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ABSTRACT The widespread use of sensor networks has enabled the deployment of a wide variety of
services. In order to reduce maintenance costs without jeopardizing the reliability of the services, developers
and researchers are exploring ways to reduce the complexity of the protocols and their underlying hardware
infrastructure. However, the verification and evaluation of novel solutions must also be taken as a key design
parameter in the development of reliable and cost-effective solutions. In this paper, we develop a timed
colored Petri net (TCPN) model of the 1-wire protocol, which is one of the most popular and simplest
protocols currently used in the implementation of sensor platforms. The use of TCPNs is justified by
the fact that they provide us with the means to evaluate the qualitative and quantitative properties of the
protocol. Our results include the analysis of the absence of deadlocks as well as the quantitative evaluation
of the protocol. Our numerical results are also confirmed by using an event-driven simulator.

INDEX TERMS Sensors, 1-wire, formal modeling, colored Petri nets, analysis.

I. INTRODUCTION
Nowadays, data communications between devices and
sensorized systems and processes are being introduced in
numerous sectors, including those of leisure, industry and
marketing, among others. In this context, sensor networks are
being introduced in the industry, business and social activi-
ties. As the number of sensors per network is steadily increas-
ing, efforts are being made to simplify their interconnection
while ensuring the quality-of-service requirements of a wide
variety of applications. The design of protocols capable of
providing both communication and power is nowadays one of
the main objectives in the development of self-configurable
and reliable sensor platforms. Despite all the efforts made up
till now, there are still many open issues when it comes to
ensuring the correct auto-configuration and operation of cur-
rent commercial protocols. Therefore, conducting a rigorous
analysis of existing and up-coming protocols is an important
step towards guaranteeing their reliability and robustness.

In this paper, we conduct an analysis of the 1-wire
communication protocol using Timed Colored Petri Nets
(TCPNs) [13]. The 1-wire protocol is a sensor serial

communication protocol based on a single wire [18]. The
main advantages of this protocol are its simplicity and
self configuring features which enable the connectivity of
low-cost sensor devices via a single wire plus ground ref-
erence to accomplish both communication and power provi-
sioning capabilities. This feature makes the 1-wire protocol
an ideal solution for remote applications in which space
restrictions or accessibility difficulties make it impractical
to deploy dedicated power supplies. A single bus master
can support multiple slaves (sensors) over a single low-
cost cable bus based on a PC or micro-controller com-
municating digitally over the cable using 1-wire compliant
components.

Bearing in mind that many sensor applications rely on data
delivery services, it is important to verify the correct oper-
ation of the underlying communications protocols. Among
the numerous verification methodologies available nowa-
days, Petri Nets (PNs) have been successfully used in the
analysis of concurrent systems including communications
protocols [14]. PNs models are specified by means of a
graphical and mathematical modeling language that enables

27356
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2884-0848
https://orcid.org/0000-0003-1462-5274
https://orcid.org/0000-0003-1510-1608


M. E. Cambronero et al.: Modeling and Analysis of the 1-Wire Communication Protocol Using TCPNs

the creation of the state space, and more specifically the state
graph of the system being studied. Furthermore, numerous
computer-based tools are now available to researchers and
practitioners interested in the specification, verification and
performance evaluation of novel protocols [23]. Unfortu-
nately, in numerous cases the state space cannot be con-
structed, due to the size of the state graph representing all
possible states and transitions, thus making the processing of
all reachable states intractable. In these cases, and in general,
simulation studies should be conducted to supplement the
system verification results. In other words, properties, such
as, deadlock freeness, state reachability or liveness are veri-
fied by using state space methods, while quantitative metrics,
such as delays, throughput and performance indices can only
be obtained via simulations.

Petri nets have been extended in different ways in order
to enrich their power of description. In particular, Timed
Colored Petri Nets (TCPNs) are an extension of Petri nets
that is capable of modeling variables and times associated
with them, making this a very suitable formal method for
the analysis of sensor communication networks. TCPNs have
been introduced to represent large complex systems, in which
their components can be encoded as colors attached to the
tokens in the places. Thus, TCPNs allow us to create compact
and parameterized representations of component-based sys-
tems, without losing the analysis capabilities of standard PNs.
Timed Colored Petri nets are supported by CPN Tools [24],
which is a well-known tool for the analysis and simulation
of Petri nets. Thus, the analysis of the 1-wire protocol can
benefit from the use of TCPNs, since they can formally
describe almost all the crucial aspects of the protocol, specifi-
cally timed aspects, data and protocol commands. In addition,
the use of TCPNs allows us to have either manual or auto-
matic simulations of the protocol behavior by changing the
system configuration, for instance, modifying the number of
sensors.

In this work, we develop a TCPN model of the 1-wire
protocol, which is a technology that is widely used in the
implementation of sensor systems. We make use of the main
TCPNs features, which allow us to build a system consist-
ing of a large number of sensors. The evaluation comprises
the analysis of the space state and numerical performance
metrics. We numerically evaluate the protocol using CPN
Tools.

The rest of the paper is organized as follows. Section II
presents the related work. Section III reviews the basic prin-
ciples and notation of TCPNs, and describes the operation of
the 1-wire protocol. Section IV describes our TCPN model
for the 1-wire sensor communication protocol. We highlight
the main benefits in terms of scalability and readability
when applying the hierarchical and organizational features of
TCPNs in the modeling process. Section V and Section VI
report our protocol analysis results and performance evalu-
ation results, respectively. Finally, Section VII contains our
conclusions and a list of our future work plans.

II. RELATED WORK
Colored Petri Nets (CPNs) have successfully been used in
the analysis and evaluation of numerous communication net-
works and protocols. Hu and Jiao [10] have analyzed the
IEEE802.15.4 wireless protocol by exploiting the hierarchi-
cal features of CPN Tools. They develop a compact and
scalable CPN model by using hierarchical and symmetrical
modeling techniques. They simulate their CPN model in
terms of throughput, delivery ratio, delay, and energy cost.
They validate their results by comparing them with the ones
obtained using the well-known ns-2 simulation tool. Azgomi
and Khalili [1] present a model of an energy-aware MAC
protocol using CPNs to evaluate the power consumed by the
nodes of a wireless sensor network. Ben-Othman et al. [3]
have also studied the performance evaluation of the EQ-MAC
protocol by using CPNs. They have shown the benefits of
using CPNs in the modeling and evaluation of two relevant
metrics, namely average delay and packet delivery ratio.

Zhang et al. [28] use CPNs to model the interaction
between sensor devices and the geographic environment.
They classify the IoT (Internet of Things) service, geographic
entity and GIS (Geographic Information Systems) services
as data and processing services. To this end, they use an
algebra and CPNs to model and analyze geo features, IoT
and GIS services, and the interaction process between the
sensor network and the geographic environment. The authors
demonstrate the adequacy of the CPNs-based evaluation
methodology via three different case studies.

Zairi et al. [26] propose a CPN approach to model
the global behavior of wireless sensors networks including
the network energy consumption. Their approach is based
on the concept of components oriented modeling and the
expressiveness of CPNs. The focus is on two components:
the radio system and theMACprotocol. The authors then con-
struct the model of each subnet and interface separately. They
evaluate the network in terms of the energy consumption, thus
allowing them to predict the network lifetime.

Macià et al. [15] present the Network rOle-based Rout-
ing Intelligent Algorithm (NORIA) protocol model and
perform evaluation using Prioritized-Timed Colored Petri
Nets (PTCPNs). The main purpose of this algorithm is to
reduce energy consumption and improve data routes. The
authors present a state space analysis and performance eval-
uation in order to prove that the model is deadlock free.

Vanit-Anunchia et al. [25] have used CPNs to analyze
the Datagram Congestion Control Protocol (DCCP). They
identify the state space explosion as one of the major chal-
lenges to overcome in the analysis of finite state systems.
They then propose the use of the sweep-line method, which
is a state exploration method based on the notion of progress
to allow states to be deleted from memory when they are
no longer required. Billington and Vanit-Anunchia [4] pro-
pose the use of incremental enhancements as an alternative
approach towards the development of CPN models of more
complex protocols, and Billington and Yuan [5] undertake
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the development of a CPN model of the MANET routing
protocol. In their own words, the careful crafting of a CPN
model should result in smaller state spaces, i.e., tractable CPN
models.

Muzaffar et al. [19] present an algorithm for detecting
and setting the Pulsed-Index Communication (PIC) protocol
parameters. The protocol allows the master device to config-
ure all the slave devices connected to a channel network. In a
similar way to the 1-wire protocol, this protocol operates over
a single-channel as a means to simplify the communication
protocol operation. Dudak and Cicak [7] have developed
a CPN model of the MODBUS protocol. Like the 1-wire
protocol, the MODBUS protocol defines the master/slave
communication rules over a serial line. Zhan et al. [27] verify
the operation of the master/slave polling mechanism of the
vehicle protocol IEC-61375. By using a CPN model, they
have been able to detect a defect in the coupling of an FPGA
and an ARM system. Their results show the benefits of using
CPNs in the formal verification of communications protocols.

CPNs have also been applied to the analysis of event flows
taken from a sensor network [16], where Complex Event
Processing (CEP) technologies are used to represent criti-
cal situations derived from event flows. These CEP models
are then transformed into equivalent CPN representations
so as to apply the verification and validation techniques
mentioned above. Other extensions of PNs have also been
considered for the analysis of communication protocols.
Stochastic Petri nets (SPNs) are an extension in which transi-
tions have a negative exponential distribution associated with
them in order to establish a random delay in their firing.
Heindl and German [9] have used SPNs for the performance
evaluation of the IEEE 802.11 wireless LANs protocol.

From the above discussion, it should be clear that the
modeling of even simple network protocols consisting of
a large number of components is a challenging task. It is
also important to realize that the validation and modeling of
network protocols, such as the 1-wire protocol, are key to
the deployment of a large number of services. Many of the
emerging end-user applications will be characterized by their
stringent requirement in terms of reliability, throughput and
delays.

To the best of the authors’ knowledge, there are very few
works on the analysis and evaluation of the 1-wire proto-
col [17], [18], [22], and none of them have made use of
formal validation techniques. Chew et al. [6] present a low-
cost temperature sensors-data loggers, called Thermochron
iButtons, which are based on 1-wire data communications.
The experimental results are validated by experimental tem-
perature monitoring of a power transformer of one of the res-
idential area substations during 24 hours. Lei et al. [2] focus
on reading data errors on a specific 1-wire bus digital tem-
perature sensor, specifically the DS18B20. For this purpose,
they describe a testing error method. Another work based
on 1-wire is presented by Gosheblagh and Mohammadi [8],
in which the authors propose a monitoring system based
on the 1-wire protocol, in order to meet the reliability

requirements of the sensor networking and bus controller.
Perera et al. [20] propose a single sensor node solution
to interconnect transducers to sensor networks using Field-
Programmable Gate Array (FPGA). Their system consists
of sensor devices placed at different geographical locations
and controlled from a single central control site. The authors
claim that by integrating all the control mechanisms in a
single core using the 1-wire protocol, the processing power
speedup can be considerably increased. However, they do not
validate the operation or evaluate the performance of their
proposal, which is essential for many sensitive applications.

III. BACKGROUND
A. TIMED COLORED PETRI NETS
A Petri Net (PN) is a directed bi-partite graph with nodes of
two types: places (drawn as circles) and transitions (drawn as
rectangles). An arc can connect either a place with a transition
(pt-arc) or a transition with a place (tp-arc). Let P be the
set of places, T the set of transitions, X = P ∪ T (nodes)
and F ⊆ (P × T ) ∪ (T × P) the set of arcs. For any node
x ∈ X (place or transition), we define the preconditions
and postconditions of x, denoted by •x and x• respectively,
as follows:•x = {y ∈ X |(y, x) ∈ F}, x• = {y ∈ X |(x, y) ∈ F}.

Places usually represent states or system conditions, while
transitions are the actions or events that produce changes
in the system state. Places can have an associated marking,
which is a natural number indicated beside the place (number
of tokens on it). This number can be used, for instance,
to indicate the number of packets or the number of processes
in a queue or some other system load conditions.

Pt-arcs are also labeled with a natural number (arc weight)
to indicate the number of tokens required to execute (fire) the
outgoing transition. The default value is one, in which case
there is no need to explicitly indicate it. The same notation
applies to tp-arcs, but in this case the weight indicates the
number of tokens to be produced at the outgoing place when
the transition is fired. Thus, for a transition to be fireable
(enabling condition), all its precondition places must have at
least as many tokens as the weight of the arc that connects
them to the postcondition transition.

The firing of a transition t has therefore the following
effects:
• For each precondition place p ∈ •t , a number of tokens
equal to the weight of the pt-arc (p, t) are removed
from p.

• For each postcondition place p ∈ t•, a number of tokens
equal to the weight of the tp-arc (t, p) are produced at p.

In the simple model, no time information is considered and
no information can be associated to the tokens or places, these
being two important features required to model concurrent
systems. Colored PN (CPN) [13] is an extension to the orig-
inal Petri nets which incorporates data and time, making it
possible to model complex data structures attached to tokens
and time restrictions in the sequence and synchronization
of the processes involved. Thus, in CPNs, places have an
associated color set (a data type), which specifies the set of
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permitted token colors at a given place. CPNs are supported
by a widely used tool, namely CPN Tools [24], which allows
us to create, edit, simulate and analyze CPNs. The notation
described below is the one used in this tool.

A place can have no attached information at all, as in the
plain model. In this case, we indicateUNIT as the color set of
the place. However, as a color set, a place can now have, for
instance, the set of integer numbers INT , a Cartesian product
of two or more color sets such as INT2 = INT×INT , a string
(STRING), etc. In this case, each token has an attached data
value (color), which belongs to the corresponding place color
set. Furthermore, we can use the timed features of CPNs.
In this type of nets, a discrete global clock is used to represent
the total time elapsed in the system model; and places can
be either timed or untimed. In the case of timed places,
their tokens have an associated timestamp, which indicates
the time at which they will be available and thus usable
to fire a transition. In CPN Tools, the current number of
tokens at every place is drawn in green on the right-hand side
of the place circle, and the specific colors of these tokens
are indicated by the notation n‘v, meaning that there are n
instances of color v. The symbol ‘++’ (or ‘+ + +’ for
timed tokens) is used to represent the union of colors in CPN
Tools. Thus, a timed integer place (color set int timed) with a
marking 2‘3@5+++1′9@10 has 2 tokens with value 3 and
timestamp 5 and 1 token with value 9 and timestamp 10.

The arc inscriptions are now extended to color set expres-
sions, which are constructed using variables, constants, oper-
ators and functions. The arc expressions must evaluate a
color or multiset of colors in the color set of the attached
place. Tp-arcs1 can have a delay associated, with the syntax
n‘v@x to denote that n tokens with value v are produced with
a timestamp equal to the current time increased by x time
units. Delays can also be indicated in transitions, with the
syntax@+x, which means that all tokens produced will have
as the current time plus x timestamp. Furthermore, transitions
can have guards that can restrict their firing, as well as
priorities. Guards are Boolean expressions that constructed
by using the variables, constants, operators and functions of
themodel, and theymust be evaluated as true for the transition
to be fireable. Transitions can also have an associated priority,
so in the event of a conflict between two transitions that can
be fired at a given time, the transition with the highest level
of priority is fired first.

For any transition t with variables x1, x2, . . . in its input
and output arc expressions, we call a binding of t an assign-
ment of concrete values to each of these variables. A binding
of a transition t is then enabled if there are tokens in its
precondition places matching the values of the corresponding
inscriptions. Thus, arc expressions are evaluated by assigning
values to the variables, and these values are then used to select
the tokens that must be removed or added when firing the
corresponding transition. When no transition can be fired at

1Pt-arcs can also have delays associated with them, but this feature is not
used in this paper.

the current time, time elapsing occurs, but only up to a time
at which some transition can be fired.

FIGURE 1. Graphical view of a CPN.

Example 1: Figure 1 shows a TCPN modeling a simple
master-slaves protocol. In this TCPN, the color set INTt
stands for timed integer (int timed in CPN Tools) and v is
an integer variable. Place MasterInit has initially one token
with value 0, available at time 0. Transition Reset is depicted
in green, which means that there is an enabled binding for
it (v = 0). The firing of Reset changes the token value at
MasterInit to 1 and writes one 0-valued token at both S1
and S2, which will be available at time 50. At this time,
both Presence transitions must be fired, thus producing two
0-valued tokens at Wait with timestamp 80. Then, either
Command1 or Command2 is fired at time 80, after which the
corresponding End transition is fired at time 180 to change
the token value atMasterInit to 0 again. �

The TCPN in Figure 1 represents a very simple system.
In general, we will have to deal with larger TCPNs where the
use of the hierarchical features of CPN Tools will enable to
the decomposition of the model into various smaller subnets.
These subnets or pages in CPN Tools terminology, should
be linked by using substitution transitions and fusion sets.
Substitution transitions refer to transitions replaced by sub-
nets represented on other pages, while fusion sets are sets
of places used on different pages, which are functionally
identical and therefore correspond to the same place from a
formal viewpoint. In this paper, we have made use of fusion
places to split the model into two pages. The link between the
two pages is made by means of their common places, denoted
by a blue fusion label in their bottom left-hand corner.

B. 1-WIRE PROTOCOL
The 1-wire communication protocol is an asynchronous serial
protocol for communication based on a single data line [17],
[18], [22], which follows a master/slave scheme. A master
must always be connected to the bus serving one or more
slave devices. The communication is half-duplex and sig-
naling on the bus is divided into time slots. Slave devices
are allowed to have a time base that may significantly
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differ from the nominal time base. This requires the master
to take full responsibility for maintaining communication
synchronization with the slaves, and so all data exchange
over the bus is performed under the command of the
master.

Every communication on the bus must be initiated by the
master. The reset command is used to set all the devices
in a known state. Two other sets of commands are defined
on the bus: ROM-function commands and memory-function
commands. The former set defines the means to manage the
slave addresses and alarm events. The latter set includes the
read and write commands to be performed by the master on
the internal memory of the slaves.

1) Reset/Wait/Presence
The main function of the reset command is to pre-
pare all the slave devices for a command. The mas-
ter drives the bus low for eight time slots (between
480 and 640µs) to reset all the slaves. The master then
releases the bus by pulling it up. In response to this
command, the slaves connected to the bus pull the bus
low to indicate their presence. In order to ensure a
proper synchronization of the system, the slaves should
not pull down the bus before 15µs and not later than
60µs, counting from the beginning of the pull up bus
operation performed by themaster.Wewill use the term
wait to refer to this latter 15−60µs time period elapsed
from the beginning of the pull-down performed by the
slaves, see Figure 2. The master should then sample
the bus at one point in time during the 240µs following
the wait period. It is obvious that in the absence of
slaves, the master will become aware of this fact by
detecting a high-level bus condition. The 1-wire com-
munication always starts with the reset/wait/presence
sequence.

FIGURE 2. Reset/Wait/Presence cycle.

2) ROM Function Commands
A globally unique 64-bit identifier number identifies
every 1-wire device, which is stored in ROM. The
slaves on the bus are addressed by this number. This
identifier consists of three parts: an 8-bit family code,
a 48-bit serial number, and an 8-bit CRC computed
from the first 56 bits. For simplicity, we use integers
to define the slave identifiers in our model. There-
fore, some commands that operate on the 64-bit identi-
fier are defined, and called ROM function commands.
In this paper, we use the following ROM commands:

• Match ROM. This is used on a bus with multiple
slave devices to address an individual slave device.
The Match ROM command is transmitted on the
bus followed by the complete 64-bit slave identi-
fier for the device selected.

• Alarm Search ROM. This identifies and addresses
the devices whose temperature is outside the pro-
grammed alarm limits2 [12]. By using this com-
mand the master device can determine whether any
device experienced an alarm condition during the
most recent temperature conversion. After every
Alarm Search cycle (i.e., Alarm Search command
followed by data exchange), the bus master must
return to the initialization step, that is, a reset signal
is expected.

3) Memory Function Commands
The memory function commands [11] are addressed
to a specific slave device, and they usually deal with
writing or reading operations to/from the internal mem-
ory and registers on slave devices. In general, each
device will have its own memory function commands,
so we will consider the following three commands:
1) the unstructured read/write operations of the device
memory; 2) the use of a packet structure called the
Universal Data Packet (UDP); and 3) a combination
of multiple UDP structures into a file structure. In this
paper, we will only consider the first type, namely
unstructured read and write for sensor memories. The
Read command is used to retrieve the temperature mea-
surement values from sensor memories, while thewrite
command is used to reprogram the alarm temperature
limits in their scratchpad memories [11].

IV. TIMED COLORED PETRI NET MODEL FOR 1-WIRE
In this section, we describe the TCPN modeling of the main
commands of the 1-wire sensor communication protocol. The
model consists of one master and several slaves3 (sensors)
connected to the bus. The TCPN has been structured in two
parts (pages) using the hierarchy capabilities of CPN Tools.
The first page is used to implement the TCPN model of the
master and the second one for the TCPN model of the slaves.
We have linked the two different pages using fusion places,
which are a TCPN facility enabling the use of the same place
on several pages. It is worth mentioning that the model can
be easily reconfigured, e.q. by simply changing the value of a
constant, such as the number of sensors, ns, which means that
a model of different dimensions can be easily implemented,
simulated and evaluated.

Figures 3 and 4 show the master and slave TCPN models
for a system consisting of a master and five slaves. The
main elements of the Master TCPN are shown in Figure 3.
The Master and Slaves places model the master and slave

2In this paper, we mainly consider the use of temperature sensor devices.
3We use the term sensor or slave equally to refer to the sensors connected

to the bus.
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FIGURE 3. Master TCPN.

FIGURE 4. Slave TCPN.

states, respectively. The Control place is used to model the
reset, read_memory and write_memory control operations.

The reset and clear_state transitions are used to initialize
the 1-wire protocol. The wait_slaves transition models the
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TABLE 1. Colset information.

delay following the reset signal sent by the master. The
new_min_max transition generates the new minimum and
maximum alarm threshold values. The ROM_Alarm_Search
transition models the corresponding ROM command in order
to obtain the alarms generated.

The main elements of the slave TCPN are shown in
Figure 4. The Master and Slaves places (fusion places) cor-
respond to the same ones included on the Master TCPN
page. The end_presence transition models the presence pulse
sent by the slave. The ROM Match transition models the
Match ROMperformed by theMaster. The Sensor_Memories
place (a fusion place) contains the sensor temperature infor-
mation. The write_memory and read_memory transitions
correspond to the write and read operation performed by
the Master following a Match ROM command. Table 1
shows the sets of colors (colsets) used on both TCPN pages,
with the information they capture. Appendix describes in
detail the constants, variables and functions used in the model
(see Table 7).

As shown in Figure 3, the Master initial marking is set by
the MMastern(ns) function, which returns one token whose
color is a list of nsM-elements. Element i of the list stores the
initial information for sensor i: (0, i, 0, (20.0, 15.0, 25.0, 0))
(see M in Table 1). Analogously, function sstate(ns,0)
prepares the initial marking at place Slaves, in this case ns

FIGURE 5. Sensor memory structure.

S-tokens. Each token carries the state information of one
sensor. The initial marking for sensor i is then (0, i) (see S
in Table 1). Place Sensor_Memories is also initialized with
one token, whose color is a list with the memory informa-
tion of each sensor (measured temperature, minimum alarm
threshold, maximum alarm threshold and alarm flag).

The master initializes the communication by sending a
reset signal, modeled by the firing of transition reset. Its firing
does not change the marking of the Master, but changes the
token value at place Control from 0 to 1, inhibiting a new
firing of reset. It also writes one token at place Control_Wait
and updates all sensor states, writing 1 in the first field of
all of them (function sstate(ns,1)). Furthermore, transition
reset has an associated delay modeled by a discrete func-
tion, which sets the timestamp of the token produced at
Control_Wait with a value in the interval [480, 640]. Once
this time has elapsed, transition wait_slaves fires, writing ns
integer tokens at place End_Wait (function generateids(ns)),
each one associated with a sensor identifier, from 1 to ns.
Transition end_presence is then fired ns times (Figure 4),
thus signaling the presence of the sensors to the Master.
Sensor states are also updated by the firing of transition
end_presence, which changes their state fields from 1 to 2.
In addition, each firing updates the corresponding sensor
presence information at place Master (function fpresence)
and writes one token at placeControl_ROMwith a timestamp
in the interval [60, 240].
Once all the presence pulses are received, a ROM com-

mand can be executed, and in our case we only consider either
a ROM Match or a ROM Alarm Search. Thus, once we have
ns tokens at Control_ROM and all of them are available, both
transitions ROM_Match (Figure 4) and ROM_Alarm_Search
(Figure 3) are enabled, but only one of them can be fired,
as they both remove the ns tokens from place Control_ROM.
Transition ROM_Match selects a sensor in order to

perform a memory command on it, something which is non-
deterministically chosen in the model. In a manual simula-
tion, we can set the binding of the variable id to a given sensor.
In an automatic simulation setup, the CPN Tools simulator
engine will arbitrarily choose any of them. Its firing changes
the state of sensor id from 2 to 3, and it also changes the value
of the token at place Control from 1 to 2 (which activates the
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FIGURE 6. State graph for one sensor (ns = 1).

reset_rm, read_memory and write_memory transitions) and
updates the information stored at placeMaster for sensor id to
indicate that a ROM command has been performed (function
fROM).

After ROM_Match, either reset_rm, read_memory or
write_memory can be fired, but the latter has a time restriction
(timed token at placeControl_Write). Reset_rm sets the token
at place Control to 0, which enables the firing of transition
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clear_state for those sensors that have a non-zero value
in their slave state information. This transition has a high
priority and thus, it must be fired immediately if enabled.
Clear_state sets the first field of the slave state to 0. Once
all of slave states have 0 in their first field, transition reset
can be fired again to start a new cycle.

Sensor memories consist of a scratchpad organized in nine
bytes (Figure 5), including the two bytes of EEPROM that
store the high and low temperature values that trigger the
alarms. A write operation writes two bytes in the scratch-
pad memory, specifically bytes 2 and 3, corresponding to
volatile copies of the 1-byte upper and lower alarm trig-
ger registers (TH and TL). A write takes between 960 and
1920µs, since writing a bit takes between 60 and 120µs.
Transition write_memory modifies the alarm limits at place
Sensor_Memories for sensor id (function fWrite), taking the
information from theMaster place. Rewriting the alarm limits
is a rather unusual operation, as we do not expect the limits to
change frequently. Accordingly, we have decided to restrict
its firing by including the Control_Write place, which has
a timed token that enforces a delay of 1 second between
the firings of transition write_memory. This is still a very
short period for rewriting the limits, but long enough in terms
of the values considered in the model to severely affect the
execution of other operations. We have decided to include
this operation in the model to dimension and illustrate the
multi scale capabilities of TCPNs tools. The length of this
operation period can be dimensioned to reflect the actual
system operation. The writing time is captured by the discrete
function on the arc to Slaves, so the corresponding token for
this sensor will only be available after the time returned by
this function has elapsed.

Transition read_memory will always be activated after
ROM_Match, which reads the current values into the memory
of sensor id. A read command reads the complete scratch-
pad memory (9 bytes) of the chosen sensor. Reading a bit
takes a time of between 61 and 75µs, so the time to read
nine bytes is between 4392 and 5400µs. Accordingly, transi-
tion read_memory updates the memory information stored at
place Master for sensor id (function fRead). It also modifies
the corresponding token at place Slaves, changing its state
to 0 and aging it by a time in the interval [4392, 5400] with
respect to the current model time.

Both transitions read_memory and write_memory set the
token at place Control to 0, to enable transition clear_reset.
Clear_state is fired several times to set all the sensor states
to 0, after which transition reset becomes enabled again.

As mentioned above, transition ROM_Alarm_Search can
also be fired after all slaves have signaled their presence. Its
firing removes the ns tokens from placeControl_ROM, which
disables transitionROM_Match.ROM_Alarm_Search checks
the sensor alarm status, taking the information from place
Sensor_Memories and writing tokens at places FlagMin and
FlagMax when some alarms have been triggered.
The Master TCPN includes the transition new_min_max

to produce new minimum and maximum temperature alarm

TABLE 2. Space state report - statistics for one sensor.

TABLE 3. Report space state - liveness properties - ns=5.

thresholds, which are then used in subsequent writing oper-
ations. Writing new threshold values should be a rather
unusual operation, so we could even avoid these updates.
However, as mentioned above, our aim is to develop a flex-
ible model that allows operations spanning different time
scales, so we have included a threshold update period of 30s.
In a similar way, the Slave TCPN includes the transition
update_temperature, which updates the temperature of one
sensor. The period for this operation is 300000µs, so all
sensor temperatures are updated every 0.3 seconds. Function
setTemper is used to compute a new temperature value for one
sensor, as a slight modification of its previous value, since
temperature values do not change discontinuously. For this
purpose, a normal distribution N (0, 3) is used to determine
this modification. The firing of update_temperature changes
the sensor information at place Sensor_Memories, as well as
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FIGURE 7. ROM alarm Search monitor simulations (100 replications).

FIGURE 8. ROM Match monitor simulations (100 replications).

FIGURE 9. Flag monitor simulations (100 replications).

the corresponding alarm flags that could have changed as a
consequence of the new temperature value (function setFlag).

V. ANALYSIS
In this section, we describe the analysis that has been per-
formed by constructing the state space of the TCPN model.

First, we consider the TCPNmodel without time values, since
the network structure depicts the sequence order of the 1-wire
commands, and therefore our first objective is a qualitative
analysis.

We have first analyzed a simple version of the system
with no updates and a single sensor (ns = 1). In this
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TABLE 4. CPN tools performance report for 100 replications.

case, the state graph consists of 13 nodes and 17 edges (see
Table 2). Figure 6 shows the detailed behavior obtained for
the 1-sensor system via its state space. Rectangles with round
corners are the states, which are labeled with three numbers
(state number and below, the number of predecessors and
successors). Edges are labeled as follows: edge number, state
transition (i → j), TCPN page, fired transition and binding
used.

Transition reset can be fired from nodes 1, 5, 6 and 9, which
correspond to the initial state (node 1) and the states after
ROM_Search, ROM_Match and either a read or write oper-
ation. A cyclic behavior can be observed from nodes 5 and 9.

Nodes 6, 8, 9, 11, 12 and 13 are actually home markings,
which indicates that it is always possible to return to them.
By following the paths in the figure, we can verify the
operation of the 1-wire protocol step by step. After per-
forming a reset, from nodes 2, 7 and 11 the wait_slaves
transition is always fired, followed by the firing of the tran-
sition end_presence, from nodes 4 and 13. From node 4 we
can execute either a ROM_Alarm_Search or a ROM_Match
command. In the first case node 5 is reached, from which a
new resetmust be performed.When aROM_Match command
is issued (node 6), one of the three following commands
is performed: read_memory, write_memory or reset. Notice
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FIGURE 10. Read monitor simulation results (100 replications).

FIGURE 11. Lineal polynomial fit considering Flag Max vs number of
nodes.

that node 13 corresponds to the same situation as node 4,
from which either a ROM_Alarm_Search or a ROM_Match
command can be performed.

From the report in Table 2 we can see that there are no
dead markings (deadlocks) and all transitions can eventually
be fired (no dead transitions). Actually, all transitions are
live, which means that they are eventually fireable from
every reachable state. Table 3 shows these same results for
five sensors, so the number of sensors does not affect these
properties, as expected.

VI. PERFORMANCE EVALUATION
Another important advantage of using CPN Tools is that we
can obtain relevant performancemeasures through simulation
experiments, using the monitor features of CPN Tools. In this
case, monitors are used to observe, inspect, or control sim-
ulations. In particular, we use a breakpoint monitor, which
is used to stop a simulation, and data collector monitors,
which are used to extract numerical data from a TCPN. The
numerical data are then used to calculate statistics.

FIGURE 12. Power Fit considering number of ROMs (ROM Alarm Search
plus ROM Match) per sensor vs number of nodes.

TABLE 5. Scenario for the simulations.

The performance evaluation of the protocol is carried out
in a generic scenario, since we use probability distributions
to generate both the temperature sensor values and threshold
values. Our study simulates 15 minutes of operation of the
protocol for a system consisting of 5, 10, 15, 20, 25 and 30
sensors. The only change required in the TCPN to set a new
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TABLE 6. QNAP2 vs. CPN performance report for 100 replications.

number of sensors is to assign a new value to the constant ns
in the TCPN Declaration section.

This is an important advantage of the TCPN model,
as it is easily configured by just changing a constant.
We can easily conduct simulations with any number of
sensors and analyze the protocol behavior as the number
of sensors increases. In particular, we can check whether
the number of sensors affects the protocol performance,
in terms of the number of operations it can support on the
sensors.

The simulations were run on a computer with an Intel
Core i7-6700 3.4GHz processor and 16 GB DDR4 SDRAM,
under Windows 10 Enterprise Anniversary Edition x64. The
specific scenario that we have considered in terms of initial
temperature values and their dynamic updates is shown in
Table 5.

Table 4 shows the following relevant information obtained
from the simulations:
• ROM alarm Search (Figure 7),
• ROM Match (Figure 8),
• Alarms (Min or Max) (Figure 9),
• Read memory commands (Figure 10).
All this information was gathered from data collector mon-

itors by considering the case of count transition occurrence
monitors. Table 4 shows the numeric results obtained from
CPN Tools, giving the average of each measure of interest
together with its confidence intervals.

Figures 7 to 10 depict the information gathered from 100
simulation replications for the ROM Match, ROM alarm
Search, Flag Alarms and Read monitors, respectively. These
figures show a boxplot of each result, with the median of
the number of occurrences and its corresponding first and
third quartile, while the whiskers determine minimum and
maximum values (without considering the outliers).4

Table 4 shows that the number of executed ROM Alarm
Search and ROM Match commands remains practically
unchanged for all system configurations. It is obvious that the
number of these commands executed is uniformly distributed
among all the sensors. An interesting result regarding scala-
bility is that as the number of sensors increases, the number of
ROM commands tends to stabilize (see Figures 7 and 8). That
is to say, adding more sensors does not increase the number
of ROM commands performed by the Master for the same
simulation time interval (15 minutes). The same occurs for
the Read command (Figure 10). However, in the case of Flag
Alarms, the increase in the number of sensors results in a
higher number of Flag Alarms (see Figure 11). This increase,
however, does not have a negative impact on the number of
ROM commands or read/write commands.

Figure 12 shows the expected number of ROMs com-
mands, that is ROM Alarm Search plus ROM Match, exe-
cuted by the sensors, which is inversely proportional to the
number of sensors (ns).

Finally, since the execution of theWrite command is rather
unusual, as according to the considered scenario there is a
Write command every 1s, the number of Write commands
remains at 890-891 in practically all scenarios.

A. RESULTS IN QNAP
In order to verify the performance results reported by
the TCPN model, we developed a simulator using the
QNAP2 software [21], which is a discrete-event simulation

4Points are drawn as outliers if they are larger than q3 + w(q3 −
q1) or smaller than q1− w(q3− q1), where q1 and q3 are the 25th and 75th
percentiles, respectively. The default of w=1.5 corresponds to approximately
a 99.3 coverage if the data are normally distributed.
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tool developed in the 80’s by a team of researchers at INRIA
Labs (France).

Table 6 reports the numerical results obtained using
QNAP2 and the ones reported by CPN Tools. As can be
seen from the table, the results closely match each other. This
confirms that our TCPN model operates properly. From this
comparative analysis, we can also highlight the great benefits
of CPNs as a modeling methodology. While event-based
simulation tools allow us to evaluate performance metrics,
e.g., the number of operations performed per unit of time, they
do not provide us with the means to describe the concurrent
behavior of distributed systems, such as, liveness proper-
ties or deadlocks, among others. Petri nets provide a simple
graphical format and operational semantics that enable the
modeling of the static and dynamic aspects of concurrent
systems.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a timed colored Petri net
model for the 1-wire protocol. CPN Tools have been used in
order to analyze the TCPN model and obtain both qualitative
and quantitative results for the 1-wire protocol behavior. The
results obtained have also been validated by using a discrete-
event simulator (QNAP2).

The proposed TCPN model has been designed to easily
expand the number and characteristics of the sensor platform.
We can therefore analyze systems with different dimensions,
number of sensors, and application domains. Regarding pro-
tocol scalability, we have seen that the number of both
ROM_Match and ROM_Alarm_Search commands tends to
stabilize as the number of sensors increases, which is due to
the initial wait of between 240 µs and 640 µs, which tends
towards the upper values of this interval as more sensors are
added. However, the number of ROM commands that can be
performed on each sensor decreases in inverse proportion to
the number of sensors, because the line does not allow more
operations, and new operations must wait for the completion
of the previous ones.

As future work, we intend to extend the number of ROM
commands supported by the model, by including the Read
ROM, Skip ROM and ROM search commands. We also plan
to apply this generic model to certain specific case studies,
such as defining different temperature thresholds or consid-
ering various metrics, e.g., temperature and humidity sensors
to control a plantation system. Real measured values could
then be used to feed the TCPN by using the Comms/CPN
features of CPN Tools, and actions could be taken in response
to the alarms produced by introducing the corresponding
transitions, which could be connected with Java programs
performing these actions.

APPENDIX
Table 7 shows the colset declaration section of the TCPN, and
Table 8 contains the function declaration section.
The colset declarations (Table 7) are the following:
• B: a bit value (0 or 1).

TABLE 7. TCPN colsets.

• D: an integer between 0 and 2 used in the sensor memory
to control a flag value, which is 0 when an alarm is
not triggered, 1 when a minimum temperature alarm
is triggered and 2 when a maximum temperature alarm
is triggered.

• C: an integer between 0 and 3 used in the slaves to
annotate the slave states. The possible slave state values
are:
1) 0: initial slave state, no action has been performed.
2) 1: a reset signal has been received from the master.
3) 2: the slave has sent the presence pulse to the

master.
4) 3: the slave can perform a memory command.

• S: a timed product of a C and an integer, which mod-
els the complete slave state. Their contents are the
following:
1) C: this element allows us to model the slave state,

described above.
2) INT: the slave identifier.

• MS: a timed product of three reals and a D, which
defines the sensor memory information. It consists of
the measured temperature, the value of minimum and
maximum alarms and the flag value for each sensor.

• LMS: a list of the corresponding MS for all the con-
nected sensors.

• INTt: a timed integer.
• M: a timed product of two integers, a B and an MS.
It captures the master state, where the first integer indi-
cates whether the presence signals sent by the slaves
have been received by the master; the second integer is
the slave identifier, and B allows us to capture whether
the ROM command has been sent or not, and finally
MS represents the sensors memory information for each
sensor.

• LM: a list of M, which saves the M information for all
the connected sensors.

• UNITt: a timed UNIT.
• REAL3: a product of three reals and a D, which models
the sensor memory information as explained for MS, but
without considering the time for each component.

• INTR: a timed product of an integer and a real, which
is used in the ROM Alarm Search command in order to
log information about the triggered alarms. Specifically,
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TABLE 8. TCPN function declaration section.
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the slave identifier and the temperature that produced the
alarm.

The TCPN function declarations are the following
(Table 8):
• testMax(), testMin(): They have a real parameter, and
are used in the nt function in order to set a maximum
and minimum values for the generated new temperature
values obtained in nt. They are used in the nt function.

• nt(): This function is used in the newalarms function
to generate new minimum and maximum values for a
sensor alarm from the sensor information (REAL3). This
function has a REAL3 variable type (sensor information)
as parameter. It is used in the newalarms function.

• newalarms(): It is a recursive function that has two
parameters: an integer and an LM variable. Its purpose
is to go through the list elements and to change the max-
imum and minimum alarm values for all the sensors in
the list LM, and for this purpose it calls the nt function.

• sstate(): It is a recursive function that has two parame-
ters: an integer and a C variable. Its purpose is to change
all sensor states.

• MtempS(): It sets the initial marking for the Control
Memory place, which is used to set the times at which
the temperature values of sensors are updated.

• MMaster(ns): It sets the initial marking for the master.
• MSM(): It sets the initial marking for the sensor infor-
mation (Sensor_Memories place).

• generateids(): It generates the sensor identifiers. It is
used to wait until all sensors have received the reset
signal (End Wait place).

• fpresence(): This function has two parameters: an LM
variable and an integer (sensor identifier). It is a recur-
sive function that goes through the LM list, looking for
the sensor with the given identifier and sets to 1 the sec-
ond element of M for this sensor, to indicate that the
corresponding sensor has sent the presence signal.

• fROM(): This function has two parameters: an LM vari-
able and an integer (sensor identifier). It is a recursive
function that goes through the LM list looking for the
sensor with the given identifier and sets to 1 the fourth
element (B type) ofM for this sensor, to indicate that the
ROM Match has been performed for this sensor.

• fRead(): This function has three parameters: an LMS
variable, an LM variable, and an integer (sensor identi-
fier). It is a recursive function that goes through the LM
list, looking for the sensor with the given identifier, and
modifies the fifth element (MS type) of M for this sen-
sor, with the sensor information for this sensor obtained
from the variable LMS, which contains the updated sen-
sor information saved in the Sensor Memories place.

• fWrite(): This function is similar to the fRead function,
but in this case, the fifth element (MS type) of the corre-
sponding sensor is updated with the sensor information
saved in the master.

• temper(): This function has a real parameter and is used
in the setTemper function. Its purpose is to calculate

a new temperature value by using a normal distribu-
tion function and the real parameter. It is used in the
setTemper function.

• setTemper(): This function uses three parameters: an
LMS variable and two integers (sensor identifier and
integers used for recursive function calling). It goes
through the list elements of LMS looking for the sensor
with the given identifier, and it changes the temperature
value for this sensor.

• setFlag(): This function has one parameter of LMS type.
It goes through the LMS list and checks for each element
in the list, whether the temperature value is less than the
minimum alarm or greater than the maximum alarm in
order to modify the flag value.

• searchMin(), searchMax(): These functions have two
parameters: an LMS variable and an integer (sensor
identifier). They allow us to log information in the form
of (identifier, temperature) at the places FlagMin and
FlagMax, when a minimum or maximum alarm are
triggered, respectively.
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