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ABSTRACT Photovoltaic (PV) arrays present non-linear I–V curves, which strongly depend on ambient
temperature and solar insolation. This fact poses a problem in identifying the maximum PV power point.
In this paper, a dc motor is powered by a PV array and an attempt is made to optimize the use of the PV
energy while the DC motor is supplied with suitable current and voltage in order to match its load–speed
characteristics. This is achieved through a dc/dc converter controlled by a fuzzy cognitive network (FCN),
in parallel with an energy storage device (battery), so that the PV energy is always fully exploitable. The
algorithm method uses an FCN and a fuzzy controller, which recognize the maximum power of the PV
array very fast while at the same time, they control the speed of the dc motor, under different insolation and
temperature conditions. The proposed algorithm is validated through the simulation studies and is proven to
be effective.

INDEX TERMS Photovoltaic power systems, dc motors speed control, fuzzy systems, fuzzy cognitive
networks.

I. INTRODUCTION
Photovoltaic (PV) energy turns out to be a promising substi-
tute for conventional sources due to the growing demand on
electricity, as it is an endless source of energy. The efficiency
of power conversion from solar to electricity is low (around
15-20%). This is mainly due to the following reason; the
power output of solar cells mainly depends on solar insola-
tion and ambient temperature. Improving the efficiency of
a photovoltaic system is achieved by finding the maximum
operating point of the photovoltaic at any insolation and
temperature levels.

In a PV array, solar energy is converted to electrical, which,
in turn, could be used to directly supply DC loads, or might
be stored in batteries or even supply AC loads with the use
of a DC-AC inverter. In case of using a DC motor as a
load connected to a PV array, the solar energy is converted
into electrical and through the DC motor into mechanical.
Alghuwainem [1], [2] attempted to match the characteristics
of the DC motor to those of the photovoltaic, so that the
system’s performance would increase and the conversion of
electrical energy to mechanical would have minimum losses.

The system in [1] consists of the PV array and the DC
motor. Each one of the devices is characterized by its own

different operating characteristics where there is only one
operating point, depending on insolation and temperature,
that corresponds to both which in turn defines the optimal
operating non-linear point of the combined PV array – DC
motor system. Each solar insolation level defines a unique
PV array operating point, where power output reaches a
maximum value. Since the maximum power point depends
on solar insolation and temperature, it is difficult to reach
the maximum efficiency of the PV array at all insolation
levels. A review of studies referring to directly connected PV
arrays with DC motors is made in [3], where it seems that the
optimal operating point of DC motors is different from the
maximum-power point of the connected PV arrays at various
insolation levels, thus affecting negatively the efficiency of
the PV array-DC motor system.

By using an electronic maximum power point tracking
device, known as MPPT, the problem can be solved. MPPT
constantly tracks, for certain temperature and radiation val-
ues, the appropriate I-V points of the PV array that produce
the maximum power, and at the same time tries to match
the pertinent I-V characteristic of the DC motor - through
a DC/DC converter - so that motor rotates at the optimal –
for each mechanical load - speed. By carefully selecting the
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characteristics of the DC motor so that they match the maxi-
mum power curve of the photovoltaic generator, an efficient
operation can be achieved, but, according to [4] it does not
apply to all levels of solar radiation. Dileep and Singh [5]
conclude theιr selection criteria by saying that a non-isolated
DC/DC converter plays an important role on the performance
of a PV water pumping system, while others in [6] study
the maximum mechanical energy produced by a DC motor
when it is directly connected to a PV array. The researchers
in [7] study the function of the mechanical loads fed by
one or more independent PV arrays. An experimental com-
parison between two different PV installation techniques,
i.e. a directly coupled PV - DC motor system and a system
employing a constant voltageMPPT controller, ismade in [8].

Other research efforts focus on the effectiveness and
the advantages of connecting a Brushless DC Motor to a
PV array. In [9], where a Zeta Converter, fed from a PV
array, is used to drive a BLDC motor, authors proposed an
incremental conductance MPPT algorithm, which offers soft
starting of the motor. Sashidhar and Fernandes [10] compare
induction motors with BLDC motors fed from PV arrays and
show the effectiveness of BLDC motors, where experimental
results of a motor prototype are presented. A single stage
BLDC motor fed by a PV array through a voltage source
inverter is presented in [11], where authors claim that this
power conversion stage is simple and cost effective compared
to other PV-DC motor drives.

Zinger and Braunstein [12] achieved to track the max-
imum power operating point of a PV array by dis-
cretely interchanging the series-parallel connections of
solar cells, while other MPPT methods use either a
normal mode of a DC-DC converter as presented by
Schoeman and Van Wyk [13], or a step-up mode as in [14].
A comparison between various incremental conductance
MPPT techniques, which in general showed a very good
performance, especially at low solar insolation levels, is pre-
sented in [15], where authors investigate the drawbacks and
the advantages of each technique.

A number of computational methods for the MPPT tech-
nique using fuzzy logic have been presented in the literature.
Karthika et al. [16] use an interleaved boost converter, which
is preferred due to high voltage gain from PV arrays, having
a SiC MOSFET driver and a Fuzzy Logic MPPT Controller
in order to adjust the speed of a DC motor, while a com-
putational method based on fuzzy logic [17], [18] showed
very good adaptation abilities under different solar insolation
levels. An algorithm that does not require temperature and
radiation measurement has shown very goodMPPTmatching
in [19].

Matsukawa et al. [20] and Masoum et al. [21] introduced
methods regarding the dynamic behavior of a PV array
in order to study its interaction with the relevant MPPT
system, while other researchers in [22] presented a new
MPPT method using FCN with a Fuzzy Controller to track
Maximum Power from a PV connected to any load. The
same authors continued their research in [23] presenting the

adaptation capability of the FCNs when dealing with the
dynamic behavior a PV array or with the change of basic
characteristics due to failures or degradation.

This paper presents a novel algorithm and a new topology
evolving an MPPT controller, which uses Fuzzy Cognitive
Networks (FCNs) and Fuzzy Sets theory. The FCN presented
in this paper, is designed so that it can corporate with a Fuzzy
Controller [10], which is used in parallel with the FCN to
track the maximum power operation point of the PV array,
supplying at the same time aDC shunt motor drive, by forcing
it to operate at its optimal speed. FCNs presented in [22]–[24]
introduced a complete computational and storage structure
that enables the use of FCNs when there is a physical system
needing description.

The paper is organized as follows: in Section 2 mathe-
matical equations for an equivalent PV array are given in
order to simulate the operation of a PV array under different
meteorological data. In Section 3 the equations describing
the steady state operation of the DC motor are also given
while in Section 4 the fuzzy logicMPPTmethod is presented.
Section 5 presents the converters and the new installation
topology between the PV array and the DC motor using a
battery for storing the extra power extracted from the PV.
In Section 6 a brief introduction in Fuzzy Cognitive Networks
is made and the graph of the proposed FCN is presented.
Simulation results, of a commercially available PV array and
a DC motor, are given in section 7. Conclusions are given in
Section 8.

II. SIMULATION OF A PV ARRAY
The circuit, which is depicted in (Fig. 1), of a solar cell [25]
is described by the following equations:
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where Ii andVi are the output current and voltage respectively,
q is the electron charge, k is Boltzmann’s constant in J/K, k ′

is the same constant but in eV/K, ki is a coefficient in A/K
relating the short circuit current and temperature, A is the
p–n junction ideality factor and is equal to 1.3 for Si-mono
PV arrays, T is the cell temperature in Kelvin, Tr is the cell
reference temperature at 25◦C , Irr is the reverse saturation
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FIGURE 1. Equivalent circuit of a solar cell.

FIGURE 2. Current vs Voltage and Power vs Voltage diagram of a
common PV array (S = 100mW /cm2 and Tr = 25◦C).

current at Tr , Ip is the photocurrent, Iscr is the short circuit
current of the PV array at the cell reference temperature and
insolation level S, The required data for eqs 1-5 are ki, Voc,
Iscr , Vi, Ii, all given by the PV manufacturer at Tr = 25◦C
and S = 100mW/cm2.
A PV array is a non-linear current generator, which under

constant insolation has an I–V characteristic diagram shown
in Fig. 2. Fig. 3 shows I–V curves under different solar
insolation levels, but at constant temperature.

For the case study, a PV array having ki = 2.8 mA/◦C ,
Voc = 21.4 V , Iscr = 4.48 A, Vi = 17.52 V and Ii = 4.35 A,
at Tr = 25◦C and S = 100mW/cm2 is used.

III. MOTOR CHARACTERISTICS
The DC motor used in this study is a shunt DC motor with
the following parameters:

Rated voltage Vin = 48 V
Rated current Iin = 0.9 A
Rated speed ω = 45 rad/sec
Armature resistance RA = 0.5 �
Mutual Inductance LAF = 1.2 H
Rated Load torque TL = 0.001ω1.8 Nm.

Iron and motor rotational losses are neglected
The motor voltage at steady state operation and the elec-

tromagnetic torque are:

Vin =
TLω + RA (Iin)2

Iin
(6)

Fig. 4 shows motor Voltage and Speed versus current.

FIGURE 3. Current vs Voltage diagram of a common PV array at different
insolation levels and steady temperature 25◦C.

FIGURE 4. Current vs Voltage and Speed vs Voltage diagrams of a
DC motor.

IV. PV - MOTOR-BATTERIES CIRCUIT
The main circuit components shown in Fig. 5 are a PV array,
the shunt motor drive and a battery of 24V and 72Ah capacity.
All components are interconnected through three buck boost
DC/DC converters which have the following characteristics:

• Buck-boost converter input voltage: 0 to 74.1 V
• Buck-boost converter output voltage: 0 to 74.1 V
• switching frequency (fs) of transistor S: 33kHz

The driver circuit controls the power transistor S which is
turned on and off with a rated duty ratio. The operation of
buck-boost converters is given in [2].

For the buck-boost converter No1 using the transistor
S1 the duty ratio r1 is related to the PV output Voltage and
DC motor input Voltage through:

r1 = Vin/ (VPV + Vin) (7)

where r1 is the duty ratio of the transistor S1 applied to
converter No1.
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FIGURE 5. Topology of the system under study.

For the buck-boost converter No2 using the transistor
S2 the duty ratio r2 is related to the Battery Voltage and DC
motor input Voltage through:

r2 = Vb/ (Vin + Vb) (8)

For the converter No3 using the transistor S3 the duty
ratio r3 is related to the DC motor input Voltage and Battery
Voltage through:

r3 = Vin/ (Vb + Vin) (9)

Batteries in Fig. 5 are used to store the surplus energy from the
PV array that is not applied to the motor, thus the algorithm
is always tracking the maximum power extracted from the
PV. The current Ie which is the input of converter No2 is
equal to Ie = (PPV − Pin) /Vin. When VinIin > VPV IPV
then switches Q1 and Q′1 are both closed and transistor S2 is
always off with Vb = 24Volt . The transistor S3 is now in
conducting mode in order to transfer the power from the
batteries to the motor, while at the same time converter No2 is
no longer transferring power from the PV to batteries. When
VinIin < VPV IPV then switchesQ1 andQ′1 are both open and
transistor S2 is in conducting mode, thus transferring power
from PV to batteries.

V. SPEED CONTROL AND MAXIMUM POWER OPERATION
POINT USING FUZZY LOGIC CONTROLLER [17]
The objective of the controller is to monitor the maximum
power point of the PV array and at the same time to determine
the correct value for the motor speed. As mentioned in the

previous section, the optimum operating point of a PV array is
determined by the values of solar insolation and temperature.
To adjust and achieve this MPP value, a DC/DC converter is
used between the load we want to supply and the PV array.
By using the DC/DC converter we will be able to adjust the
PV array output power and the input power of the motor so
that the second rotates to the desired values.

A. FUZZIFICATION
In order to achieve the control, Won et al. [17] created a con-
troller with two inputs on the left hand side part and a single
output on the right hand side part of the fuzzy controller,
where one of the inputs is the error E while the second one
is the change of error CE at a sampling time k and they are
given by the following equations:

E(k) =
PPV (k)− PPV (k − 1)
IPV (k)− IPV (k − 1)

(10)

CE(k) = E(k)− E(k − 1) (11)

where PPV (k) and IPV (k) are the power and the current of the
PV array. The controller continuously changes the PPV value,
by changing the duty ratio dr of the transistor S, which inter-
rupts the values of the output voltage VPV and current IPV .
At each iteration k, where the PPV (k) value is continuously
changed, a correction in the duty ratio dr is performed in
order to assure that the desired speed of the motor is achieved.
The correction of duty ratio r1 is performed according to:
r1 = 1 −

(
V des
in /VPV (k)

)
, where V des

in is the desired motor
voltage calculated by eq. (6) and VPV (k) is the PV array
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FIGURE 6. Triangular membership function for fuzzy. (a) input E(k)
(b) input CE(k) (c) output dr .

voltage applied in time k from the controller. At iteration
k + 1, controller is checking whether the previous power
value in iteration k is greater than the next value at iteration
k + 1, and the process is interrupted. If the PPV (k + 1) is
lower, the process is repeated until E(k + 1) = 0, where the
maximum power point of the PV array is the value PPV (k).
The fuzzy membership functions of sets E(k) and CE(k) are
shown in figs 6a and 6b respectively. Fig. 6c shows the Finally
Fig. 6c shows the membership functions of output set dr , how
the on/off duty ratio r1 of the DC/DC converters transistor
S1 varies.

B. INFERENCE METHOD
The rule table of the fuzzy controller, presented in Table 1,
depicts the fuzzy interconnection between the fuzzy sets of
E(k), CE(k) and duty ratio dr . The control rule is designed
so that the input variable E(k) must always be equal to zero.
An example control rule is:
IF E(k) is PS AND CE(k) is NB THEN dr is PS
As a fuzzy inference method we use the Mamdani’s one

including max-min operation fuzzy combination law. The
Center of Area (COA) and theMax CriterionMethod (MCM)
are implemented for defuzzification purposes [26].

VI. THE FUZZY COGNITIVE NETWORK APPROACH FOR
THE DC MOTOR – PV ARRAY SYSTEM
In this section an FCN is designed to represent the operation
of a DC motor powered from a PV array. Our aim is to use

TABLE 1. Fuzzy rule table.

the FCN, for estimating the Maximum Power Point of the PV
array and in the same time to adjust the motor speed.

A. FCNs
Fuzzy Cognitive Networks were designed to be a methodol-
ogy for modeling physical systems using the theories of both
fuzzy logic and neural networks.

A graphical representation of FCN [27] is depicted in Fig.
7, where each node C1. . .C8 represents a characteristic of a
physical system. For each node a characteristic number Ai
is corresponding, representing its value which was evaluated
after the real value of the system’s variable was transformed.
VectorA represents the values of the nodes in the interval [0,1]
as follows:

A =
[
A1 A2 A3 A4 A5 A6 A7 A8

]T
Between nodes exists a causality named ‘‘weights’’ and range
in the interval [−1,1]. Weights map the cause-effect relation-
ship between the nodes of the FCN. The value of each weight
wij indicates how strongly concept (node) Cj influences con-
cept Ci, i.e. an increase in the value of node Cj with a weight
value of wij > 0 is translated as an increase in the value of
node Ci. Otherwise, the value of the node Cj decreases if the
value of wij is negative.

Matrix W of the aforementioned weights, referring to the
FCN presented in Fig. 7, is given by:

W =



1 w12 w13 w14 0 w16 0 0
w21 1 0 0 0 w26 0 w28
w31 0 1 w34 w35 0 w37 0
w41 0 w43 1 0 0 0 0
0 0 0 0 1 0 w57 0
0 0 w63 w64 w65 1 0 w68
0 0 w73 0 0 0 1 w78
0 w82 0 0 0 w86 w87 1


The values of the FCNnodes of FCN, can be extracted from

the following equations:

Ai(k) = f (
n∑

j 6=ij=1

wijAj(k − 1)+ Ai(k − 1)) (12)

Where Ai(k) and Ai(k − 1) are the values of concept Ci
at discrete time k and k − 1 respectively, while concept Cj
at discrete time k − 1 has a value of Aj(k − 1). wij is the
weight in the interval [−1 . . . 1], f is a squashing function:
f = 1/(1+ e−x).
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FIGURE 7. A simple fuzzy cognitive map/network.

FIGURE 8. An FCN designed for speed motor control powered from PVs.

And for the steady state nodes the correction equation is:

AFCNj (k) = Asystemj (k) (13)

whereAsystemj (k) is the node’s value, derived from the physical
system at discrete time k .

B. THE COGNITIVE GRAPH FOR THE PROJECT
The graph shown in Fig. 8 represents the speed control for the
DC motor powered by a photovoltaic system, while having
a Maximum Power Point Tracking capability. The graph
consists of 6 nodes, where nodes C1, C2 andC3 are calculated
according to eq. 13 and nodes C4, C5, C6 are control nodes
(and are calculated according to eq. 12). The control node
C4 is used to regulate the output voltage of the PV array and
the input voltage of the motor as well, in order to achieve

TABLE 2. Physical quantities of nodes of fcn.

the desired speed. Each graph node corresponds to several
physical quantities of the PV array and the DC motor as
indicated in Table 2:

The weight matrix for the FCN is:

W =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
w41 w42 0 1 0 0
0 0 w53 0 1 0
0 0 0 w64 w65 1


while the vector A for nodes values is:

A =
[
A1 A2 A3 A4 A5 A6

]T
C. THE FUZZY COGNITIVE NETWORK APPROACH FOR
THE SPEED MOTOR CONTROL
FCNs were introduced by the authors of this paper, in a pre-
vious work, to solve Fuzzy Cognitive Maps critical problems
andmainly to be used as a control method in physical systems
and in recognition applications. An FCN consists of:
• the graph that graphically depicts the physical system one

wants to recognize and finally control,
• the mechanism for updating the FCN weights values,

which receives feedback from the physical system and
• the knowledge storage industry resulting from the dif-

ferent functional situations of the physical system imprinted
through the FCN weights.

The topology of the FCN chart is originally drawn from
the knowledge of the physical system’s experts and captures
the various concepts or variables of the system. FCN has the
ability to capture every different state of the physical system
through its weight values as a unique balance of graph and
nodes values by using the weight update mechanism. As a
consequence of relating the various operating conditions to
equally various weight sets, Boutalis et al. [28] introduced
a fuzzy rule based framework in order to store the various
compounds. A view of the physical system along with the
FCN that describes it, is presented in Fig. 9. The desired
values Ades of the nodes of the FCN, represent input and
output of the system and at the same time are the imprinting
of the characteristics of the physical system. A number of
FCN parameters will force the FCN to converge to an equilib-
rium point, namely Aeq. To estimate the aforementioned FCN
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FIGURE 9. Interactive mode of FCN operation.

parameters we use the error between Ades and Aeq. Once the
FCN weights are suitably adjusted, so they are now related
to the current physical state of the physical system, they are
stored in the form of unclear rules.

Fig 10 shows the flowchart of the proposed method where
the designed FCN identifies the PV array-DC motor system
under different climatic data. The FCN receives feedback
from the physical system and from the Fuzzy Controller and
sends control values to the DC / DC converter. The FCNs off-
line identifier procedure of the physical system is performed
in two stages, the weight updating procedure and the storage
procedure is described below.
Step 1 (Weight Updating Procedure): This stage con-

cerns the method of updating FCN’s interconnection weights,
taking into account training data. New weight values are
calculated after a number of iterations leading the FCN to
converge. Equations (12) and (13), referring to the calculation
of the updated weights, are used by the FCN in each training
iteration, in order to reach new equilibrium node values.
Many updating algorithms for the parameters of FCNs were
presented in the literature [29]. Authors introduced a weight
updating algorithm [30], for the FCN’s parameters:

εi(k) =
f −1i (Adesi )− wi(k − 1)Ades

b+
(
Ades

)T Ades (14)

wi(k) = wi(k − 1)+ aεi(k)Ades (15)

where wi(k) is the i-th row of matrix W (k), Ades is a steady
state vector, f −1i (Adesi ) = wi · Ades is also a steady known
vector. Parameters a > 0 and b > 0 are design parameters.
Usually a=0.1 and b=0.1.
Step 2 (Building the Fuzzy Rule Database):The knowledge

from the physical system modifies the weight values and
consequently the values of the nodes according to the process
of the previous step. Using equations (14) and (15) the FCN
weights are updated so that they map the state of the physical

FIGURE 10. Simplified flowchart of the PV array-DC motor system
controlled by FCNs.

system through a new equilibrium point. Given that, a weight
matrix can generate new equilibrium values of the FCN node
values. Each weight table now maps the current knowledge
from the physical system. Boutalis et al. [28] introduced the
way to store each new knowledge with the help of fuzzy
if-then rules.

Let us make the assumption that there is a new data
vector of the physical system, extracted after the FCN
training, which then converges to the following weight
matrix:

W =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
w41 w42 0 1 0 0
0 0 w53 0 1 0
0 0 0 w64 w65 1
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FIGURE 11. Left hand side (if part).

and concludes to an equilibrium state vector, according to
eq. (12) and (13), which is:

A =
[
A1 A2 A3 A4 A5 A6

]T
Suppose also that for a new weight matrix K ,

K =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
k41 k42 0 1 0 0
0 0 k53 0 1 0
0 0 0 k64 k65 1


FCN nodes vector concludes to:

B =
[
A1 B2 B3 B4 B5 B6

]T
The fuzzy rule database, is resolved as follows and is

depicted in Figs 11, 12.
The aforementioned two different equilibrium situations

are related to two rules respectively as follows:
Rule 1
if node 1 is mf1 and node 2 is mf1 and node 3 is mf1
then w41 is mf1 and w42 is mf1 and w53 is mf1 and
w64 is mf1 and w65 is mf1
Rule 2
if node 1 is mf1 and node 2 is mf2 and node 3 is mf2
then w41 is mf2 and w42 is mf2 and w53 is mf2 and
w64 is mf2 and w65 is mf2
In case a new triangular membership function occurs, hav-

ing a difference from one already extracted value, which is
greater than a specified threshold, then this new triangular
function, is set to be a new training value. Fig. 13 depicts this
procedure.
Control of the DC/DC Converter: The off-line trained

FCN, is connected to the system PV array –DCmotor accord-
ing to Fig. 10. The FCN receives new operational data vectors
from the PV array and the DC motor system. Once the Fuzzy
controller error is set to zero, i.e. the input / output power of
theDC /DC converter is set to the correct value, so that the PV
array operates at maximum power, then these new maximum
power operation point of the PV array sets a new equilibrium
vector point to the FCN, which is used for further training.

FIGURE 12. Right hand side (then part).

FIGURE 13. Creating new membership function. (a) Already encountered
membership function, (b) c > predefined threshold (new triangular
created) and (c) c < predefined threshold (no new triangular).

If there is any change in meteorological operational charac-
teristics before the error E(k) of the Fuzzy Controller is set to
zero, then the new insolation and temperature values force the
FCN to adjust the process by applying a new pertinent MPP
voltage value.

VII. RESULTS
Solar insolation and temperature play the most important role
in the maximum power extracted from a PV array. These two
quantities can be measured through a pyranometer and a ther-
mocouple, although these technique is not always the most
suitable information for determining the operating point that
yields the maximum power. The photovoltaic short-circuit
current is used to extract the most appropriate information
about efficient solar insolation and temperature as depicted
in equations (1) to (5).

The constructed training data’s for the FCN are building
according to the following procedure:

We select values for the Irradiation S(C1) in the range
0 mW/cm2 to 100 mW/cm2 using a step of 5 mW/cm2.

And for the Temperature T(C2) we select values in the
range −20 ◦C to 60 ◦C using a step of 5 ◦C .
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These numerous combinations of data in cooperation with
the model simulating the PV array lead to the calculation of
the optimum current values (node C4). Also from eq. (6) and
from the current IPV (nodeC4) calculated before, we calculate
the optimum motor voltage Vin (node C5) and current (node
C6) applied to the maximum allowed speed n (node C3) for
the Irradiation and Temperature used before.

As an example, suppose that Tr = 25◦C and S =
60mW/cm2, then the maximum current and voltage of the
PV array is IPV = 2.8A and VPV = 15.3V, which means that
WPV = 42.84W. From eq. (6) when Win = WPV = 42.84W
then Vin = 43V and Iin = 0.99A while speed motor is
equal to n=38.7rad/sec. Needless to say that Ie is equal to
zero because the power of the PV is applied to the motor. The
evaluated node 1-6 values are used to update the FCNweights
as described in the training procedure (stage 1). That leads to
the calculation of a new equilibrium point for any possible
combination and the storage of the extracted knowledge is
made as mentioned in stage 2 of the procedure. Next, we cal-
culate Vin and Iin for n=38.7-3=35.7rad/sec (node C3) where
Vin and Iin is the new values for nodes C5 and C6. These new
values for nodes C3, C5 and C6 (Ie = IPV − Iin) with the
already applied values of nodes C1, C2, and C4 form a new
equilibrium point, updating the weights of the FCN (stage 1).
Stage 2 is coming next for this new equilibrium point. The
procedure is finished when n=nmin = 26.7rad/sec.
The possible combinations are 1662 and for those combi-

nations the FCN builds a fuzzy rule database where for nodes
C1 and C2 exists 21 triangular fuzzy membership functions,
for node C3 exists 172 mf’s, for node C4 exists 24 mf’s, and
for nodes C5 and C6 exists 172 mf’s. The fuzzy rule database
also creates, 542 fuzzy if-then rules, to store the knowledge.

In order to integrate the FCN to the DC motor - PV array
system, the training part of the algorithm gets the values of
nodes 1 to 3, if the error E(k) of the Fuzzy Controller is zero.
Following that, the system, using the fuzzy rule database,
depicts the appropriate weights values for expressing node
4-6 values. Eqs. (12) and (13) in combination with the previ-
ously calculated weights are used to calculate the new FCN
equilibrium operational point which represents the optimum
values of the PV current referring to the existing insolation
and temperature levels obtained at the specific time interval
and the pertinent DC motor voltage and current referring
respectively to the predefined motor.

Next the FCN sends the control values to the DC/DC con-
verter No1, where the optimum voltage is determined, which
corresponds to the maximum power of the PV array and the
optimal speed of the motor for the specified temperature and
solar insolation levels at the specific time.

Using the trained FCN we manage to control the operation
of the DC/DC converter under different climatic conditions.
The procedure showed the effectiveness of the proposed algo-
rithm. Fig 14 presents the theoretical speed of the working
motor for S = 60mW/cm2, Tr = 25◦C and the applied
speed driven by the FCN. It is obvious that when the motor
is driven to operate in lower speed than the optimal, which

FIGURE 14. Sample vs Speed (rad/sec) of DC motor, A. theoretical,
B. proposed method for S=60mW/cm2, T=25◦C.

FIGURE 15. Sample vs Power applied to motor, Maximum power of PV
array, transferred power to batteries for the applied speed of Fig. 14.

FIGURE 16. Sample vs desired speed, applied speed, irradiance S.

is the maximum one, the FCN rapidly, in only 3 samples
(one sample is simulated as one second), changes the duty
ratio of transistor S1 in order to achieve the desired voltage
and current for the motor while at the same time transistor
S2 starts to operate in order to transfer the extra energy from
PV to the batteries, as it can be seen in Fig. 15.

Fig. 16 presents the desired speed of the motor, the applied
speed of the motor and the irradiance. As the simulation
starts the current climatic conditions are S = 70mW/cm2,
Tr = 25◦C while motor speed is 41.4 rad/sec. In sample 5 the
desired speed is now 37.5 rad/sec where the FCN reaches
it by controlling transistor S1 in only 2 samples. In sam-
ple 9 the applied irradiance changes to S = 40mW/cm2,
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FIGURE 17. Sample vs desired speed and applied speed for samples
17 to 22 of Fig. 16.

FIGURE 18. Sample vs Power applied to motor, tracked power of PV array,
transferred power to batteries for the applied speed of simulation of
Fig. 16.

FIGURE 19. Sample vs maximum power of PV array, tracked power of PV
from FCN controller of simulation of Fig. 16.

where the FCN starts to change the duty ratio, in close
cooperation with the Fuzzy Controller, in order to find the
new maximum power point of the PV array which is now
31.8Watt. The applied speed remains at 37.5rad/sec. This
change in irradiance results to a new equilibrium point for
the FCN. FCN reaches the new maximum power of the PV
in only 6 samples, where the motor speed is changing from
37.5rad/sec to 36.9rad/sec for only 2 samples until it reaches
again the desired value. At sample 17 the desired motor speed

is changing from 37.5rad/sec to 44.4rad/sec, where the FCN
reacts in only 2 samples to achieve the desired speed value.
A more detailed view of the simulation from sample 17 to
sample 22 can be seen in Fig. 17. At sample 22 the irradiance
changes from S = 40mW/cm2 to S = 80mW/cm2 where
the FCN reacts in 8 samples to achieve the maximum power
of the PV by keeping the speed of the motor to the desired
speed of 44.4rad/sec. A more detailed view of the reaction of
the FCN controller as it concerns the tracked power of the PV
array the applied and tracked power from the batteries, it can
be seen in Figs. 18 and 19. In sample 32 the desired speed is
now 35.7rad/sec (see fig. 16) where one could see a drop for
4 samples in the tracked power from the PV until the FCN
could reach the maximum power for the PV and achieve the
desired speed for the motor in only 3 samples.

VIII. CONCLUSION
In the present study a new algorithm-method for control-
ling a DC shunt motor’s speed using FCN was presented.
A new connection topology from the PV to the DC motor
was proposed, where a battery was used so that the energy
that PV delivers to the system motor-battery is always in the
maximum point and the energy that the motor demands is
always available from the system PV-battery. The problem
that had to be solved algorithmically was complicated and
unclear because both the PV and the motor had different
characteristic curves of operation which through a DC / DC
converter and a control algorithm had to be combined so
that both PV delivers the maximum power and the motor
rotates at the desired values. The new connection topology as
well as the new algorithm showed particular characteristics
of adaptation to the desired values of both motor speed and
the maximum transferred energy from the PV.
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