (7)

The weight of the full connection layer is w′v. Because we
need to ensure that in the decoding process, all information
is from the feature coding, there will be no bias in this layer.
The second reshape operation cuts v′ into m pooled feature
maps, which corresponds to the first reshape operation. The
k-th pooled feature map is pm′k . In the up-sampling layer,
we use the original sampling window to insert the same value
as the previous sample to attain fm′k as follows:

fm′k = upsampling
(
pm′k , l

)
. (8)
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The deconvolution is:

y =
∑

g(
∑

w_c′k ◦ fm
′
k + b_c′k ). (9)

In this case, the deconvolution kernel w_c′k is equal to
the shape of the transpose of w_ck and b_c′k is bias. Here,
◦ denotes deconvolution. Next, the reconstructed signal y is
achieved. In the network, the output layer activation function
adopts the sigmoid function and all others are relu activation
function.

Assume that there are N training samples and x(i) is a
sample, to get y(i) from x(i) by calculation, we need to generate
the minimized loss function such as the target function in the
autoencoders model (based on Equation (3)). The calculation
is as follows:

Loss1 =
∑N

i=1

∣∣∣x(i) − y(i)∣∣∣/N . (10)

However, the signal is serial and its features are not inde-
pendent. There are differences between each sample in terms
of magnitude and Equation (10) has great impact on large size
samples. We need to adopt a new loss calculation method:

Loss2 =
∑N

i=1

∣∣∣(x(i) − y(i))/avg(x(i))∣∣∣/N . (11)

Here, avg(x(i)) is the average of sample x(i). The loss function
of this network is optimized using the Adam optimizer [22].

III. EXPERIMENT AND RESULTS
This paper focuses on the unsupervised feature learning of
EEG signal. The research process is as follows: 1) Perform
unsupervised feature learning of two data sets to obtain fea-
tures. 2) After that, we use a variety of common classifiers
to classify these features and verify effect of features by
the classification accuracy. In this section, we explain the
source of experimental data and the preprocessing. Next,
we describe the network structure and parameters of the
AE-CDNN model. Then, we list several common classifiers
to validate AE-CDNN model. Finally, we explain the experi-
mental results.

A. DATA PREPROCESSING
1) DATASET 1
The first dataset is based on the online public dataset that
was published by Andrzejak et al. [30]. This dataset con-
sists of five subsets (expressed as A-E) and each subset has
100 EEG signals. Each EEG signal has a duration of 23.6s
and the length is 4096, which includes records of health and
epilepsy patients. The subsets A and B contain EEG records
of 5 healthy volunteers, which were recorded based on the
standard international 10-20 electrode placement program.
The subsets C and D describe EEG signals during the absence
of 5 epileptic patients. And subset E includes the EEG signals
during seizure of epileptic patients. The C, D and E subsets
came from the skull. The analysis of subsets C, D and E are
shown in Fig.4.

FIGURE 4. Sample signals of dataset 1 based on the intracranial signal
whereby subsets C and D pertain to the EEG signals during the absence of
epileptic patient and subset E pertains to the EEG signal during seizure.

FIGURE 5. Sample signal of dataset 2 based on brain scalp signal
whereby the left and the right of the red line are non-epilepsy and
epileptic seizures respectively.

2) DATASET 2
The second dataset includes the scalp EEG signals collected
from a children hospital in Boston [31]. It was based on
measuring electrical activity in the brain to obtain EEG sig-
nals by connecting multiple electrodes to the patients’ scalp.
This dataset is composed by EEG signals of 23 children with
refractory epilepsy. All the signals were recorded at 256 Hz
with 16-bit resolution. Each sample has 23 channels and the
length of each channel is about 921600. Some of the samples
contain epileptic EEG signals. Each channel has its own
name, i.e. the first channel is FP1-F7 (see Fig.5). We selected
one channel from the 23 channels to implement a study. The
larger the variance of the signal is, the greater the fluctuation
range is. When epilepsy occurred, the EEG signals fluctuate
significantly.

Therefore, we chose channel based on variance [32]. Our
method is as follows: 1) calculate the variance of each channel
in each sample, and select the channel with the maximum
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FIGURE 6. Network structure was constructed based on AE-CDNN model in the experiment whereby the left is
encoding network while the right is decoding network.

variance for each sample; 2) count these channels. In the
first 10 patients, the ‘‘FT9-FT10’’ channel appeared most.
So, we chose ‘‘FT9-FT10’’ channel as sample data for classi-
fication. For the EEG data of the first 10 patients, we ran-
domly extracted 200 epileptic seizure EEG signal samples
and 200 non-epileptic seizure EEG signal samples on channel
‘‘FT9-FT10’’. Note that the length of each sample is 4096.

The activation function of AE-CDNN is sigmoid function
and the output range is (0, 1). To ensure that the loss func-
tions (10) and (11) are available, the range of each dimension
of the input layer should be set at (0, 1). We used 0-1 normal-
ization to map the sample data to [0, 1]. The transformation
function was as follows:

dist = max
(
x(k)

)
− min

(
x(k)

)
, k ∈ {1, . . .N } (12)

tranfun = (d −min
(
x(k)

)
)/dist. (13)

In the above equation, d is the dimension value of the input
sample x. Then, max

(
x(k)

)
is the maximum value of samples

in all dimensions, and max
(
x(k)

)
is the minimum of samples

in all dimensions.

B. NETWORK PARAMETERS AND
CLASSIFIERS PARAMETERS
TheAE-CDNNmodel-based deep network is shown in Fig. 6.
Although the increase of network depth can enhance learning
ability of the model, it may also cause gradient to disappear
while training, or overfitting. In the deep network, we fixed
the network depth, encoding and decoding process. In our
experiment, we analyzed learning ability of the model by

TABLE 1. Parameters used in each classifiers.

setting different values for feature encoding lengthm (feature
quantity).

In Fig. 6, the Convolutional (k_szie = 3, c = 16)
represents a convolution layer, where k_size = 3 means that
the convolution kernel is 3 and c = 16 means the number
of output channels of this layer is 16. Pooling (k = 2)
is a pooling layer. k is down-sampling factor whose value is 2
and stride is 1, Deconvolutional (k_szie = 3, c = 1)
is a deconvolution layer whose number of deconvolution
kernel is 3 and the number of output channels is 16.
Depooling (k = 2) is up-sampling layer. The original
input data was a one-dimension vector of length 4096. After
Convolutional (k_szie = 3, c = 16), it became a matrix of
4096∗16 (16 channels, the length of each channel is 4096).
Therefore, Convolutional(k_szie = 3, c = 32) changed the
matrix of upper layer into 4096∗32. And then, the matrix
became 2048∗32 after Pooling(k = 2).
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TABLE 2. Classification results of AE-CDNN-L1 for dataset 1.

TABLE 3. Classification results of AE-CDNN-L2 for dataset 1.

TABLE 4. Classification results of AE-CDNN-L1 for dataset 2.

In this paper, we used several common classifiers, includ-
ing k-NN, support vector machine (linear kernel and radial
basis kernel), decision tree, random forests, multilayer neural
network, AdaBoost algorithm, and Guass Bayesian classifi-
cation, to classify features attained by unsupervised algorithm
in order to verify the effectiveness of AE-CDNN model. All
these classifiers are from the scikit-learn library [33] and
the parameters in the classifiers are based on the default
parameters in the library, which were shown in Table 1. In this
table, ‘‘–’’ indicates that the parameters were set to default
value.

C. EXPERIMENTAL RESULTS
In our experiment, we used the training set to train model
and the testing set to extract features by the trained model.
And then, we used several common classifiers to classify
the extracted features, so that to verify the effectiveness of
the features obtained by the unsupervised learning method.
For AE-CDNN model, we proposed two different loss func-
tions (10) and (11). Here, we treat the method that uses
function (10) as AE-CDNN-L1, and the method that used
function (11) as AE-CDNN-L2. Table 2 to 5 represent

the classification results of different classifiers for features
learned byAE-CDNN-L1 andAE-CDNN-L2, respectively of
the two datasets.We used a 5-fold cross validation to calculate
each classifier’s accuracy. In the first column,m is the number
of features that the model learnt. For example, in Table 2,
m = 2 means that the model need to learn two features,
and after 5-fold cross validation the average accuracy of the
k-NN classifier is 73.336%. In the last column, AVG means
the average accuracy for the listed classifiers.

Fig.7 shows the average accuracy’s change of
AE-CDNN-L1 and AE-CDNN-L2 based on different feature
dimensions of the two datasets. When the number of features
is greater than 8, the average performance of the above
classifiers is acceptable. In general, the accuracy and stability
of AE-CDNN-L2 are better than those of AE-CDNN-L1.

IV. DISCUSSION
In this section, we analyze the effectiveness of features
extracted by AE-CDNN. Then, we compared the features of
the model with other unsupervised feature extraction mod-
els. Finally, we performed comparison of our classification
results with those of other related studies.
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TABLE 5. Classification results of AE-CDNN-L2 for dataset 2.

TABLE 6. Classification results of AE-CDNN-L1 for dataset 1.

TABLE 7. Classification results of AE-CDNN-L2 for dataset 1.

FIGURE 7. Average accuracy of AE-CDNN-L1 and AE-CDNN-L2 based on
different feature dimensions of the two datasets.

A. NETWORK MODEL FEATURE EXTRACTION ANALYSIS
From Fig.7, when m = 2, the network models were dif-
ficult to learn effective features. Table 6 and 7 present the
calculation results of 5-fold cross validation for dataset 1 with
AE-CDNN-L1 and AE-CDNN-L2.

In Table 6 and 7, the accuracy with the value of 0.667
appeared multiple times. It is due to the initial weight of

the network being 0 and the gradient of the autoencoder
model disappeared quickly. It is very difficult to train mul-
tiple hidden layers (such as 2-4 layers) [34], which resulted
in the hidden layer (including feature coding) not being
able to receive training and the weights are 0. In addition,
because the ratio of positive and negative samples in the
testing set is 2:1, the accuracy is 0.667 when all samples
were deemed as positive and the accuracy is 0.333 when
all samples were deemed as negative. We can see that the
hidden layers of network correspond to the 2nd, 3rd and 5th

lines in Table 6, and the 1st line in Table 7 were not
trained. It meant that the network has not learned any fea-
tures. The problem also existed in dataset 2, whereby the
ratio of positive and negative samples is 1:1. Therefore,
when the model did not learn any features, the accuracy
becomes 0.5, which is shown in the 2nd, 3rd, 4th and 5th lines
of Table 8.

We increased the coding length of features. When m = 4,
the model can learn features easier. Fig.8 shows the feature
distribution of the two models in the first test of dataset 1.
Here, f1, f2, f3 and f4 represents the four features. Note that
f2 and f3 of AE-CDNN-L1 pertain to 0, which meant that
the model did not learn any feature. From f1 and f4, we can
see that the features obtained by AE-CDNN-L2 are more
optimal than those of AE-CDNN-L1 in terms of feature
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TABLE 8. Classification results of AE-CDNN-L1 for dataset 2.

FIGURE 8. Feature distribution of AE-CDNN-L1 and AE-CDNN-L2 models in the first test of dataset 1 while feature dimension was 4.

separation degree. It also indicated that AE-CDNN-L2 can
learn better features.

In Fig. 8, f1 was the first feature of the learned feature
coding array. f1 and f2 were independent of each other and
the value of f1 of the two models were independent and
had no corresponding relationship. P, N represented the
positive and negative samples. In the process of deep learn-
ing, the change of loss function value can reflect the learn-
ing situation of the deep network. Fig.9 shows the training
of AE-CDNN-L1 and AE-CDNN-L2. We find that based
on the testing set loss function of the two methods con-
verged after 2000 epoch. From the convergence results of the

two methods, we find that AE-CDNN-L2 could be a better
choice.

B. COMPARISON OF DIMENSION REDUCTION METHODS
In last section, we discussed the feature learning ability of
AE-CDNN model. We will compare the model with the
existing main dimension reduction methods in this section.
PCA is a very important linear dimension reduction method,
which can obtain low dimensional features by linear trans-
formation of high dimensional data [27]. Random projec-
tion (RP) is a powerful method used to construct Lipschitz
mappings so as to realize dimension reduction with a high
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TABLE 9. Classification results of AE-CDNN-L1 for dataset 1 (10-fold cross validation).

FIGURE 9. Change of loss function of AE-CDNN-L1 and
AE-CDNN-L2 during training whereby the blue and green lines represent
the change of loss function of the training and testing sets respectively.

FIGURE 10. Comparison of average classification accuracy of the two
datasets, obtained by AE-CDNN-L1, AE-CDNN-L2, PCA and SRP in each
classifier.

probability [35]. Sparse random projection (SRP) can reduce
the dimensionality by projecting the original input space
using a sparse randommatrix. Fig.10 presents the comparison
of average classification accuracy of the two datasets that are
obtained by AE-CDNN-L1, AE-CDNN-L2, PCA and SRP
in each classifier. We find that the classification accuracy of
features obtained by PCA and SRP are more stable, which
mean that the number of effective features is not increased

with the increase of total features. However, AE-CDNN-L1
and AE-CDNN-L2 can obtain new features as the increase
of total features. When the number of features is greater
than 4, the classification accuracy of features obtained by
these two network performed better than those pertaining to
PCA and SRP.

C. COMPARISON OF CLASSIFICATION APPLICATION
There are many classification researches on dataset 1.
However, they all focused on designing new features based
on the combination of existing features or searching use-
ful features from a large number of features. For example,
Pachori and Patidar [7] (2014) designed new features based
on the empirical mode decomposition (EMD) and the second-
order difference plot (SODP), and classified them using neu-
ral network. The best classification accuracy was 97.75%.
Besides, Sharma and Pachori [8] (2015) combined the pre-
vious method and the phase space representation to obtain
new features. They used SVM to classify and the best clas-
sification accuracy can reach up to 98.67%. Wen et al. used
optimization algorithm to search features on the frequency of
signal [36], which achieved an accuracy of 99%. It is worth-
while noting that high classification accuracy is often limited
by specific data processingmethod, feature design, classifica-
tion model, parameters, etc. When these constraints change,
fluctuation of the accuracy occurs. Therefore, we need a
model with autonomous learning ability that is not so limited
by the classifier. Table 9 presents the classification results of
AE-CDNN-L1 for dataset 1 after 10-fold cross validation.
When m = 16 or 32, most of classifiers without parameter
tuning can achieve good classification results.

Table 10 shows the 10-fold cross validation results of
neural network (NN-2) with two hidden layers (the number of
nodes in the hidden layer are 22 and 12) for features obtained
by AE-CDNN-L1 in Table 9. The number 1-10 represent
10 independent experiments. Note that AVG is the average
classification accuracy of the 10 experiments. The results
show that the best classification accuracy can reach up to
100%. Fig.11 shows the change of loss function values of
the NN-2 training process in Table 10. We find that based on
the features obtained by AE-CDNN-L2, NN-2 can converge
well at approximately 500 epoch during the learning process.
It means that features attained by AE-CDNN-L2 are clear,
effective and easy to learn.

Most studies related with the classification of EEG in
epilepsy only focused on one dataset. But the application
of AE-CDNN model in dataset 2 also gives good classi-
fication results. Because dataset 2 has multiple channels,
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TABLE 10. Results of 10-fold cross validation based on NN-2.

FIGURE 11. Change of loss function values of the NN-2 training process
in Table 10.

Xun et al. used a window with the length of 5 secs to carry
out single channel samples for classification, with an error
rate of 22.93% [22]. Although there are some differences in
the preprocessing, Table 5 shows that our method can achieve
better classification accuracy.

V. CONCLUSION
In this paper, we attempt to use the deep convolution network
and autoencoders to perform unsupervised feature learning
of EEG in epilepsy, and to construct the AE-CDNN model.
Our model can extract features from unlabeled EEG signals,
which greatly reduce data dimension and achieve good clas-
sification accuracy. In our experiments, we have used two
public EEG datasets (one is the intracranial EEG signals
and the other is the brain epidermis EEG signals) to learn
features and classify. Only from the classification results,
we could see that using multiple classifiers without parameter
tuning, the average classification accuracy of the obtained
features could reach more than 92% when feature dimension
was greater than 16. And the new method is more optimal
than PCA and SRP in feature effectiveness after dimension
reduction. However, the model performed badly when the
dimension of features is lower. We find that it is the initial
weight of the network that caused the problem. Therefore, our
next research object is to discover how to pre-train the initial
weight effectively. Our method is not inferior in terms of
classification accuracy as compared to the other techniques.
Because the traditional epilepsy classifications are based on
single dataset, our method is less constrained. In future,

we plan to make a meaningful visualization of the features
extracted by the deep convolution network, which can be
applied to feature recognition at all steps of epileptic seizure.
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