
Received March 24, 2018, accepted April 30, 2018, date of publication May 4, 2018, date of current version June 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2833107

General TCP State Inference Model From
Passive Measurements Using Machine
Learning Techniques
DESTA HAILESELASSIE HAGOS 1,2, PAAL E. ENGELSTAD1,2, ANIS YAZIDI 2,
AND ØIVIND KURE1,3
1Autonomous Systems and Sensor Technologies Research Group, Department of Technology Systems, University of Oslo, 0315 Oslo, Norway
2Autonomous Systems and Networks Research Group, Department of Computer Science, Oslo Metropolitan University, 0167 Oslo, Norway
3Department of Telematics, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Corresponding author: Desta Haileselassie Hagos (destahh@ifi.uio.no)

ABSTRACT Many applications in the Internet use the reliable end-to-end Transmission Control Protocol
(TCP) as a transport protocol due to practical considerations. There are many different TCP variants widely
in use, and each variant uses a specific congestion control algorithm to avoid congestion, while also
attempting to share the underlying network capacity equally among the competing users. This paper shows
how an intermediate node (e.g., a network operator) can identify the transmission state of the TCP client
associated with a TCP flow by passively monitoring the TCP traffic. Here, we present a robust, scalable and
generic machine learning-based method which may be of interest for network operators that experimentally
infers Congestion Window (cwnd) and the underlying variant of loss-based TCP algorithms within a flow
from passive traffic measurements collected at an intermediate node. The method can also be extended to
predict other TCP transmission states of the client. We believe that our study also has a potential benefit and
opportunity for researchers and scientists in the networking community from both academia and industry
who want to assess the characteristics of TCP transmission states related to network congestion. We validate
the robustness and scalability approach of our prediction model through a large number of controlled
experiments. It turns out, surprisingly enough, that the learned prediction model performs reasonably well
by leveraging knowledge from the emulated network when it is applied on a real-life scenario setting.
Thus, our prediction model is general bearing similarity to the concept of transfer learning in the machine
learning community. The accuracy of our experimental results both in an emulated network, realistic and
combined scenario settings and across multiple TCP congestion control variants demonstrate that our model
is reasonably effective and has considerable potential.

INDEX TERMS Network protocols, TCP, congestion control, passive measurement, machine learning,
transfer learning, convolutional filtering, deep learning.

I. INTRODUCTION
Machine learning techniques have effectively advanced the
state-of-the-art for many research domain problems in the
computer networking community by creating real-world
impacts. For example, they are being applied in the areas
of traffic classification [26], [41], [42], security monitoring
and Intrusion Detection Systems (IDS) [17], [35], network
scheduling [24], andmany other topics in computer networks.
In this paper, we argue that employing machine learning-
based techniques can also provide a potentially promising
methodology for improving the accuracy of predicting TCP
per-connection states from passive measurements. Much of

the Internet’s traffic is carried using the end-to-end TCP
protocol [19] due to practical considerations that favored
TCP over other transport protocols. To deal with network
congestion, TCP uses congestion control algorithms to guide
and regulate the network traffic on the Internet. This helps
it to avoid sending more data that the underlying network is
capable of transmitting which is maintained by the sender’s
cwnd. The global Internet highly relies on TCP conges-
tion control algorithms and adaptive applications that adjust
their data rate to achieve high performance while avoiding
congestion on the network [4]. Congestion control is a funda-
mental problem in computer networks. One of the main

28372
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-2014-2749
https://orcid.org/0000-0001-7591-1659

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

parameters for TCP performance evaluation in a real-world
setting is cwnd. The TCP congestion control algorithms that
are widely deployed today perform the most important func-
tionalities related to network congestion such as handling the
cwnd from the sender-side. Therefore, it is very natural to ask:
• How well can we infer the most important TCP per-
connection transmission states that determine a network
condition (e.g., cwnd) from a passive traffic collected
at an intermediate node of the network without having
access to the sender?

• How can we track the underlying TCP variant that the
TCP client is using from passive measurements?

• What percentage of network users are using either a loss-
based or delay-based TCP variants?

• Which user is responsible for the majority of heavy flow
traffic in the network?

• How do different implementations of TCP congestion
control algorithms behave on the end-to-end variability
of bandwidth, delay, different cross-traffic, Round-trip
Time (RTT)?, etc.

Our work is mainly motivated by these important questions
and therefore, in this paper, we investigate and explore these
questions quantitatively as they apply to problems of network
congestion.

The TCP congestion control itself has grown increas-
ingly complex which in practice makes inferring TCP per-
connection states from passive measurements a challenging
task. Much of the existing research work on this problem rely
on an active approach to measure the characteristics of TCP.
The difference between active and passivemeasurement tech-
niques will be explained later in detail in Section IV. A wide
variety of approaches have been applied to the problem of
congestion control characteristics. The work reported in [20]
presented an approach to estimate TCP parameters at the
sender-side based on packets captured at the monitoring point
using aFinite StateMachine (FSM). The authors have pointed
out that the estimation of cwnd may have potential errors
primarily due to over-estimation of the RTT and estimation of
incorrect window sizes [20]. Another limitation of this work,
given the many existing variants of TCP, the use of a separate
state machine for each variant is unscalable and that the
constructed replicamight not manage to reverse or backtrack
the transitions taking the tremendous amount of data into
consideration. In addition to this, the replica may also not
observe the same sequence of packets as the sender andACKs
observed at the intermediate node may not also reach the
sender. TCP implementations developed by different oper-
ating system vendors that have different parameters (e.g.,
minimum RTO, timer granularity, duplicate ACK thresh-
olds, etc.) can also behave so differently [33]. For example,
given the same ACK response from the receiver, there is
a variation between a client using Linux TCP stack and
Windows TCP stack [33]. Rewaskar et al. [33] addressed
this problem by developing a separate state machine for
each of the operating system vendors. The problem with this
technique [33] is that it increases the amount of processing

required per TCP connection when there is a change in oper-
ating system (e.g., when new operating systems are devel-
oped or old variants are changed) which again leads to the
development of new state machines.

In moving towards a generic prediction approach, after we
survey the existing works for monitoring of TCP transmis-
sion states from passive measurements, we believe there is
very little work on a robust, scalable and generic method of
predicting the cwnd and uniquely identifying the type of the
underlying TCP congestion control algorithm from a passive
traffic without the knowledge of the sender’s cwnd for most
of the widely used TCP variants in the Internet using machine
learning. In this paper, we argue that the existing approaches
for monitoring of TCP per-connection states from passive
measurements do not adequately address the problem either
due to being outdated or failing to recognize the difference
between individual implementations of TCP variants [33].
Hence, compared to these previous studies, in this paper,
we explore machine learning approaches based on the time
series of outstanding bytes in flights to predict the per-
connection state of a TCP cwnd of the sender by examining
each cross-traffic of TCP flows of the endpoints passively
collected at an intermediate node. We demonstrate how an
intermediate node (e.g., a network operator) can identify the
transmission states of the TCP client associated with a TCP
flow related to network congestion from a traffic passively
measured at an intermediate node using machine learning-
based techniques. Our general prediction model handles
multiple scenario settings and it can also work with different
variants of TCP congestion control algorithms.

Our experimental results demonstrate the feasibility of our
prediction model. We believe that our study has a potential
opportunity and benefit for network operators in charac-
terizing the operations of Internet service providers and a
better understanding of the widely deployed implementations
of TCP congestion control flavors in the Internet. It will
also be potentially useful to researchers and scientists in the
computer networking community who want to assess the
characteristics of TCP transmission states related to network
congestion from passive measurements.

OUR CONTRIBUTIONS
The summaries of our contribution in this paper are the
following:

• We demonstrate how the intermediate node (e.g., a
network operator) can identify the transmission state of
the TCP client associated with a TCP flow and predict
the cwnd size of the sender from passive measurements.

• We identify a set of methodological challenges involved
in performing inference of TCP per-connection states
from passive measurements.

• We explore the applicability of our general prediction
model by presenting a robust and scalablemethodology
to uniquely identify the widely deployed underlying
TCP variants that the TCP client is using.

VOLUME 6, 2018 28373

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

• We show that the learned prediction model performs
reasonably well by leveraging knowledge from the
emulated network when it is applied on a real-life
scenario setting. Thus our prediction model is general
bearing similarity to the concept of transfer learning
in the machine learning community [5], [30], [38]. This
guarantees that our prediction model is able to discern
the results to unforeseen scenarios.

• We validate the robustness and scalability approach of
our predictionmodel extensively through a large number
of controlled experiments and experimentally verified
across an emulated, realistic and combined scenario
settings and across multiple TCP variants.

II. MOTIVATION
TCP congestion control algorithms have a critical role
in improving the performance of TCP and regulating the
amount of network traffic on the Internet by preventing
congestion collapse [9]. However, it is a challenging task
to predict whether a complex network has a normal
behavior or not and analyze network dynamics. One of the
most important elements of TCP sender state that can help us
study the characteristics of TCP per-connection states in the
Internet is cwnd. For example, it can be used to determine the
factors that limit the network throughput, to predict the under-
lying TCP variant and efficiently identify non-conforming
TCP senders etc. However, when different variants of TCP
algorithms coexist on a network, they can potentially influ-
ence the performance of each other. One approach to solve
this issue is to control the TCP flows individually by uniquely
identifying the underlying TCP variant. Here we can ask
questions like:
• What is the reason someone needs to know which
algorithm the TCP sender is using?

• Is there some action that someone would take based on
knowing the information of the underlying TCP variant
of the sender?

From an operational perspective, we argue that this infor-
mation is useful for network operators to monitor if major
content providers (e.g., Google, Facebook, Netflix, Akamai
etc.) are manipulating their congestion windows in their
servers to achieve more than their fair share of available
bandwidth. Another scenario where network operators might
find this information useful is if they have a path that they
know is congested due to customer complaints, but the links
using that path are not especially over-subscribed. In that
case, details about the congestion window behavior of all
the users on that path might be helpful in trying to diagnose
the cause, i.e., are there users that are using aggressive
congestion control algorithms which are unfair and affecting
other user’s available bandwidth?

From an ISP perspective, we believe knowledge about the
TCP stack in use in the endpoints is useful for operators
of big ISP networks that do much traffic engineering who
need to move traffic from oversubscribed links. It can also
be used to study the end-to-end characteristics of the TCP

stack and non-conformant end-to-end traffic. In addition to
this, researchers and scientists in the networking community
from both academia and industry could use the information
to evaluate and understand existing congestion control algo-
rithms. It can also be used to diagnose TCP performance
problems (e.g., to determine whether the sending application,
the network or the receiving network stack are to blame for
slow transmissions) in real-time. Another benefit might be to
observe when large content providers implement their own
custom congestion control behavior that does not match one
of the known congestion control algorithms.

However, taking the nature of TCP, accurately predicting
TCP per-connection states from passive measurement has a
number of difficulties. One of the challenges is, for example,
TCP packets can be lost between the sender and the interme-
diate monitor, or between the monitor and the receiver. If a
TCP packet is lost before it reaches the intermediate node and
is somehow retransmitted in order, there is no way we can
determine whether a packet loss has occurred or not. There-
fore, what the intermediate monitor sees may not be exactly
what the sender or the receiver sees. This means what appears
to be reordering from the intermediate node’s perspective
can actually be a retransmit (or vice versa). If a captured
TCP packet at the intermediate node is lost before it reaches
the destination, a retransmission will occur without sending
an acknowledgment [20]. Acknowledgments can be lost
between the sender and the intermediate monitor, or between
the monitor and the receiver node.

If either the entire window of TCP packets are lost
before the intermediate node or acknowledgments lost after
the measuring point will lead to the overestimation of a
cwnd [20]. In addition to this, end-to-end delay variations
in the path preceding the intermediate monitor can also cause
retransmissions that appear to be caused by an Retrans-
mission Timeout (RTO) rather than a fast retransmit [21].
Because TCP packets are only halfway to their destina-
tion, the relative sequencing on the forward and reverse
path can be confusing, e.g., retransmitted packets can be
seen at the monitor shortly after acknowledgments that
should have prevented their retransmission. This is possibly
because the acknowledgments haven’t yet reached their desti-
nation when they are observed at the monitoring point,
so the receiver did not yet know that the packets were
received before they decided to retransmit them. More on
the location of the intermediate passive monitor and its
effect on what we can infer from the passively collected
measurements is found in [21]. In this paper, we advocate
that machine learning-based approaches can give a better
prediction accuracy of TCP sender connection states from
passive measurements of traffic flows collected at an inter-
mediate node by addressing the aforementioned practical
challenges.

ROADMAP
The rest of the paper is organized as follows. Section III
overviews the background of our study. In Section IV,

28374 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

we review and give a detailed overview of the state-of-
the-art and discuss closely related works on TCP vari-
ants research. In Section V, we describe our experimental
setup for the evaluation. Section VI gives an overview of
our methodology highlighting the machine learning tech-
niques, performance measurement metrics used in our paper.
Section VII presents detailed experimental results and the
multiple scenario settings used to validate our prediction
model. Finally, Section VIII concludes the paper and outlines
directions of research for future extensions.

III. BACKGROUND
TCP congestion control is set to operate on the variability
of bandwidth, different cross-traffic, RTT etc. Different TCP
stacks come with a variety of features that will violate the
assumptions we might make if we only look at one or two
TCP implementations and for this very reason, the following
are a list of themost widely used loss-based variations of TCP
congestion control algorithms we consider in our work so as
to cover the whole scope of the problem.

1) TCP Reno: Jacobson [19] is one of the most predom-
inant implementations of TCP variant that implements
the Additive Increase and Multiplicative Decrease
(AIMD) scheme [6], which employs a conservative
linear growth function for increasing the cwnd by
one segment per RTT for each received ACK and
multiplicative decrease function on encountering a
packet loss per RTT. It includes the congestion control
schemes of slow start, congestion avoidance, fast
retransmission, fast recovery, and timeout retransmis-
sion. During a congestive collapse, Reno uses loss
events as a back-off mechanism.

2) TCP BIC: BIC [39] is a predecessor of TCP
CUBIC [15]. It is optimized for high speed networks
with high latency and has been adopted as a default
congestion control algorithm by Linux for many years
replacing TCP-Reno [19]. It uses the concept of binary
search algorithm along with the AIMD [6] in an
attempt to find the maximum cwnd that will last
longer period. BIC-TCP [39] stand out from other TCP
algorithms in its stability, TCP friendliness and RTT
fairness.

3) TCP CUBIC: CUBIC [15] is an enhanced version of
BIC [39]. It is the default congestion control algorithm
as part of the Linux kernel distribution configurations
from version 2.6.19. CUBIC [15] is designed to modify
the linear window growth function of existing TCP
standards to be governed by a cubic function in order
to improve the scalability of TCP over fast and long
distance networks. It uses a similar window growth
function as its predecessor (BIC [39]) and is designed
to be less aggressive and fair to TCP in bandwidth
usage than BIC [39] while maintaining the strengths of
BIC [39] such as stability, window scalability and RTT
fairness.

IV. RELATED WORK
Before delving into our methodologies and the experimental
results of our paper, we believe it is important to better
understand where to position our work compared to the
previous related works. This section briefly discusses closely
related studies on monitoring network traffic techniques and
the per-connection characteristics of TCP congestion control
algorithms from passive measurements. The techniques to
monitor TCP per-connection characteristics are divided into
two categories:
• Active measurement
• Passive measurement

While active measurement has received a lot of research
attention, however, passive measurement remains still an
under investigated research topic. Hence, in this paper, we try
to bridge the gap and mainly focus on the passive measure-
ment approach.

A. ACTIVE MEASUREMENT
This technique actively measures the TCP behaviors of
Internet flows by injecting an artificial traffic into the network
between at least two endpoints [25], [29]. It focuses mainly
on active network monitoring and relies on the capability to
inject specific trafficwhich is thenmonitored so as tomeasure
service obtained from the network.

B. PASSIVE MEASUREMENT
In a passive measurement, passively collected packet
traces are examined to measure TCP behaviors of Internet
flows [13], [20], [31], [34], [43]. Passivemeasurement, unlike
an active measurement, doesn’t inject an artificial traffic
into the network. It only measures the network without
creating or modifying any real traffic on the network. Passive
monitoring measurements are increasingly used by network
operators and researchers in the networking community.
Network operators can track the underlying TCP conges-
tion control algorithms from passively collected traffic and
analyze the traffic flows.
In the traditional methods of passive measurement, there

has been much interest in the investigation of TCP connec-
tions aggregate properties and its characteristics in the global
Internet. Another work of interest that is most closely related
to our work is [20] which provides a passive measurement
methodology to infer and keep track of the values of the
sender variables: end-to-end RTT and cwnd. Their idea is
to emulate a state transition by detecting RTO events at the
sender and observing the ACKs which cause the sender to
change the value of the cwnd. This work [20] considers only
the predominant implementations of TCP (Reno, NewReno
and Tahoe) and the basic idea is it constructs a replica of
the TCP sender’s state for each TCP connection observed
at the intermediate node. The replica takes the form of a
finite state machine. However, the use of a separate state
machine for each variant is unscalable taking the many
existing TCP variants into consideration. We also believe
that the constructed replica [20] cannot manage to reverse

VOLUME 6, 2018 28375

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

or backtrack the transitions taking the tremendous amount of
data into consideration. Another limitation is that the replica
may not observe the same sequence of packets as the sender
and ACKs observed at the intermediate node may not also
reach the sender.

As an extension of [20], the work in [21] presents a
methodology to study the performance of TCP, classify out-
of-sequence behavior of packets for retransmission so as
to identify where congestion is occurring in the network,
with the same measurement environment as in [20]. Similar
to our work, Paxson [31] described a trace analyzer tool
called tcpanaly that analyzes tcpdump traces, and reports
on the differences in behavior of TCP implementations.
The similarity between our work and [31] is that both
works to infer and match the type of TCP flavor from a
passive measurement. However, [31] mainly focuses on the
differences between different TCP implementation stacks.
Since our passive monitor, as shown in Figure 1, is located
in between the sender and the receiver, it is a challenging task
for us to perform a detailed case-by-case analysis and identify
if a specific TCP sender behavior is due to events in the
network or TCP protocol stack implementation problems
of end systems. In this paper, our main goal is to estimate
the cwnd size of a TCP client associated with a TCP flow
and, as an extension of our previous work [16], predict the
underlying TCP variant.

FIGURE 1. Experimental Testbed.

Rewaskar et al. [33] of the study developed a tool, called
tcpflows that attempts to passively estimate the value of cwnd
and identify TCP congestion control algorithms by analyzing
the ACK stream to detect the occurrence of TCP conges-
tion events. However, the state machine implemented with
tcpflows is limited to old TCP variants and hence it cannot
uniquely identify the newly deployed TCP congestion control
algorithms. Oshio et al. [27] proposes a cluster analysis-
based method that aims to identify between two versions TCP
algorithms. This method was meant to be utilized in real-
time applications to handle network traffic routing policies.
It performs RTT and cwnd estimation in order to infer a group

of traffic characteristics from the flow [27]. These character-
istics are then clustered into two groups by applying a hierar-
chical clustering technique. Oshio et al. [27] show that only
2 out of 14 TCP congestion algorithms that are implemented
in Linux can be identified based on their method. Most of the
line of research work in the literature on the unique identi-
fication of the underlying variant of TCP congestion control
algorithm from passive measurements focus on earlier flavors
of TCP [20], [31]. Our work mainly differs from the previous
research works in that our main goal is more fundamentally
to develop a robust, scalable and generic prediction model
for inferring TCP per-connection states for the most widely
used loss-based congestion control algorithms including the
newly deployed algorithms (e.g., BIC [39], CUBIC [15],
Reno [19] etc.).

V. CONTROLLED EXPERIMENTS
In this section, we briefly explain the building blocks of our
experimental test bed that we use to run controlled experi-
ments that emulate the network.

A. EXPERIMENTAL SETUP
We describe our experimental procedure below. Figure 1
shows the experimental setup that we use for all of our
experiments. We first created an emulated network and put a
communication tunnel across the network and simultaneously
push TCP cross-traffic to the network using an iperf traffic
generator [12] so as to create a congestion. During a single
TCP flow of our experiment, the parameters bandwidth, and
delay are constant with a uniform distribution. However,
since we have the jitter given as an average, its distribution is
normal. We created an identical regular tcpdump of the TCP
packets on the client node including information about the
per-connection states so that we can match the tcpdump with
the TCP states.

The passive monitor shown in Figure 1 is a separate Linux
machine acting as a proxy. It is designed to do the tcpdump on
all the interfaces available in the system and at the same time
we want to predict what the per-connection state of a TCP
packet was when it arrives in the monitor. It is important to
remember that the traces we obtain from the tcpdump have no
labels associated with them. Finally, we verified the predicted
TCP states with the actual TCP kernel states directly logged
from the Linux kernel of the sender used only for training
whose data format output is shown in Table 1 and generate a
new data for the learning model to predict on. One advantage
of the sender is that it has a direct information about the
outgoing packets and TCP states [36]. Once we finish with
the verification of the TCP states, we run our learning model
on the data and get the predictions.

TESTBED HARDWARE
We also validated our prediction model in an experi-
mental test bed. Our experiments are performed using a
cluster of machines based upon the GNU/Linux operating
system running a modified version of the 4.4.0-75-generic

28376 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

TABLE 1. TCP Probe outputs from the sender-side kernel.

kernel release. We have performed our prediction experi-
ment in two different environments based on the computa-
tional cost. The GridSearchCV for Random Forest Regressor
model is performed on an NVIDIA Tesla K80 GPU accel-
erator computing with the following characteristics: Intel(R)
Xeon(R) CPU E5-2670 v3 @2.30GHz, 64 CPU processors,
128GB RAM, 12 CPU cores running under Linux 64-bit.
Whereas the Gradient Boosting model with a higher number
of boosting estimators and learning rates that are used to
scale the step length of the gradient descent procedure are
performed on an HPC cluster with 700+ nodes where most
nodes have 16 cores and 64 GiB memory of which 11,000+
cores and 52 TiB of memory are available in total as it needs
more computational power for iterations. The CPUs in the
computing cluster are 8-core 2.6 GHz Intel E5-2670. All
nodes in the cluster are connected to a low latency 56 Gbit/s
Infiniband network, gigabit Ethernet and have access to
600 TiB of BeeGFS parallel file system storage.

B. NETWORK EMULATION
TCP congestion control is set to operate on the variability
of bandwidth, different cross-traffic, RTT, etc. Therefore,
in order to create a realistic scenario, we have emulated the
network in our setup as it is shown in Figure 1 by adding
variability within a flow to the important network emulation
parameters presented in Table 2. For the network emulation,
we used the popular Linux-based network emulator, Network

TABLE 2. Network emulation parameters.

Emulator (NetEm) [18] on a separate node, that supports an
end-to-end variability of bandwidth, delay, jitter, packet loss,
duplication and more other parameters which the cwnd is
influenced by to an outgoing packets of a selected network
interface. The data traces for all our experiments are gener-
ated using the iperf [12] traffic generator on an emulated
LAN link where we run each TCP variant with an end-to-end
variation of the emulation parameters shown below where the
cwnd is highly influenced by.

C. VERIFICATION OF THE EMULATOR
Given that the software emulator is not precise, can we trust
the network emulator for all the end-to-end variations of
bandwidth, delay, jitter and packet loss parameters that we
change as shown in Table 2 for our evaluation irrespective
of the measurement we get from TCP stream? As part of
our study, we have also carefully investigated the precision
of the network emulator, NetEm [18], we employed in this
paper in order to use the tool with great care in an extremely
well-contained environment. We created a filter that sets the
parameter variation of each packet according to Table 2. As its
precision cannot be measured from TCP stream, we setup a
different experiment using UDP to evaluate and measure the
precision where both the emulator and traffic generator create
variations. We verified the raw performance by measuring
the bandwidth, delay, jitter and packet loss variations created
by the traffic generator and network emulator at the receiver
side.

D. CROSS-TRAFFIC VARIABILITY
In our experimental setup of the emulator, we have care-
fully studied and validated our results in order to evaluate
the impact of cross-traffic variability from the same TCP
congestion protocol on our results by emulating other UDP
traffic. NetEm [18] does lots of buffering and internally it has
a buffer which is used to emulate a network by adding an end-
to-end variability of packet loss, delay, rate control and other
characteristics to packets outgoing from a selected network
interface. Therefore,NetEm [18] (with a default FIFO queue)
can also work in conjunction with other queuing disciplines
(qdisc) by swapping the queue with another qdisc. It works
well for traffic shaping and also supports a kernel level
traffic shaping using the Linux tc utility. We ran NetEm [18]
with variations in the data rate and the parameters presented
in Table 2 between the client and the server and we found
out that each variation run by NetEm [18] doesn’t affect
our results. We, therefore, believe that the variability of
the cross-traffic in our current experimental setup will not
impact our analysis. In general, when it comes to the cwnd
variability, it will depend on the particular TCP conges-
tion control in use. For example, TCP-Vegas [1] controls
cwnd based on a queuing delay and delay-based congestion
control algorithms thus may be affected by the variability of
a cross traffic. We also believe the emulator may be impacted
by network elements outside of its scope e.g., CPU load,
busy devices, network card buffers, hardware architectural

VOLUME 6, 2018 28377

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

factors etc. For example, cross-traffic in a real network is
influenced by device resources that are used by both flows.
Even if both flows are running on different interfaces and
different line cards, there may be interaction due to buffer use
and perhaps backplane occupancy.

E. TRAFFIC CAPTURES
The kernel might keep the TCP per-connection states of the
packets in the buffer and waits for enough amount of packets
before sending the TCP states to the userspace. TCP per-
connection states might also get lost due to a slow process
of TCP by the userspace process. Therefore, the first thing
we did as a sanity check is to capture the packets at both
the sender and the receiver for it helps us to know whether a
packet was lost or just never sent as the ACKs from receiver
to sender are just as important as the data packets for inferring
packet loss. This way, it is possible to verify if the traffic
captures are identical and there are nomissing per-connection
TCP states. The second thing we carried out in order to avoid
missing of packets and capture exactly the same number of
packets on the sender and the monitor is tuning the buffer
size and flush the buffer to the userspace.

We carried out our experiment over a path that is jumbo-
frame clean by disabling TCP segmentation offloading.
Because we want to avoid packet sizes way over the regular
legitimate Maximum Segment Size (MSS) and Maximum
Transmission Unit (MTU) values. This is because, if we
measure at a higher level and when packets are pushed down
layer by layer on the protocol stack, the negotiated MSS
will be violated. In order to avoid this violation, the TCP
length must stay equal or below the MTU minus the IP and
TCP header size. Every experiment of each TCP variant uses
the same emulation setup parameters described in Table 2.
Therefore, In all of our experiments, each TCP flow uses
1500-byte data packets and an advertised window set by the
operating system.

F. ASSUMPTIONS
In TCP, the cwnd is one of the main factors that determine the
number of bytes that can be outstanding at any time. Hence,
we assume that using the observed outstanding sequence
of unacknowledged bytes on the network seen at any point
in time in the lifetime of the connection as an estimate of the
sending TCP’s cwnd from tcptrace [28] when there is an end-
to-end variability of bandwidth, delay, loss and RTT within
a TCP connection is a better approach to estimate the cwnd
and how fast the recovery is. Firstly, we assume that we don’t
know what TCP variant is running on the network and the
per-connection state within the variant. Secondly, the results
we present in this paper assume that the sender and receiver
have the same receiver window in all of our measurements set
by the operating system independent of the underlying TCP
variant. Thirdly, in order to identify the TCP implementation
of the client, we make use of the fact that the number of
outstanding bytes in flight of the client cannot be more than
its usable window size.

VI. METHODOLOGY
In this section, we describe the overall description of our
approaches for experimentally inferring both the cwnd and
uniquely identifying the underlying TCP variant from a
passive measurement using a general machine learning-
based techniques.

FIGURE 2. Methodology for cwnd prediction.

FIGURE 3. Methodology for TCP Variant prediction.

A. PASSIVE MONITORING OF BYTES_IN_FLIGHT
The measured passive traffic collected at the intermediate
node as shown in Figure 1 is used for a training experiment of
our model. The TCP implementation details and use of TCP
options are not visible at the intermediate monitoring point.
A TCP sender includes a sequence number to identify every
unique data packets sent into the network. The TCP sender
also keeps track of outstanding bytes by two variables in the
kernel: snd_nxt (the sequence number of the next packet to be
sent) and snd_una (the smallest unacknowledged sequence
number, i.e., a record of the sequence number associated
with the last ACK). This is because the TCP congestion
control algorithms govern the TCP sender’s sending rate by
employing the cwnd that limits the number of cumulatively
unacknowledged bytes that are allowed at any given time to
do congestion avoidance [19]. From the passive traffic at the
intermediate node, we can infer and manually analyze the
number of bytes that have been sent but not yet cumulatively
acknowledged on the network at a given point in time using
tcptrace [28]. Figure 4 shows the comparison between the
number of outstanding bytes from the intermediate node
before running the ensemble model and applying the convo-
lutional filtering techniques versus the actual cwnd tracked
from the kernel of the sender-side.

Once we estimate the cwnd of the sender, we can infer the
multiplicative decrease parameter (β) which is an important

28378 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

FIGURE 4. Outstanding bytes calculated from the intermediate monitor
using tcptrace [28] before applying convolutional filtering vs. the actual
cwnd from the sender.

feature for uniquely identifying TCP variants. This infor-
mation is very useful in our experiment as it helps us
match with the cwnd calculation of the particular TCP stack
in use. Firstly, we run our ensemble model on the number of
outstanding bytes which gives the initial predicted cwnd as
it is shown in Figure 2. We then apply a convolution filtering
technique, as it will be explained more in detail below in this
Section, on the initial predicted cwnd which gives the final
predicted cwnd.
Given that accurately inferring cwnd size from passive

measurements is a challenging problem as it is not adver-
tised, the most obvious approach is to try to use the obser-
vation of ACKs and retransmissions to predict whether the
cwnd will increase or decrease. However, the effect of these
events on the window will differ depending on the underlying
TCP congestion control algorithm and the type of retrans-
mission (e.g., fast retransmit versus a retransmit caused by
a timeout). In order to estimate the cwnd, some research
works assume that there is a congestion when the number
of bytes_in_flight are below the advertised window by the
receiver. However, if the number of bytes_in_flights are
below the advertised window, it could also mean that the
receiver has acknowledged packets before the advertised
window was full. In this work, we are estimating cwnd from
the calculated bytes_in_flight measured at the intermediate
node calculated using tcptrace [28].

B. EXPERIMENTAL INFERENCE OF TCP CWND
The cwnd is a TCP per-connection state internal variable
that represents the maximum amount of data a sender can
potentially transmit at any given point in time based on the
sender’s network capacity and conditions. TCP [19] uses
cwnd that determines the maximum number of bytes that
can be outstanding without being acknowledged at any given
timemaintained independently by the sender to do congestion
avoidance. TCP congestion control is set to operate on the
variability of bandwidth, different cross-traffic, RTT etc. One
initial approach we tried to estimate the cwnd was to process
the packet headers of the flows in the tcpdump and calculate

an aggregate TCP cross-traffic from the trace sets and add
that as a feature. We, however, found out during our exper-
iment that turns to be an insufficient detail for an accurate
prediction. We have built a convolutional filtering technique
in order to improve the accuracy of the prediction of TCP
cwnd [16].

Another practical challenge of cwnd inference is when we
place the passive monitor close to the receiver. If we try to
measure the cwnd for the end-to-end path between the sender
and the receiver basing our inference on the total amount
of outstanding bytes, the further away from sender that our
passive monitor is, the less likely it is that the packets that
our monitor observes will match the packets that are used
by the sending host to adjust its cwnd. For example, more
hops between the sender and our passive monitor create more
opportunities for packets to be lost, reordered or delayed. This
means that the information we are using to infer congestion
behavior (the packets observed at the passive monitor) is
less reliable and introduces more opportunities for prediction
algorithms to make false inferences. Because placing the
monitor close to the receiver means, we will be seeing the
ACKs before the sender does and so we may have more
trouble estimating which of the data packets we capture were
liberated by which of the ACKs we see. However, another
technique we can try is to measure the size of the bursts
of segments sent by the sender, where a burst is a series of
segments that are sent back to back followed by a larger gap
where no segments are sent. This is a lot trickier to perform –
e.g., we need to be able to tell whether the timing gap between
two data packets is a large inter-burst gap or just a slight delay
between two packets in the same burst. But at least this allows
us tomostly ignore theACK stream from the receiver.Wewill
address this approach in our next work.

In this work, we use the python sklearn library implemen-
tation [32] to build our ensemble machine learning predic-
tion model using Random Forest Regressor algorithm [2] to
estimate the cwnd where the entire number of outstanding
bytes in flight is an input vector to the model. The size of the
Random Forest Regressor model with the default parameters
is O(M ∗ N ∗ log(N)), where M is the number of trees and
N is the number of samples. In order to further improve
the performance of our ensemble prediction, we tuned the
Random Forest Regressor optimal hyperparameters shown
in Table 3 using a GridSearchCV that allows specifying only
the ranges of values for optimal parameters by paralleliza-
tion construction of the model fitting. In order to obtain an

TABLE 3. Tuning parameters of the ensemble methods.

VOLUME 6, 2018 28379

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

optimal cwnd prediction model by minimizing the prediction
function, we have also used Gradient Boosting algorithm [3]
where the maximum number of features for the best split
(max_features) is the same as n_features. We increased the
variations of the tuning parameters in order to improve the
initial TCP cwnd prediction fittingmodel by avoiding the risk
of overfitting of the filters and fit the ensemble model by
iteratively re-weighting the training outputs.

We trained our ensemble machine learning algorithm
without the knowledge of the input features from the sender-
side during the learning phase.We validated ourmethodology
using the experimental test bed shown in Figure 1 over a
LAN link. In order to train and test our prediction model,
we employed every experiment with a ratio of 60% training,
40% testing split and a 5-fold cross-validation on all end-to-
end variations of bandwidth, delay, jitter and packet loss into
one robust and generic learning model. We learn the model
from the training data and then finally predict the test labels
from the testing instances on all variations of the emula-
tion parameters. The initial prediction of TCP cwnd using
a trained ensemble learning algorithm before optimizing the
prediction performance using convolution filtering technique
is shown in Figure 5.

FIGURE 5. Initial prediction of TCP cwnd versus the actual cwnd before
applying the convolutional filtering technique.

As it is shown in Table 5, we employ both the Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE) metrics in order to evaluate our prediction model.
The MAPE measures the absolute percentage error in our
prediction model and is defined by the formula in Equation 1
where X is the actual input value to the model, Y is the target
value and p is the learning model. For more information,
we refer the interested readers to [8].

M =
100
n

n∑
t=1

∣∣∣∣p(X)− YX

∣∣∣∣, X 6= 0 (1)

C. CONVOLUTIONAL FILTERING
Convolutions are believed to have achieved an excellent
performance in many applications (For example: [7], [10],
[11], [23], etc.). Taking TCP packets dynamics and the

complexity of accurately predicting cwnd from passive
measurements, we have built a convolutional filtering tech-
nique in order to improve the accuracy of the initial predic-
tion of TCP cwnd shown in Figure 5 and produce the final
predicted value of cwnd shown in Figure 6 as per the method-
ology depicted in Figure 2. Convolution filtering technique
is an operation on two complex-value functions f and g,
which produces a third function that can be interpreted as a
filtered version of f where the output is the full discrete linear
convolution of the inputs. In Equation 2, g is the filter which
in our case is the final predicted cwnd as shown in Figure 6.

f (x) ∗ g(x) =
∞∑

k=−∞

f [k] · g[x − k] (2)

To perform the final prediction of TCP cwnd, we used
convolution filtering to optimize the initial prediction accu-
racy of TCP cwnd obtained from tunning a GridSearchCV
suite of parameters using a 5-fold cross-validation as shown
in Table 3 and correctly recognize the patterns of the cwnd
curves. As it is shown in Figure 6, the measured and actual
cwnd match very well after we apply convolution. Our convo-
lution method runs as a function taking the value of the
initial predicted cwnd, a method to calculate the convolution,
a mode which indicates the size of the output and a stan-
dard deviation of the fitting model as inputs to the function.
We used a list comprehension to loop over the entire rows
of the inputs from the initial cwnd prediction and pass the
filtered data into an array for which the full convolution is
computed. We have also zero-pad our convolution method
in order to efficiently produce a full linear discrete result by
preventing circular convolution. To calculate the convolution
function for our evaluation of cwnd prediction, the recom-
mended technique which automatically chooses either Fast
Fourier or direct methods based on an estimate of which
is faster is selected. In order to extract the valid part of
the convolution which gives better smoothed sawtooth of
the cwnd and detect the accurate pattern, we verified the
equivalence of input and output sizes in every dimension
through the parameter we pass to the convolution function.
The RMSE andMAPE before optimizing the initial predicted
value of TCP cwnd obtained from an ensemble model are
8.637 and 19.183% respectively. The final evaluation of TCP
cwnd for the selected configurations after optimizing the
initial predicted value of cwnd using convolution filtering
technique are shown in Table 5.

D. PREDICTION OF TCP VARIANTS
Different end-to-end TCP algorithms widely in use behave
differently under network congestion. Congestion control
in any IP stack doesn’t have much information available to
drive its algorithm. It has to infer congestion from the history
of packet loss and RTT. Our methodology for uniquely iden-
tifying the underlying TCP variant, by inferring the multi-
plicative decrease parameter (β) from the final predicted
TCP cwnd, is shown in Figure 3. For the underlying TCP

28380 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

FIGURE 6. Final TCP cwnd prediction with different configurations of network emulation parameters for TCP CUBIC [15] and TCP Reno [19] after
optimizing the initial cwnd prediction accuracy with convolution filtering technique in an emulated network. (a) CUBIC final predicted cwnd -
Configuration C1. (b) CUBIC final predicted cwnd - Configuration C2. (c) CUBIC final predicted cwnd - Configuration C3. (d) CUBIC final predicted cwnd -
Configuration C4. (e) Reno final predicted cwnd - Configuration C1. (f) Reno final predicted cwnd - Configuration C2.

variant prediction task, we consider only loss-based TCP
congestion control algorithms that consider packet loss as
an implicit indication of congestion by the network (e.g.,
CUBIC [15] BIC [39] and Reno [19]) for a proof of concept.
As it is explained in Section II, since the global Internet is
evolving from homogeneous to heterogeneous TCP conges-
tion control algorithms, uniquely identifying the underlying
TCP congestion control algorithm is a very important task.
In practice; however, it is challenging to identify the TCP
variant on the Internet taking the complexity and hetero-
geneity of congestion control algorithms into considera-
tion [37]. One possibility would be to have a state machine
model for each congestion control algorithm, and play the
trace against the model to see if the trace is consistent with
the model. However, there will again be some challenges,
depending on where the trace is collected. Here we can ask
questions:

• Do we see both directions of the traffic?
• Are we close to either endpoint, so we can hopefully
estimate RTT accurately?

• How do we deal with the fact that some algorithms vary
depending on past connections between the same pair of
endpoints?

• How do we deal with the fact that sometimes a sender
doesn’t send a packet because of the congestion window
but other times doesn’t send because the application
actually doesn’t have any additional data in the send
socket buffer?

• How do we deal with the varieties of old and modern
operating system dependent TCP parameters?

As a solution to the aforementioned questions, in this
paper we argue that training a classifier and general predic-
tion model utilizing machine learning-based algorithms to
uniquely identify the underlying TCP variant based on the
multiplicative decrease window of the cwnd and the per-
connection state within the variant from passive measure-
ments collected at an intermediate node is very important.
The standard TCP congestion algorithm employs an AIMD
scheme that backs off in response to a single congestion
indication [6]. A thorough analysis and evaluation of AIMD
can be found in [6]. The AIMD has a linear growth func-
tion for increasing the cwnd at the receipt of an ACK
packet and multiplicative decrease parameter, denoted by β,
on encountering a TCP packet loss at the receipt of triple
duplicate ACKs and it can be described as shown below in
Function 3. This scheme adjusts the cwnd by the increase-
by-one decrease-to-half strategy i.e., the TCP sending rate
is controlled by a cwnd which is halved for every window of
data containing a packet loss, and increased by one packet per
window of segments are acknowledged.

Ack : cwnd ← cwnd + α

Loss : cwnd ← β × cwnd (3)

Most of the existing loss-based TCP congestion control
algorithms implement AIMD scheme as it is proven to

VOLUME 6, 2018 28381

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

converge [6]. It can generally be expressed as follows:

↑G: wt+R← wt + α;α > 0

↓G: wt+δt ← (1− β)wt ; 0 < β < 1, (4)

Where ↑G refers to the increase in window as a result of the
receipt of one window of acknowledgments in RTT and ↓G
refers to the decrease in window on detection of network
congestion by the sender, wt is the window size at time t, R
is the RTT of the flow and δ is a sampling rate. The AIMD
algorithm is generalized by adding two variables, α and β that
control the two aspects of AIMD: α indicates the increase
in the window size if there is no packet loss in round-trip
time and β indicates the fraction of the window size that it is
decreased to when packet loss is detected [6]. Let f(t) be the
sending rate (e.g., the congestion window) during time slot t,
α(α>0), be the additive increase parameter, and β(0<β< 1)
be the multiplicative decrease factor.

f (t + 1) =

{
f (t)+ α, If congestion is detected
f (t)× β, If congestion is not detected

(5)

In TCP, after slow start, the additive increase param-
eter α is typically one MSS every RTT, and the multi-
plicative decrease factor β on loss event is typically 1

2 [6].
For example, CUBIC [15] decreases the cwnd whenever it
detects that a segment was lost, either by using the TCP
Fast Retransmit or Fast Recovery method of three duplicate
ACK or when the Retransmission Timeout expires. And,
it increases towards a target congestion window size (W)
when in-order segments are acknowledged where W is
defined by the following function:

Wcubic
(t)
= |C(t − K)|3 +Wmax (6)

WhereWmax is the window size reached before the last packet
loss event, C is a fixed scaling constant that determines the
aggressiveness of window growth, t is the elapsed time from
the last window reduction measured after the fast recovery,
and where K is defined by the following function:

K = 3

√
Wmaxβ

C
(7)

Where β is a constant multiplicative decrease factor of
CUBIC [15] applied for window reduction at the time of a
TCP packet loss event (i.e., the window reduces to βWmax
at the time of the last reduction) [15]. The β value of
CUBIC [15] is 0.7, as shown in Table 4, which corresponds
to reducing the window by 30% during a TCP packet loss
event and can be calculated as per Equations 6 and 7.

TABLE 4. Loss-based TCP variants β value.

The windows growth function of a TCP CUBIC [15] is a
cubic function. TCP CUBIC [15] reduces its window by a
factor of β after a loss event, the TCP-friendly rate per RTT
would be 3((1− β)/(1+ β)) per RTT. Different congestion
control algorithms have different window growth functions.
However, when TCPBIC [39] detects a packet loss, it reduces
its window by a multiplicative factor β. Its cwnd size just
before the reduction is set to the maximum Wmax (i.e., the
window size just before the last fast recovery) and the window
size just after the reduction is set to the currentminimumWmin
(i.e., β ×Wmax). Then, BIC finally performs a binary search
increase using these two parameters looking for themid-point
as shown in Equation 8.

Wmax +Wmin

2
(8)

The multiplicative back-off parameter, β, especially for
loss-based congestion control algorithms is one of the most
important TCP characteristics which determines important
conditions of a network congestion like the cwnd and Slow
Start Threshold (ssthresh) [40]. There are two approaches to
measure the β value of a TCP congestion control algorithm:
(i) using a packet loss event, and (ii) using a time out event.
In the presence of a packet loss event, TCP sets both its
ssthresh and the cwnd size to β×cwnd_losswhere cwnd_loss
is the cwnd size before a packet loss event or a time out
occurs. When timeout occurs, TCP sets its ssthresh to β ×
cwnd_loss and its cwnd size to its initial congestion window
(init_cwnd) size (1 or 2 segments depending on the TCP
congestion control algorithm).

The back-off parameter along with other TCP character-
istics (e.g., the rate at which the congestion window grows
(α)) can be used to predict the underlying TCP congestion
control algorithms. Hence, here we use the β value so as
to uniquely predict the underlying TCP variant based on the
multiplicative back-off factor of the selected loss-based TCP
congestion control algorithms summarized in Table 4. Unlike
loss-based algorithms, the β value of delay-based congestion
control algorithms is not fixed. By design, delay-based TCP
congestion control algorithms (e.g., TCP-Vegas [1], TCP-
Westwood [14], etc.) have a variable β and the β value of
these protocols will vary when there is variability in delay
which makes it not easy to predict the variant from a passive
traffic and we will address this in our next research work.

VII. EXPERIMENTAL SCENARIO SETTINGS RESULTS
Here, we explain in detail the experimental results of ourmain
contributions: (i) Inferring TCP cwnd and (ii) Predicting the
underlying TCP variants from passive measurements under
multiple scenario settings. In the experimental evaluation,
we choose a testing scenario configurations and present
CUBIC [15], BIC [39] and Reno [19] in order to make our
obtained evaluation results easily readable. We have exper-
imented with several variations (36 configurations for each
TCP variant, 216 in total as presented in Table 2). Due to
space limitation in this paper, we can not present all the

28382 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

FIGURE 7. TCP cwnd prediction of TCP CUBIC [15], TCP BIC [39] and TCP Reno [19] from a realistic scenario on different zones of Google Cloud platform
(East coast USA (North Carolina) and Northeast Asia (Tokyo, Japan) sites). (a) CUBIC final predicted cwnd, USA site. (b) CUBIC final predicted cwnd,
Northeast Asia site. (c) BIC final predicted cwnd, USA site. (d) BIC final predicted cwnd, Northeast Asia site. (e) Reno final predicted cwnd, USA site.
(f) Reno final predicted cwnd, Northeast Asia site.

FIGURE 8. TCP cwnd prediction of TCP CUBIC [15], TCP BIC [39] and TCP Reno [19] from a combined scenario setting. (a) CUBIC final predicted cwnd,
combined scenario. (b) BIC final predicted cwnd, Northeast Asia site. (c) Reno final predicted cwnd, USA site.

evaluation plots for a total of 216 configurations. Hence the
results reported in this paper for all the scenario settings are
for a subset of the selected configurations for a proof of
concept as shown in Figures 6, 7 and 8 to verify the accuracy
of our machine learning-based prediction model.

We evaluate our final TCP cwnd prediction model under
different configurations of training and testing sample size
ratios and the performance results are presented in Table 5.
As it is shown in Figure 6, we found out the convolu-
tional filtering we built for predicting cwnd captures the
ratio of the cwnd drop very accurately. Figures 6(a) and (b)
share the same bandwidth regardless of delay, loss and jitter
configurations which cause the difference on the maximum
number of segments over the course of the connection.

For example, if we see on Figures 6(c) and (d), Figure 6(c)
has a Bandwidth-Delay Product (BDP) [22] of 700mb*
0.01s = 875,000 bytes. At 1500 byte segments, that’s
583 segments and our emulation shows a maximum of
500-600 segments for cwnd. In all the plots we can see,
once the timeout occurs, all the packet losses are handled
with fast recovery in response to 3 duplicate ACKs. This is
because the cwnd does not drop below half of its previous
peak as it is shown in Figure 6. In the results, we can see
there is a linear-increase phase followed by a packet loss
event where the cwnd increases with new arriving ACK. This
also demonstrates how the TCP congestion control algorithm
responds to congestion events. We can see that the pattern of
the final predicted cwnd generally matches the actual cwnd

VOLUME 6, 2018 28383

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

quite well with a small prediction error. We matched both the
increasing and decreasing parts of the sawtooth pattern using
the precise timestamp obtained from the kernel.

A. EMULATED NETWORK SETUP
In Figure 6, the comparison of the final predicted TCP
cwnd after optimizing the prediction performance using
convolution filtering technique and the actual cwnd of the
sender tracked from the kernel is presented. As it is shown
in Figure 6, we found out the convolutional filtering we
built for predicting cwnd captures the ratio of the cwnd drop
very accurately. We evaluate our final TCP cwnd prediction
model and the performance results are presented in Table 5.
For the TCP variant prediction, we analyzed the β value by
averaging out the window size of AIMD algorithm every time
we have a peak so that we don’t do the computation of the
multiplicative decrease factor only on a slow start phase.
The accuracy of uniquely identifying the underlying TCP
variant prediction result in the emulated environment setting
as presented in Table 7 is 93.51%.

TABLE 5. TCP final predicted cwnd performance results of an emulated
network setting with different configurations.

TABLE 6. TCP variant prediction of an emulated network setting:
confusion matrix.

TABLE 7. TCP variant prediction of an emulated network setting:
performance metrics.

B. REALISTIC SCENARIO SETUP
In order to demonstrate the transferability [5], [30], [38]
approach of our proposed machine learning-based predic-
tion model and further validate our results presented

in Section VII by conducting a series of controlled experi-
ments against other scenarios, we believe it is necessary to
carefully test how well our model using an emulated network
works with realistic scenarios by leveraging the knowledge
of the emulated network. This guarantees that our prediction
model is able to discern the results to unforeseen scenarios.
Our experimental setup for this scenario setting is presented
in Figure 9.

FIGURE 9. Realistic scenario setup.

From an experimental viewpoint, this helps us to justify
and guarantee how our model could predict the development
of a cwnd and the underlying TCP variant with other realistic
network traffic scenarios captured from the Internet. To this
end, we created a realistic test bed where we experiment
from Google Cloud platform nodes by running our resources
on the East coast of USA (South Carolina) and Northeast
Asia (Tokyo, Japan) as shown in Figure 7. In order to create
a realistic TCP session, we uploaded an Ubuntu image to
Google Cloud platform sites so that we have a full control of
the underlying TCP variant on the sender-side and at the same
time run a tcpdump in the background and capture the whole
TCP traffic flow for testing on the source node. We filtered
out the host where we send the TCP traffic to. Finally,
we calculated the number of outstanding bytes from the
captured network traffic and run it through our learningmodel
to predict the development of the TCP cwnd and variant. As it
is shown in Figure 7, we confirm that our prediction model
operates correctly and accurately recognizes the sawtooth
pattern for realistic scenario settings across different Google
Cloud platform zones as well. This shows that our prediction
model is general bearing similarity to the concept of transfer
learning in the machine learning community. The final cwnd
prediction performance result of the realistic scenario setting
across the Google Cloud platforms is presented in Table 8.
As it is shown in Table 10, the accuracy of the TCP variant
prediction for this scenario setting is 95%.

TABLE 8. TCP final predicted cwnd performance results of a realistic
scenario setting.

28384 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

TABLE 9. TCP variant prediction of a realistic scenario setting: confusion
matrix.

TABLE 10. TCP variant prediction of a realistic scenario setting:
performance metrics.

TABLE 11. TCP final predicted cwnd performance results of a combined
scenario setting.

C. COMBINED SCENARIO SETTING
Real networks behave in more complex manner than
emulated networks. The loss and delay of packets in TCP
are both affected by, and affects, the TCP control loop. We
believe, there are queue dynamics in the network which
cause packet trains and other behaviors which software
emulators like NetEm [18] can’t reproduce well enough.
In Section VII-B, we performed a realistic experiment when
the random packet loss comes from the dynamics of multiple
TCP connections sharing a link (congestion) rather than an
injected packet loss. In this section, we address the scalability
approach by conducting an experiment of our model under
a broader range by combining the realistic and emulated
scenario settings to justify the applicability and robustness
of our prediction model. Our experimental setup for this
scenario setting is presented in Figure 10.

FIGURE 10. Combined scenario setup.

In this experiment, we combine the two scenario settings
(one with an emulator and one with no emulator but Internet)
where our intermediate node acts as a router. We get the
traffic to the intermediate node, wrap and forward it to the

network so that we can add more delay and the number of
hops in the network on both sides. In this scenario, as it
is shown in Figure 8, both the increasing and decreasing
portions of the sawtooth pattern across different TCP variants
is potentially accurate. The TCP variant prediction accuracy
of the combined scenario setting, as it is presented in Table 13,
is 91.66% and this justifies that our prediction model can
handle multiple scenario settings.

TABLE 12. TCP variant prediction of a combined scenario setting:
confusion matrix.

TABLE 13. TCP Variant Prediction of a combined scenario setting:
performance metrics.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we demonstrate how an intermediate node (e.g.,
a network operator) can identify the transmission state of the
TCP client associated with a TCP flow by passively moni-
toring the TCP traffic. We presented a robust, scalable and
genericmachine learning-based prediction model that exper-
imentally infers both TCP cwnd and the underlying variant
of loss-based TCP congestion control algorithms within a
flow from passive measurements collected at an intermediate
node of the network. The significance of our paper is two-
fold. First, it presents a prediction model for estimating TCP
cwnd of the sender when there is variability within a flow.Our
measurement results of the cwnd prediction show that we get
a very good accuracy for both the increasing and decreasing
portion of the sawtooth pattern. Second, this paper presents a
scalable and generic learning model for predicting the widely
deployed underlying TCP variants within a flow which may
of interest for the network operators, researchers and scien-
tists in the networking community from both academia and
industry. In order to train and test our prediction model,
we employed every experiment with a ratio of 60% training,
40% testing split and a 5-fold cross-validation on all end-
to-end variations of bandwidth, delay, jitter and packet loss
into one learning model. Our prediction model is tested under
multiple scenario settings.

The experimental performance shows that the prediction
model gives reasonably good performance on all the metrics

VOLUME 6, 2018 28385

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

both in the emulated, realistic and combined scenario settings
and across multiple TCP variants. We show that the learned
prediction model performs reasonably well by leveraging
knowledge from the emulated network when it is applied
on a real-life scenario setting. Thus our prediction model is
general bearing similarity to the concept of transfer learning
in the machine learning community. The prediction accura-
cies of the underlying TCP variant for these scenario settings
are 93.51%, 95%, and 91.66% respectively. To validate our
evaluation of the prediction models, in addition to accu-
racy, we used multiple performance validation metrics such
as precision, recall, F1-Score and support. Our evaluation
across different scenario settings show that our model is
effective and has considerable potential.

As a future work, there are many research avenues that can
be explored. First, since now we are able to predict the cwnd,
and the underlying TCP variant of loss-based congestion
algorithms, we also think that we will be able to infer other
TCP per-connection states. Second, it would be interesting to
develop a delay-based method using both machine learning
and deep learning techniques so as to verify how delay
changes and look into how the TCP variants of delay-based
congestion control algorithms can be predicted both from a
passively measured traffic and real measurements over the
Internet. Finally, we would like to design an approach based
onmachine learning techniques that is able to predict if a TCP
packet loss is due to a buffer overflow in routers or wireless
link in which two of them have different characteristics.
Historically, TCP was designed for buffer overflow in routers
and the action in TCP to back-off is based on the assumption
that it is buffer overflow at a router as an implicit signal
of network congestion. However, if we have another packet
delay in the wireless link, the actions by TCP will not be
necessarily the same because, in wireless networks, there
might be a significant amount of packet loss due to corrupted
packets as a result of interference. We plan to address these
open issues and extend the approaches in our future work.

ACKNOWLEDGMENT
The authors gratefully acknowledge the anonymous
reviewers for their thoughtful feedback and detailed
comments. They would also like to thank the Research Infras-
tructure ServicesGroup at theUniversity of Oslo, Department
of Informatics for the use of multicore cluster machines.

REFERENCES
[1] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas: New

Techniques for Congestion Detection and Avoidance, vol. 24. New York,
NY, USA: ACM, 1994.

[2] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[3] P. Bühlmann and T. Hothorn, ‘‘Boosting algorithms: Regularization,
prediction and model fitting,’’ Stat. Sci., vol. 22, no. 4, pp. 477–505, 2007.

[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’ Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[5] R. Caruana, ‘‘Multitask learning,’’ in Learning to Learn. Boston, MA,
USA: Springer, 1998, pp. 95–133.

[6] D.-M. Chiu and R. Jain, ‘‘Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,’’ Comput. Netw. ISDN
Syst., vol. 17, no. 1, pp. 1–14, 1989.

[7] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. (2016). ‘‘Language
modeling with gated convolutional networks.’’ [Online]. Available:
https://arxiv.org/abs/1612.08083

[8] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, ‘‘Mean abso-
lute percentage error for regression models,’’ Neurocomputing, vol. 192,
pp. 38–48, Jun. 2016.

[9] N. Dukkipati, Y. Cheng, and A. Vahdat, ‘‘Research impacting the practice
of congestion control,’’ Assoc. Comput. Machinery, New York, NY, USA,
2016.

[10] V. Dumoulin and F. Visin. (2016). ‘‘A guide to convolution arithmetic for
deep learning.’’ [Online]. Available: https://arxiv.org/abs/1603.07285

[11] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, ‘‘Periodicity detection
in time series databases,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 7,
pp. 875–887, Jul. 2005.

[12] ESnet. (2017). Iperf3. [Online]. Available: https://iperf.fr/iperf-servers.php
[13] S. Gangam, J. Chandrashekar, Í. Cunha, and J. Kurose, ‘‘Estimating TCP

latency approximately with passive measurements,’’ in Proc. Int. Conf.
Passive Active Netw. Meas., Springer, 2013, pp. 83–93.

[14] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo,
‘‘TCP Westwood: Congestion window control using bandwidth estima-
tion,’’ in Proc. GLOBECOM, Nov. 2001, pp. 1698–1702.

[15] S. Ha, I. Rhee, and L. Xu, ‘‘CUBIC: A new TCP-friendly high-speed TCP
variant,’’ ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[16] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure, ‘‘A machine learning
approach to TCP state monitoring from passive measurements,’’ in Proc.
Wireless Days, 2018, pp. 1–8.

[17] D. H. Hagos, A. Yazidi, Ø. Kure, and P. E. Engelstad, ‘‘Enhancing security
attacks analysis using regularized machine learning techniques,’’ in Proc.
IEEE 31st Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2017, pp. 909–918.

[18] S. Hemminger, ‘‘Network emulation with NetEm,’’ in Proc. Linux Conf
AU, 2005, pp. 18–23.

[19] V. Jacobson, ‘‘Congestion avoidance and control,’’ in Proc. ACM
SIGCOMM, 1988, pp. 314–329.

[20] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, ‘‘Inferring
TCP connection characteristics through passive measurements,’’ in Proc.
23rd Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 3,
2004, pp. 1582–1592.

[21] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, ‘‘Measure-
ment and classification of out-of-sequence packets in a tier-1 IP back-
bone,’’ IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 54–66, Feb. 2007.

[22] D. Katabi, M. Handley, and C. Rohrs, ‘‘Congestion control for high
bandwidth-delay product networks,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 89–102, 2002.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[24] B. Mao et al., ‘‘Routing or computing? The paradigm shift towards intelli-
gent computer network packet transmission based on deep learning,’’ IEEE
Trans. Comput., vol. 66, no. 11, pp. 1946–1960, 2017.

[25] A. Medina, M. Allman, and S. Floyd, ‘‘Measuring the evolution of trans-
port protocols in the Internet,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 35, no. 2, pp. 37–52, 2005.

[26] T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet
traffic classification using machine learning,’’ IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[27] J. Oshio, S. Ata, and I. Oka, ‘‘Identification of different TCP versions
based on cluster analysis,’’ in Proc. 18th Int. Conf. Comput. Commun.
Netw. (ICCCN), Aug. 2009, pp. 1–6.

[28] S. Ostermann. (2000). Tcptrace. [Online]. Available: http://www.
tcptrace.org

[29] J. Pahdye and S. Floyd, ‘‘On inferring TCP behavior,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 31, no. 4, pp. 287–298, 2001.

[30] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[31] V. Paxson, ‘‘Automated packet trace analysis of TCP implementations,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 27, no. 4, pp. 167–179,
1997.

[32] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

28386 VOLUME 6, 2018

D. H. Hagos et al.: General TCP State Inference Model From Passive Measurements Using Machine Learning Techniques

[33] S. Rewaskar, J. Kaur, and F. D. Smith, ‘‘A passive state-machine approach
for accurate analysis of TCP out-of-sequence segments,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 36, no. 3, pp. 51–64, 2006.

[34] P. Romirer-Maierhofer, A. Coluccia, and T. Witek, ‘‘On the use of TCP
passive measurements for anomaly detection: A case study from an opera-
tional 3G network,’’ in Proc. Int. Workshop Traffic Monit. Anal., Springer,
2010, pp. 183–197.

[35] R. Sommer and V. Paxson, ‘‘Outside the closed world: On using machine
learning for network intrusion detection,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2010, pp. 305–316.

[36] S. Sundaresan, M. Allman, A. Dhamdhere, and K. Claffy, ‘‘TCP conges-
tion signatures,’’ in Proc. Internet Meas. Conf., 2017, pp. 64–77.

[37] S. Sundaresan, X. Deng, Y. Feng, D. Lee, and A. Dhamdhere, ‘‘Challenges
in inferring Internet congestion using throughput measurements,’’ in Proc.
Internet Meas. Conf., 2017, pp. 43–56.

[38] L. Torrey and J. Shavlik, ‘‘Transfer learning,’’ in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. Berlin, Germany: Springer, 2009.

[39] L. Xu, K. Harfoush, and I. Rhee, ‘‘Binary increase congestion
control (BIC) for fast long-distance networks,’’ in Proc. 23rd Annu. Joint
Conf. IEEE Comput. Commun. Soc., vol. 4, 2004, pp. 2514–2524.

[40] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, ‘‘TCP congestion
avoidance algorithm identification,’’ IEEE/ACM Trans. Netw., vol. 22,
no. 4, pp. 1311–1324, Aug. 2014.

[41] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, ‘‘Robust network traffic
classification,’’ IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1257–1270,
Aug. 2015.

[42] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ‘‘Network
traffic classification using correlation information,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[43] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, ‘‘On the characteristics
and origins of Internet flow rates,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 309–322, 2002.

DESTA HAILESELASSIE HAGOS received the
B.Sc. degree in computer science from the Depart-
ment of Computer Science, Mekelle Univer-
sity, and the M.Sc. degree in mobile systems
from the Department of Computer Science Elec-
trical and Space Engineering, Luleå Univer-
sity of Technology, Sweden, in 2012. He is
currently a Ph.D. Research Fellow with the
Autonomous Systems and Sensor Technologies
Research Group, Department of Technology

Systems, Faculty of Mathematics and Natural Sciences, University of Oslo.
His current research interests include the areas of machine learning, deep
learning, artificial intelligence, and computer networking.

PAAL E. ENGELSTAD received the bachelor’s
degree in physics from Norwegian University
of Science and Technology (NTNU) in 1993,
the master’s degree (Hons.) in physics from
NTNU/Kyoto University, Japan, in 1994, the bach-
elor’s and Ph.D. degrees in computer science from
University of Oslo in 2001 and 2005, respec-
tively. He is currently a Full Professor with Oslo
Metropolitan University. He is also a Research
Scientist at Norwegian Defence Research Estab-

lishment and a Professor with the Autonomous Systems and Sensor Tech-
nologies Research Group, Department of Technology Systems, University
of Oslo. He holds a number of patents and has been publishing a number of
papers over the past years. His current research interests include fixed, wire-
less and ad hoc networking, cybersecurity, machine learning, and distributed
and autonomous systems.

ANIS YAZIDI received the M.Sc. and Ph.D.
degrees from University of Agder, Grimstad,
Norway, in 2008 and 2012, respectively. He was
a Researcher with Teknova AS, Norway. He is
currently an Associate Professor with the
Autonomous Systems and Networks Research
Group, Department of Computer Science, Oslo
Metropolitan University. His research interests
include machine learning, learning automata,
stochastic optimization, recommendation systems,

pervasive computing, and the applications of these areas in industrial
applications.

ØIVIND KURE received the Ph.D. degree from
University of California, Berkeley, in 1988.
He was a Senior Researcher with Telenor and the
Research Manager with Telenor Research from
1989 to 2000. He is currently a Full Professor
with the Center for Quantifiable Quality of Service
in Communication Systems and the Department
of Telematics, Norwegian University of Science
and Technology, Trondheim, Norway, and the
Autonomous Systems and Sensor Technologies

Research Group, Department of Technology Systems, University of Oslo.
His current research interests include the various aspects of QoS, data
communication, performance analysis, and distributed operating systems.

VOLUME 6, 2018 28387

	INTRODUCTION
	MOTIVATION
	BACKGROUND
	RELATED WORK
	ACTIVE MEASUREMENT
	PASSIVE MEASUREMENT

	CONTROLLED EXPERIMENTS
	EXPERIMENTAL SETUP
	NETWORK EMULATION
	VERIFICATION OF THE EMULATOR
	CROSS-TRAFFIC VARIABILITY
	TRAFFIC CAPTURES
	ASSUMPTIONS

	METHODOLOGY
	PASSIVE MONITORING OF BYTES_IN_FLIGHT
	EXPERIMENTAL INFERENCE OF TCP CWND
	CONVOLUTIONAL FILTERING
	PREDICTION OF TCP VARIANTS

	EXPERIMENTAL SCENARIO SETTINGS RESULTS
	EMULATED NETWORK SETUP
	REALISTIC SCENARIO SETUP
	COMBINED SCENARIO SETTING

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	DESTA HAILESELASSIE HAGOS
	PAAL E. ENGELSTAD
	ANIS YAZIDI
	ØIVIND KURE

