
Received March 19, 2018, accepted April 19, 2018, date of publication May 4, 2018, date of current version May 24, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2832616

Blind System Identification Using
Symbolic Dynamics
SUMONA MUKHOPADHYAY AND HENRY LEUNG , (Fellow, IEEE)
Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Corresponding author: Sumona Mukhopadhyay (mukhopas@ucalgary.ca)

ABSTRACT In this paper, a chaos-based approach is proposed for system identification with binary
random signal. A chaos-based approach is developed to model random binary sequence and is applied to
blind system identification. The Cramér Rao Lower Bound (CRLB)-based on the chaos representation is
derived. The theoretical mean square error of the proposed approach is also derived. It is shown that the
proposed blind approach achieves the CRLB asymptotically. The proposed technique is applied to blind
channel equalization of a quadrature amplitude modulation communication system. The equalizer is based
on expected maximization and unscented Kalman filtering and smoother. Our proposed method shows
superior performance in comparison with conventional blind equalization techniques. The significance of
this research is to extend the advantages of chaos to random signals for the blind system identification.

INDEX TERMS Chaos, binary symbols, blind, equalization, Cramér Rao lower bound, expectation max-
imization, quadrature amplitude modulation, symbolic dynamics, system identification, unscented Kalman
filter.

I. INTRODUCTION
The properties of chaotic signals such as broadband spectra,
aperiodicity and sensitivity to initial conditions have been a
catalyst in the growth of research concerning application of
chaos to signal processing [1]–[3], communications [4]–[7]
and other engineering applications [8]–[16]. There are two
main approaches of employing chaos in signal processing.
The first approach applies chaos tomodel natural signals such
as speech, radar clutter, and biomedical signals. The other
approach is to generate the chaotic signals and to employ their
unique chaotic properties to enhance system performance
such as system identification. In signal processing, previous
studies have proved that employing chaos provides superior
performance in blind system identification as compared to
random signals [17], [18]. But applying chaos has few chal-
lenges besides having numerous merits.

The first challenge lies in the estimation of chaotic sig-
nals. These signals appear to be noise-like and can be ana-
lyzed and processed using techniques for stochastic signals.
However, chaotic signals contain more information that can-
not be inferred from and exploited by traditional stochastic
modeling techniques. As such many studies have been dedi-
cated to design robust and efficient algorithms for estimating
chaotic signals in the presence of noise. One such method is
the dynamic estimation method based on itinerary [19]–[23].

However, these techniques are not suitable for real time
estimation due to the highly irregular nature of the cost
function. Despite being asymptotically efficient at high
signal-to-noise ratio (SNR), these methods have subopti-
mal performance. Maximum Likelihood (ML) method with
Viterbi search [24], [25] and its enhanced versions [26], [27]
have also been developed. Although these approaches suffer
from heavy computational load and suboptimal performance,
their results indicate that symbolic dynamics is resistant to
noise [23]. Moreover, symbolic dynamics based modulation
has also been useful in improving synchronization perfor-
mance in spread spectrum communications [28]. Therefore,
symbolic dynamics has great potential in signal processing.

Another challenge in applying chaos to signal processing
is to ensure that the received signal is indeed chaotic after it
is corrupted by noise. It is not easy to distinguish whether
the aperiodicity is due to the random nature of the chaotic
waveform or due to noise [29]. Moreover, it is challenging to
ensure that the received signal does not cease to be chaotic
due to the lack of sensitive dependence on initial conditions
in noisy environments [30].

Finally, in transmitting a chaotic signal, the received signal
may not match the chaotic map which results in large errors.
Therefore, many chaos-based applications could not show
any significant improvement compared to the conventional
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approaches. In chaos-based communications, various tech-
niques [31]–[33] have been proposed but they performed well
only at moderate noise levels. State-space approaches are
also designed by linearizing of the chaotic map [34]–[37].
However, such a linearizing approach does not fully exploit
the nonlinear dynamics.

We can infer that the aforementioned problems arise due
to the stringent requirement of transmitting a chaotic signal
which restricts the benefits of using chaos. This raises a
pertinent question which is: ‘‘Is there a way to exploit the
potential of chaos in applications that does not mandate the
requirement of the transmitted signal to be chaotic?’’ Using
the fact that a random dynamical system can be represented
by chaos [38], we propose to apply chaos to represent a
random symbolic signal (RS) for signal processing. Such an
approach can be of great interest to the current big data era
where data are categorial variables and many data analytic
methods hash data to binary symbolic format.

In this work, we use system identification to illustrate how
chaos can be used to improve blind system identification
using binary valued RS signal. In our work, the chaos rep-
resentation of RS is not restricted to only binary symbolic
sequence. This technique can be applied to blind equalization
when the transmitted signal is a multi-level RS. Our motiva-
tion of using chaos comes from our previous results [17], [18]
where it is proved that chaos has the potential of improving
blind system identification in signal processing. However,
it is based on a strong assumption that the signal should
be chaotic. In real life, it is difficult for signals to follow
the strict definition of chaos. In order to reap the benefits
of chaos in signal processing, a new angle of using chaos
is proposed by using chaotic representation to model RS
using the concept of symbolic dynamics. The advantage of
using symbolic dynamics to model RS is that it allows the
chaotic properties such as the Lyapunov Exponent (LE) to be
preserved. In other words, by applying symbolic dynamics,
an equivalent chaotic dynamical system which is known as
the chaotic shift map [39] is obtained which allows any
random symbolic sequence to be generated from chaotic
dynamics.

In this work, the LE of the chaotic map and the deter-
ministic property of chaos are exploited to improve blind
system identification performance when RS is the input to
the system. The Expectation Maximization and Unscented
Kalman Smoother (EM-UKS) [18], [40] algorithm for sys-
tem identification starts from randomly generating the RS
sequence. The main difference between the way EM-UKS is
applied in this work compared to those in [18] and [40] is
that the estimation algorithm uses the chaotic representation
scheme of the RS and the conjugacy relations. Due to the
deterministic property of chaotic maps, the estimation of the
initial value x0 with which the chaotic map is iterated to pro-
duce the chaotic symbolic signal is equivalent to estimating
the whole signal. Using this proposed method, the chaotic
map which is used to model the RS is assumed to be known.
However, we also show that blind system identification can be

performed by approximating the unknown nonlinear chaotic
map using predictors constructed by some nonlinear function
approximators [41]. In this paper, the system or channel to
be identified is a Moving Average (MA) model. The RS
sequence is used to excite the system so that the system can
be identified from the output signal. The question we try to
answer is: ‘‘Could chaos be applied to process general ran-
dom symbolic signals so that the advantage of chaos in system
identification can be extended to blind system identification
using RS?’’

The contributions and novelty of our work are summarized
as follows:

• Blind system identification is formulated using chaos
representation of RS.

• The Cramér Rao Lower Bound (CRLB) for chaos repre-
sentation of RS is derived.

• The theoretical mean square error (MSE) performance
is derived.

• The proposed approach is used in blind channel equal-
ization in a QAM system.

The paper is organized as follows: In Section II, the formu-
lation of the blind system identification problem is given.
Section III presents the proposed methodology. In Section IV
the CRLB and the MSE using chaos is derived. In Section V,
the blind identification method based on Expectation
Maximization Unscented Kalman Smoother (EM-UKS) is
developed. Performance evaluation of blind system identifi-
cation with application to communications are discussed in
Section VI. Concluding remarks are given in Section VII.
Notation: C and R denote the sets of complex and real

numbers, respectively. The real and imaginary parts of a
complex number are denoted by Re(·) and Im(·) respectively.
All vectors and matrices are given in bold , with lower case
letters representing vectors, and upper case letters represent-
ing matrices. Scalars are given in normal type. CN represents
circularly symmetric Gaussian distribution. The symbols (·)T,
(·)∗, (·)H, and E[·] signify the transpose of a matrix, the con-
jugate, the conjugate transpose and the expectation operator,
respectively.

II. PROBLEM FORMULATION
Let, s = {s1, s2, . . . , sn, . . . , sN } be the input RS, inde-
pendently and identically distributed (i.i.d). Each sn is a
source symbol characterized by equal probability and takes
value from a finite alphabet set sn ∈ A = {a1, . . . , aM },
where ak are real or complex numbers. The output of the
system is corrupted by a zero mean Additive White Gaussian
noise (AWGN) v ∼ CN (0, 2σ 2

v ) having variance σ 2
v . Thus,

the received noisy signal yn ∈ C is expressed as:

yn = hHsn + vn. (1)

h = [h0, h1, . . . , hL−1]T ∈ CL×1 of length L which
represents the coefficients of the system, and sn =

[sn, sn−1, sn−2, . . . , sn−L+1]T having a variance of σ 2. Blind
system identification problem using chaos is to estimate
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FIGURE 1. Plot of PWL for m = 2 symbols.

θ∗ = {h, x0, σ 2
v } ∈ C from the noisy measurement signal

vector, y = [y0, y1, . . . , yN−1] only where x0 is the initial
condition of the chaotic map f .

III. METHODOLOGY: CHAOS REPRESENTATION OF
RANDOM SYMBOLIC SEQUENCE
In our work, the chaotic modeling strategy of the RS begins
by the inverse interval mapping method. To model a RS
using a chaotic map, the one-to-one correspondence between
the initial point and its symbolic itinerary (sequence) is
applied [42]. When the RS contains only two distinct sym-
bols {±1}, the piecewise linear (PWL) chaotic map has two
disjoint linear segments which is obtained by adjusting to
the symbol probability p of the binary-valued RS as shown
in Fig. 1. By knowing the value of the symbol at sn, xn can be
determined by the reverse interval mapping method given by:

xn = f −1sn (xn+1), (2)

where f −1sn is the pre-image of the chaotic signal for an
appropriate branch of f −1sn given by:

f −1sn (xn+1) =

{
p× xn+1, for symbol sn = a1
p+ (1− p)× xn+1, for symbol sn = a2

(3)

and the PWL chaotic map f is defined as follows:

xn+1 = f (xn) =

{
xn/p, for xn ∈ Ia1
(xn − p)/(1− p) for xn ∈ Ia2

(4)

where the intervals Ia1 , Ia2 denotes the interval for the symbol
a1 = −1 and a2 = +1 respectively. By the recursive applica-
tion of the inverse function mapping, the initial condition can
be obtained. The symbolic sequence itinerary is then obtained
from,

sn+1 = 2(f n(x0)) = 2(xn+1). (5)

where 2(·) is expressed as:

sn = 2(xn) =

{
−1 if xn ∈ Ia1
+1, if xn ∈ Ia2

(6)

By using 2(·), a corresponding chaotic dynamical system
σ (.) which is known as the chaotic shift map is created. σ (.)
generates chaotic symbolic signal (CS) which is related to the
chaotic map f via 2 by the relation:

σ (s) = 2(f (2−1(s))). (7)

The chaotic map σ (·) is conjugate to the chaotic map f (·)
via 2(·) where 2(·) acts as a mapping function between the
chaotic dynamics and the symbolic dynamics. The dynamics
governing the symbolic sequence is represented by a left shift
operation where the leftmost symbol is discarded at each
iteration, shown as follows:

sn = σ (snsn+1 . . .) = sn+1sn+2 . . . . (8)

This means that any itinerary-based algorithm for estimating
initial points for the map f will give rise to a correspond-
ing itinerary-based algorithm for the map σ [20]. Hence,
x = {x1, x2, . . . , xn, . . . , xN } can be represented as a string
s = {s1, s2, . . . sn, . . . , sN } obtained from (8). The chaos
representation of RS for the proposed system identification
method is expressed as:

zn = hH2(fn−1(f−(N−1)sn (α))),

= hH2(fn−1(x0)),

= hHσ (sn−1),

= hHsn. (9)

α is a point in the interval I and the use of reverse interval
mapping is guided by the symbolic sequence which can
converge towards an initial condition x0 as shown below:

x0 = f −1s0 (x1) = f −1s0s1 (x2) = . . . = f −1s0,...,sN−1 (xN ). (10)

In this way, an RS can be treated as being generated from CS.

IV. THEORETICAL PERFORMANCE ASSESSMENT
In this section, we derive the CRLB of blind system identi-
fication using the RS representation of chaos. The CRLB is
defined as:

var(θ̂ ) ≥ J−1(θ ), (11)

where J(θ ) is the complex Fisher Information Matrix (FIM)
expressed as:

[J(θ )] = −E
[
∂ lnP(y|θ )

∂θ

(
∂ lnP(y|θ )

∂θ

)H]
. (12)

The derivation is based on employing the conjugate
relationship given in (7) which means that 2(·) con-
verts the orbits of x0 under f (·) to orbits of 2(x0)
under σ (.) i.e., x0, f (x0), f 2(x0), f 3(x0), . . . , f n(x0) to 2(x0),
σ (2(x0)), σ 2(2(x0)), σ 3(2(x0)), . . . , σ n(2(x0)). So, the
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symbols (s1, s2, . . .) are the output of the chaotic dynami-
cal shift map σ (·). Hence, there is an equivalence relation
between the two chaotic dynamical systems, f (·) ⇐⇒ σ (·).
This connection between chaotic numeric and its symbols is
used to derive the CRLB as follows. From (9) the likelihood
is given by:

P(y|θ ) =
∏N−1

n=0
1

2πσ 2v
exp

(
−(yn−zn)H(yn−zn)

2σ 2v

)
(13)

The log–likelihood expression is:

`(y|θ ) = −N ln(2π )− 2N ln σv

−
1

2σ 2
v

[ N−1∑
n=0

(yn − hHsn)
H
(yn − hHsn)

]
(14)

The complex gradient ∂`(y|θ∗)
∂θ∗

for the complex parameter
vector θ∗ is related to the real gradient ∂ ln p

∂ Re θ by the relation:

∂ ln p
∂θ∗

=



∂`(y|θ )
∂h∗

∂`(y|θ )
∂h

∂`(y|θ )
∂x∗0

∂`(y|θ )
∂x0

∂`(y|θ )
∂σ 2

v


=



1
2

j
2

0 0 0

1
2
−j
2

0 0 0

0 0
1
2

j
2

0

0 0
1
2
−j
2

0

0 0 0 0 1





∂`(y|θ )
∂ Reh
∂`(y|θ )
∂ Imh
∂`(y|θ )
∂ Re x0
∂`(y|θ )
∂ Im x0
∂`(y|θ )
∂σ 2

v


= T

∂`(y|θ )
∂ Re θ

(15)

The complex CRLBof the complex parameter vector can then
be connected to the CRLB of the real number as [43], [44]:

CRLB(θ∗) = [TH]
−1

CRLB(Re θ )T−1 (16)

Therefore, we can derive the CRLB in terms of the real valued
parameter vector Re θ = {Reh, Imh,Re x0, Im x0, σ 2

v }. The
details of the derivation are presented in the Appendix. The
CRLB using the chaotic representation of RS denoted by
CRLB(B)enc is expressed as:

CRLB(B)enc = 2σ 2
v tr(

N−1∑
n=0

E[snsHn ]
−1

)

=
2σ 2

v

N
tr
([
E[snsnH]

]−1)
(17)

In [18], it is found that for a Moving Average (MA) model,
the CRLB of non-blind system identification using RS
(denoted asCRLB(NB)RS ) is similar to the CRLB of blind system
identification when the driving signal is a CS signal (denoted
as CRLB(B)CS ), i.e.,

CRLB(NB)RS = CRLB(B)CS

= σ 2
v tr
([ N∑

n=1

E[snsnT]
]−1)

. (18)

From (17) and (18), we observe that for an MA model,

CRLB(B)enc = CRLB(NB)RS = CRLB(B)CS . (19)

To understand the effectiveness of the proposed method,
the theoretical MSE performance of the estimated parameters
is derived and compared with the the CRLB. Using (7) and
(8) we have,

2(xn+1) = σ (sn) = sn+1. (20)

This expression means that the symbols (s1, s2, . . .) are the
outputs of the chaotic shift map σ (·). We can re-express the
formulation in terms of the chaotic map σ (·):

sn+1 = σ (sn). (21)

which defines the dynamical system in the symbol-space
representation. The estimates Re ĥ, Im ĥ,Re x̂0, Im x̂0, σ̂ 2

v are
obtained from equating the first order derivative of the log–
likelihood expression in (14) to zero, i.e.,

∂`(y|θ )
∂h

=
1
σ 2
v

N−1∑
n=0

(yn − ĥHŝn)ŝHn = 0, (22)

Replacing yn in (22),

N∑
n=1

[
(hHsn + vn − ĥHŝn)ŝn

H]
= 0,

N∑
n=1

[
(ĥHŝn − hHsn − vn)ŝHn

]
= 0,

N∑
n=1

[
ĥHŝnŝHn − hHsnŝHn − vnŝ

H
n
]
= 0,

ĥH[ N∑
n=1

ŝnŝHn
]
=

N∑
n=1

[
vnŝHn + hHsnŝ

H
n
]
,

(ĥH
− hH)

N∑
n=1

snsnH
−

N∑
n=1

vnŝHn = 0,

1hH
N∑
n=1

ŝnŝHn =
N∑
n=1

vnŝHn ,

1hH
=

( N∑
n=1

vnŝHn

)[ N∑
n=1

ŝnŝHn

]−1
,

1h =
( N∑
n=1

vnŝn
H
)H([ N∑

n=1

ŝnŝHn

]−1)H
. (23)

Since the input is zero mean, so E[
∑N

n=1 ŝnŝ
H
n ] = σ

2. Next,
in order to distinguish between 1hH and 1h, we now use
the symbol dash (′) in the subscript of variables to denote the
terms for 1hH and the un-dashed variables denote the terms
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for 1h. The corresponding MSE of the coefficients denoted
as MSEh can be derived as:

E
[
1hH1h

]
= tr

(
E
[( N∑

n=1

vnŝn
H
)
×

( N∑
n′=1

vn′ ŝHn′

)H

×

( N∑
n=1

ŝnŝHn

)−1
×

( N∑
n′=1

ŝn′ ˆsn′
H
)−H])

,

= tr
( N∑
n′=1

N∑
n=1

E
[
vnvH

n′
]
×

N∑
n′=1

N∑
n=1

[
E
[
ŝnŝHn′

]]H

×

N∑
n=1

[
E
[
ŝnŝHn

]]−1
×

N∑
n′=1

[
E
[
ŝn′ ŝHn′

]]−H)
.

(24)

Using
∑N

n′=1
∑N

n=1 vnv
H
n = 2Nσ 2

v , we have:

E
[
1hH1h

]
= 2tr

(
Nσ 2

v

N∑
n=1

[
E
[
ŝnŝHn

]]H

×

N∑
n=1

[
E[ŝnŝHn ]

]−1
×

N∑
n=1

[
E
[
ŝnŝHn

]]−H)
,

(25)

= 2Nσ 2
v tr
([
E
[ N∑
n=1

ŝnŝHn
]]−1)

,

= 2Nσ 2
v
1
N
tr
([
E[ŝnŝn

H]
]−1)

,

= 2σ 2
v tr
([
E[ŝnŝn

H]
]−1)

. (26)

As the CRLB is J−1(Reh) = 2σ 2v
N tr

([
E[snsnH]

]−1)
, it fol-

lows that E
[
1hH1h

]
> J−1(Reh) i.e.,

E
[
1hH1h

]
>

2σ 2
v

N
tr
([
E[snsnH]

]−1)
. (27)

which approaches the CRLB asymptotically for large N .

V. BLIND SYSTEM IDENTIFICATION OF MOVING
AVERAGE MODEL USING EM-UKS ESTIMATOR
In the EM-UKS method, the complete data set ξ is given as:

ξ = {s0, . . . , sN−1, y0, . . . , yN−1} (28)

The algorithm iterates between the following two steps until
convergence is reached:

1) E-step: Compute

Q(θ, θ̂l) = E{ξ |θl}

2) M-step: Solve

θ̂(l+1) = argmaxθ Q(θ, θ̂l). (29)

Then we have,

P(x0) = CN (0, 2σ 2)

P(yn|sn) = CN (hHsn, 2σ 2
v ) (30)

Substituting the respective probability density functions
from (30), the likelihood function of the complete data set
ξ is given by:

P(ξ |θ ) =
1

2πσ 2 exp
(
−(x0x0H)

2σ 2

)
×

N∏
n=1

1
2πσ 2

v
exp

(
−(yn − zn)(yn − zn)H

2σ 2
v

)
,

=
1

2πσ 2 × exp
(
−(x0x0H)

2σ 2

) N∏
n=1

1
2πσ 2

v

× exp
(
−(yn − hHsn)(yn − hHsn)

H

2σ 2
v

)
,

=
1

2πσ 2 exp
(
−(x0x0H)

2σ 2

)
×

N∏
n=1

1
2πσ 2

v
exp

(
−(yn − hHsn)(yn − hHsn)

H

2σ 2
v

)
.

(31)

The log–likelihood function of the complete data set is
expressed by:

`(ξ |θ )

= − ln (2πσ 2)− N ln(2πσ 2
v )

−
1

2σ 2 x0x0
H
−

1
2σ 2

v

[
[
N∑
n=1

(yn−hHsn)(yn−hHsn)
H
]
]
. (32)

1) E Step : In the expectation step, the estimated parameters
of the previous iteration is used and the expected value of the
log likelihood function `(ξ |θ ) ia calculated as:

Q(l) = E[`(ξ |θ )]. (33)

The expectation Q is expressed as:

Ql = − ln(2πσ 2)− N ln(2πσ 2
v )−

1
2σ 2E[x0x0

H
|y; θ ]

−
1

2σ 2
v

[ N∑
n=1

ynyH
n − 2

N∑
n=1

ynhHE[sn|y; θ ]
]

−
1

2σ 2
v

[ N∑
n=1

hHE[snsnH
|y; θ ]h

]
. (34)

Using the following expressions which are obtained from
the UKS using the Rauch-Tung-Striebel smoothing proce-
dure [45] we have,

ssmoothn = E[sn|y; θ ], (35)

Rn = E[snsHn |y; θ ]. (36)
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Then the expectation turns into,

Q(l) = − ln(2πσ 2)− N ln(2πσ 2
v )−

1
2σ 2 (x

smooth
0 xsmooth0 )

−
1

2σ 2
v

[ N∑
n=1

ynyH
n − 2hHssmoothn

]
−

1
2σ 2

v

[ N∑
n=1

hHRnh
]
.

(37)

2.MStep = Using results from the previous steps, the esti-
mation of the parameter set is performed given below as:

θ̂(l+1) = argmaxθ Ql(θ, θ̂ l). (38)

The ML estimates are,

ĥ =
[
Rn

]−1 N∑
n=1

ynŝsmoothn , (39)

σ̂ 2
v =

1
N

N∑
n=1

yn(yn − ĥHŝsmoothn ), (40)

x̂0 = f −(N−1)ŝsmooth (̂xN−1) (41)

VI. PERFORMANCE EVALUATION
The performance metric in terms ofMSE between the desired
and the estimated channel coefficients is given by:

MSEh =
1
K

∑K
i=1 ||hi − ĥi||

2

L
(42)

where K is the number of iterations (trials) carried out for
each signal to noise power ratio value defined as:

SNR =
E[s2n]
σ 2
v

(43)

Unless otherwise stated, at each SNR K = 30 independent
runs are carried out and in every run 10 EM iterations are
used. The result is averaged over K runs. Another perfor-
mance metric known as the Intersymbol Interference (ISI)
is used to evaluate the equalization performance of a com-
munication system. ISI measures how much of an impulse
response’s energy is in its strongest tap, defined by [46]:

ISI =
||G||2 −maxi |Gi|2

maxi |Gi|2
(44)

In (44), G denotes the overall system impulse response
coefficient vector after equalization expressed as: G =

[g1, . . . , gL]T, where gi is the i-th entry of G, and gi =
h ∗ ĥ where ∗ denotes the convolution operator. Ideally, gi
should be equal to a delta function for perfect equalization
to occur. As gi gets closer to the delta function, the ISI
becomes smaller. In other words, the smaller the ISI, the bet-
ter an equalizer performs. We evaluate the equalization per-
formance in terms of the mean squared error expressed as:

MSEeq =
1
N

N∑
n=1

(sn − ŝn)
2 (45)

Convergence is detected by computing the value of the log-
likelihood after each iteration and halting when it appears
not to be changing in a significant manner from one iteration
to the next. The convergence threshold for EM iteration is
set to 0.01.

A. RESULTS OF BLIND SYSTEM IDENTIFICATION USING
RANDOM BINARY INPUT SIGNAL
In this section, we demonstrate the effectiveness of the pro-
posed method in system identification ofMAmodel of length
L = 3 having parameters denoted by h = [1, 0.6, 0.3]. For
the proposed method, the reverse interval mapping is per-
formed on RS of length N that takes binary values {±1}. The
chaos representation of RS is performed on non-overlapping
blocks of data of size N ∗ = 16. Such a block based approach
during the reverse interval mapping prevents the mismatch
between the chaotic symbolic signal (CS) obtained from
the symbolic dynamics and the RS. Otherwise, the mis-
match between the CS and RS leads to errors which may
be amplified during the system identification procedure. The
rationale for the block-based approach is further illustrated
subsequently.

FIGURE 2. Comparison of MSE’s for N = 128.

1) COMPARISON OF DERIVED MSE WITH CRLB
To evaluate the efficiency of our proposed approach (denoted
as EM-UKS RS modeled by chaos in the graph), the theoret-
ical MSE (MSEh) is compared with the CRLB of chaos rep-
resentation of RS in Fig. 2 which is obtained using N = 128
data points. We considered the MSEh performance compari-
son with two kinds of input signal: a binary valued RS signal
and the CS which is obtained by the PWL. Fig. 2 shows the
MSEh results using the methods EM-UKSwith CS input [18],
the Minimum Nonlinear Prediction Error (MNPE) [3] with
CS and EM-UKS with the proposed approach (denoted as
EM-UKS using RS modeled by chaos in the plot). From
Fig. 2, it is observed that theMSEh performance of EM-UKS
using RS modeled by chaos method and EM-UKS using CS
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FIGURE 3. Approximated prediction function using an RBF network and
the accurate prediction function.

as the input are almost similar. At SNR = 0 dB, there is a
difference of about 1.8 dB between MSEh of the proposed
method and the theoreticalMSEh. At SNR= 15 dB, theMSEh
of EM-UKS using the proposed method lacks behind theo-
retical MSEh by about 1 dB. Also, from Fig. 2 we can infer
that at SNR = 0 dB the blind identification performance
of our method is close to the CRLB with a difference of
about 3.3 dB. Comparison of our method with MNPE shows
significant performance improvement.

2) SYSTEM IDENTIFICATION PERFORMANCE WITH AN
APPROXIMATED PREDICTION FUNCTION
We further considered the blind system identification per-
formance of the proposed method without the knowledge of
the chaotic map. The approximated PWL chaotic map shown
in Fig. 3 is obtained by using a radial basis function (RBF)
neural network. The RBF predictor is a three layer neural
network with Gaussian hidden nodes. It is composed of an
input layer, hidden nodes and the output layer. The output
units implement a weighted sum of hidden unit outputs.
The RBF network is trained using 128 examples to approx-
imate the PWL chaotic map. The numbers of the neurons
in the input, hidden, and output layers were 1, 2, and 1,
respectively.

It can be observed from Fig. 4 that the EM-UKS with the
proposed approach using an RBF provided an accurate iden-
tification of the MA model. The MSEh performance using
the approximate of the unknown PWL chaotic map is very
close to that using the known PWL chaotic map. Therefore,
the proposed approach can work with an unknown chaotic
map as well.

3) EFFECT OF DATA LENGTH ON SYSTEM
IDENTIFICATION PERFORMANCE
In Fig. 5, system identification performance of the proposed
method is compared with EM-UKS using CS as the input,
non-blind Least Squares (LS) and blind Constant Modulus

FIGURE 4. Comparison of system identification performance using PWL
with RBF and known PWL.

FIGURE 5. Comparison of MSE for N = 16.

Algorithm (CMA)methods. TheMSEh is calculated for a data
length of N = 16. The step size for CMA was 0.001. The
MSE performance of the proposed method is quite close to
the MSE performance of non-blind LS using binary input
with a difference of about 3.2 dB at SNR = 0 dB. In com-
parison to non-blind LS with numeric input (White Gaus-
sian Noise (WGN)), the proposed method performs better
at SNR = 0 dB with a difference of about 3 dB. In com-
parison with EM-UKS with CS input, the performance of
the proposed method is quite similar to EM-UKS with CS.
On the other hand, CMA performs poorly since it requires
quite a large number of samples to give performance quite
close to that of non-blind. From Fig. 5, it is observed that
the proposed approach with EM-UKS shows superior sys-
tem identification performance for a short data length of
N = 16 in comparison to CMA. The results from Fig. 4 and
Fig. 5 suggests that for the proposed method, using a block
(window) of length N ∗ during chaos modeling of RS yields
estimation performance quite close to the EM-UKS with CS
and non-blind LS techniques. The proposed approach can be
applied to general signals and does not require larger data
volumes for the same signal estimation quality as that of
non-blind.
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FIGURE 6. Comparison of binary signal recovery MSE’s for N = 104.

4) COMPARISON OF BLIND EQUALIZATION FOR BINARY
DATA WITH NON-BLIND LEAST MEAN SQUARES AND
BLIND CONSTANT MODULUS ALGORITHM
Fig. 6 shows the performance comparison of estimation of
the input signal. The MSEeq of the proposed method using
EM-UKS is plotted in Fig. 6 by using sliding blocks of
N ∗ = 16 data points over N = 104 and K = 300.
The parameter settings (step size, µ) for CMA = 0.001 and
non-blind Least Mean Squares (LMS) = 0.015. Comparison
of the proposed method using EM-UKS with the non-blind
LMS method shows that the proposed method lacks behind
non-blind LMS by 5 dB at SNR = 0 dB, with performance
increasing gradually and approaching close to the non-blind
LMS at high SNR. At SNR= 15 dB, theMSE of the proposed
method lacks behind non-blind LMS by about 3 dB. However,
at SNR = 30 dB, the MSE of the proposed method differs
by about 1 dB from the non-blind LMS. On the other hand
CMA shows poor equalization performance compared to the
proposed method. At SNR = 0 dB, CMA lacks behind non-
blind LMS by about 11 dB. Due to the knowledge of the
transmitted sequence, the non-blind LMS algorithm has a
better performance.

Fig. 7(a) shows the plot of first 50 data points of the RS
for N = 256 data points by using sliding blocks of length
N ∗ = 16 at SNR = 30 dB. Fig. 7(b) is the recovered RS
using EM-UKS with the proposed method.

B. PERFORMANCE EVALUATION IN BLIND CHANNEL
EQUALIZATION IN COMMUNICATIONS
In this section, we extend our proposed approach from binary
RS to muti-level RS in an application to blind channel equal-
ization for a QAM communication system. Based on the
input RS, a PWL chaotic map is created to model the RS.
Here the information signal takes symbols that represents the
amplitude levels for M-QAM modulation technique. The RS
ismodeled by the PWL that is adjusted form =

√
M symbols.

The RS contains a1, a2, . . . , am unique symbols with equal
probability of occurrence of symbols p1, p2, . . . , pm. The
chaos representation is performed to the real and imaginary

FIGURE 7. Simulation result at SNR = 30 dB (a) Input RS, (b) Estimated
input using EM-UKS with the proposed method.

component and an identical PWL map is generated for the
real and imaginary component of the RS. For the applica-
tion to blind channel equalization for 64 QAM communi-
cation, the PWL is partitioned into m = 8 disjoint regions
I = {I1, I2, . . . , Im}, ∪mk=1Ik = I with symbols and is
defined by:

f (x) =



x
p1
, x ∈ I1

x − p1
p2

, x ∈ I2

...

x −
∑m−1

k=1 pk
pm

, x ∈ Im

(46)

where the intervals Ik (k = 1, 2, . . . ,m) map to the distinct
symbols ak (k = 1, 2, . . . ,m). These intervals are deter-
mined by:

I1 = [0, p1], p0 = 0,

Ik = [
k−1∑
j=0

pj,
k∑
j=0

pj], k = 1, 2, 3, . . . ,m (47)

that is adjusted to the symbol probabilities of a RS. The
PWL for this application is shown in Fig. 8 where each
interval represents a unique symbol. Therefore, we have
two PWL constructed for modelling the real and imagi-
nary components of the QAM signal. The chaotic repre-
sentation starts by using the inverse interval mapping as
follows:

f −1sn (xn+1) =


p1 × xn+1, for sn = a1,
. . .∑(m−1)

k=1 (pk )+ pm × xn+1, sn = am.

(48)
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FIGURE 8. Plot of PWL for m = 8 symbols.

sn = 2(xn) = a1, if xn ∈ I1
= a2, if xn ∈ I2
:

:

= am, if xn ∈ Im. (49)

The channel is modeled as an FIR system representing a
multipath Rayleigh fading channel with L paths. The coef-
ficients take values from the complex domain. Each of the
imaginary and real component’s of the coefficients is a Gaus-
sian random variable with variance of 0.5 each. The complex
channel coefficients are randomly generated. The equalizer is
also an FIR systemwith L coefficients. Here, the performance
assessment of blind channel equalization using the proposed
approach is discussed. We show comparison of the proposed
chaos-based equalizers using EM-UKS and EM-EKS esti-
mation methods with equalizers for QAM communication –
Multi Modulus Algorithm (MMA) [47] and Multi Constant
Modulus Algorithm (MCMA) [48]. We also compare with
the non-blind LS estimator. Fig. 9 depicts the block diagram
of the proposed method.

FIGURE 9. Proposed methodology for channel equalization using chaos.

1) EFFECT OF NOISE IN CHANNEL EQUALIZATION
For each SNR, the MSEh is calculated by averaging over
K = 100 with 50 EM iterations using N = 256 data points.

FIGURE 10. Comparison of MSE of the proposed method with the CRLB
for N = 256.

Performance of the proposed method in noise is shown
in Fig. 10 for L = 3 and is compared to the CRLB. It is
observed that at low SNR, there is a difference of about 3.4 dB
between the CRLB and the MSEh after which the MSEh
performance of the proposed approach gradually approaches
towards the CRLB at high SNR.

FIGURE 11. Comparison of MSE for N = 32.

2) EFFECT OF DATA LENGTH
A sliding window each of length N ∗ is applied. By experi-
ments, we found that N ∗ = 32 gives good estimation perfor-
mance. The comparison of channel estimation performance,
MSEh using EM-UKS with CRLB for N = 32 is shown
in Fig. 11 using 10 EM iterations. At SNR = 0 dB, MSEh
of the proposed method is behind CRLB by about 3 dB.
At SNR> 10 dB, this difference reduces to approximately
2 dB and at SNR= 30 dB, there is a difference of about 1 dB
between the MSEh and CRLB. Fig. 12 shows the plot of
negative of the log likelihood vs. number of EM iterations
for a sequence of length N = 32. The proposed method
demonstrates fast convergence behavior for short sequence
length. Therefore, we use data of short sequence, called
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FIGURE 12. Convergence behavior of the algorithm.

FIGURE 13. Comparison of channel estimation using non-blind LS, MCMA,
MMA, EM-UKS with CS EM-EKS and EM-UKS with chaos for N = 256.

as the block (window) of length N ∗ = 32 data points
during reverse interval mapping and then concatenate them
after all the blocks have been modeled by chaos for both
EM-EKS [36] and EM-UKS.

3) COMPARISON WITH BLIND EM-UKS, EM-EKS, MMA,
MCMA, AND NON-BLIND LS
For comparison with EM-EKS, the QAM symbols at the
receiver is also represented by inverse interval mapping pro-
cessing N ∗ data points. Given the transmitted signal’s con-
stellation size m = 8, and L = 5 for each SNR, we run
K = 300 simulations. The step size of the MMA and
MCMA methods are set as 0.01 and 0.5 respectively (the
best value in our experience). The equalizer length for MMA
and MCMA are set as 2L − 1. 50 EM iterations are used.
Fig. 13 demonstrates the performance comparison of EM-
UKS with EM-EKS, MMA and MCMA and non-blind LS
for N = 256. The graph for non-blind LS in Fig. 13 is
plotted assuming that the channel parameters are known.
We have observed that since MMA and MCMA are adaptive
algorithms, they require more data points for convergence
and to accurately yield channel coefficients whereas our pro-

FIGURE 14. Comparison of Equalization performance in terms of ISI for
L = 5.

FIGURE 15. Comparison of equalization performance in terms of ISI for
L = 10.

posed method can work for short data sequences yielding
better accuracy as well. At low SNR of 0 dB, the proposed
methodwith EM-UKS lacks behind the non-bind LS by about
3.5 dB. In comparison with MMA and MCMA, at SNR =
0 dB our method with EM-UKS shows an improvement of
about 8 dB and 7 dB respectively. The proposed method with
EM-UKS shows a superior estimation performance increase
at high SNR all throughout. On the other hand, the proposed
method using EM-EKS estimator at SNR= 0 dB lacks behind
MMA and MCMA by approximately 3 dB and 4 dB respec-
tively. Clearly, our proposed method with EM-UKS equalizer
closely follows the non-blind LS at all levels of SNR. Fig. 14
shows the ISI values obtained for several values of SNR for
channel length L = 5. From Fig. 14, we can observe that for
low and high SNR values, the performance of the proposed
method with EM-UKS is close to the non-blind. For moderate
values of SNR, EM-EKS and EM-UKS perform similarly.
However, MNPE yields poor results in comparison to the
proposed approach. The experiment was repeated for channel
length L = 10 and the result is given in Fig. 15. In Fig. 16,
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FIGURE 16. Signal recovery performance comparison for N = 104.

the performance of recovering the transmitted signal is
compared with traditional blind equalizers. The graph is
obtained using N = 104 and K = 100. The recovered signal
is the equalized source input. It can be clearly seen from
Fig. 16 that at low SNR, the performance of the proposed
method is quite close to the MMA and MCMA. The per-
formance of EM-UKS gradually tends towards the non-blind
LS performance at high SNR and outperforms the MMA and
MCMA methods.

VII. CONCLUSION
In this paper, we propose to apply chaos to represent ran-
dom symbolic data for signal processing applied to a blind
system identification problem. The derived analytical results
lay the foundation that the blind estimation performance of
a random information signal modeled by chaos is optimal
in comparison to non-blind estimation method for random
information signal. Simulation results support our idea that
system identification using chaos can be applied to enhance
blind equalization at low and high SNR for general random
binary symbols.

However, a limitation of our approach is an increase in
the computation time due to the backward recursion in the
chaos representation of RS. But considering the improvement
shown in system identification by the proposed approach, this
limitation can be overcome by faster processors and memory.
Our approach opens a promising new direction of an alternate
way of using the merits of chaos in signal processing. This
claim is supported by analytical and simulation results which
are summarized as follows:

- The blind estimation performance of the chaos rep-
resentation of RS is comparable to the optimal iden-
tification performance imposed by the CRLB of the
non-blind.

- The lower bound on the derived MSE for our proposed
approach is found to achieve the derived CRLB.

- The proposed method is also applicable for a small data
sequence.

- The proposed method can be extended by increas-
ing or decreasing the number of partitions of the chaotic
map.

APPENDIX
DERIVATION OF THE CRLB
The presence of Re(·) and Im(·) in the parameter vector
indicates that θ and θ∗ are to be treated as being functionally
independent parameters. We recall from (16) that the com-
plex CRLB is connected to the real CRLB by the relation
CRLB(θ∗) = [TH]

−1
CRLB(Re θ )T−1 We first derive the

CRLB for the complex case followed by the CRLB for the
real case for blind estimation using chaos representation of
random symbolic sequence.

A. CRLB FOR DATA IN COMPLEX DOMAIN
To derive the CRLB, the FIM is of size 5 by 5 given as:

J(Re θ ) = −E



J11 J12 J13 J14 J15

J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

0 0 0 0 J55


(50)

The first and second order partial derivatives are:

(a)
∂`(y|θ )
∂ Reh

=
1
σ 2
v
[
N∑
n=1

ynsHn − RehH
N∑
n=1

snsHn ]

(b)
∂`(y|θ )
∂ Imh

=
1
σ 2
v
[
N∑
n=1

ynsHn − ImhH
N∑
n=1

snsHn ]

(c)
∂`(y|θ )
∂ Re x0

=
1
σ 2
v
[
N−1∑
n=0

(yn − hHsn)hH Re x′n
H]

(d)
∂`(y|θ )
∂ Im x0

=
1
σ 2
v
[
N−1∑
n=0

(yn − hHsn)hH Im x′n
H]

(e)
∂`(y|θ )
∂σv

= −
2N
σv
+

1
σ 3
v

N−1∑
n=0

(
(yn − hH sn)

H
(yn − hHsn)

)
For ease of representation, the block matrices are represented
as follows:

(f) J11 =
∂2`(y, θ)
∂2 Reh

= −
1
σ 2
v

N−1∑
n=0

snsHn

(g) J12 =
∂2`(y, θ)

∂ Reh∂ Imh
= 0

as there is no imaginary component of h in the term Reh

(h) J13=
∂2`(y, θ)

∂ Reh∂ Re x0
=

1
σ 2
v

N−1∑
n=0

(ynsn − 2RehHsn Re x′
H
n )

(i) J14=
∂2`(y, θ)

∂ Reh∂ Im x0
=

1
σ 2
v

N−1∑
n=0

(ynsn − 2RehHsn Im x′Hn )

(j) J15 =
∂2`(y, θ)
∂ Reh∂σv

= 0
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(Since vn is a zeromeanGaussian sequence, whenwe take the
expectation all the terms that contain vn will become zero)

(k) J21 =
∂2`(y|θ )

∂ Imh∂ Reh
= 0

as there is no real component of h in the term Imh

(l) J22 =
∂2`(y|θ )
∂2 Imh

= −
1
σ 2
v

N−1∑
n=0

snsHn

(m) J23 =
∂2`(y|θ )

∂ Imh∂ Re x0
= j

1
σ 2
v
ImhH

N−1∑
n=0

2sn Re x′
H
n

(n) J24 =
∂2`(y|θ )

∂ Imh∂ Im x0
= j

1
σ 2
v
ImhH

N−1∑
n=0

2(sn Im x′Hn )

(o) J25 =
∂2`(y|, θ)
∂ Imh∂σv

= 0

(Since vn is a zeromeanGaussian sequence, whenwe take the
expectation all the terms that contain vn will become zero)

(p) J31 =
∂2`(y|θ )

∂ Re x0∂ Reh

=
1
σ 2
v

N−1∑
n=0

(yn Re x′n − Re sn[Re sn]HReh)

(q) J32 =
∂2`(y|θ )

∂ Re x0∂ Imh

=
1
σ 2
v

N−1∑
n=0

(yn Re x′n − Re sn[Re sn]HImh)

(r) J33 =
∂2`(y|θ )
∂2 Re x0

=
1
σ 2
v

N−1∑
n=0

(
vnhH Re x′′n − (hH Re x′n)(hH Re x′n)

H)
(s) J34 =

∂2`(y|θ )
∂ Re x0∂ Im x0

=

N−1∑
n=0

hH Im x′n Re x
′
nh

H
= 0

due to mathematical expectation operator

(t) J35 =
∂2`(y|θ )
∂ Re x0∂σv

= 0

(Since vn is a zeromeanGaussian sequence, when we take the
expectation all the terms that contain vn will become zero)

(u) J41 =
∂2`(y|θ )

∂ Im x0∂ Reh

=
1
σ 2
v

N−1∑
n=0

(yn Im x′n − Im sn[Im sn]HReh)

(v) J42 =
∂2`(y|θ )

∂ Im x0∂ Imh

=
1
σ 2
v

N−1∑
n=0

(yn Im x′n − Im sn[Im sn]HImh)

where x ′n = (f −1sn )(xn)
′
and

∑N−1
n=0 v

2
n = 2Nσ 2

v .

(w) J43 =
∂2`(y|θ )

∂ Im x0∂ Re x0
=

N−1∑
n=0

hH Re x′n Im x′nh
H
= 0

due to mathematical expectation operator

(x) J44 =
∂2`(y|θ )
∂2 Im x0

=
1
σ 2
v

N−1∑
n=0

(
vnhH Im x′′n − (hH Im x′n)(hH Im x′n)

H)
(y) J45 =

∂2`(y|θ )
∂ Im x0∂σv

= 0.

(z) J55 =
∂2`(y|θ )
∂2σv

=
2N
σ 2
v
−

3
σ 4
v

N−1∑
n=0

(
vnvH

n
)
= −

4N
σ 2
v

Note :E[
∑N−1

n=0 vnh
H Re x′′n] = 0,E[

∑N−1
n=0 vnh

H Im x′′n] = 0,

E[
∑N−1

n=0 yn Re x
′
n] = 0, ∂2`(y|θ )

∂ Reh∂ Imh = 0, ∂2`(y,θ )
∂ Imh∂ Reh = 0. We

evaluate the following terms present in (16):

T−1 =



1 1 0 0 0

−1j 1j 0 0 0

0 0 1 1 0

0 0 −1j 1j 0

0 0 0 0 1


(51)

and the other term
[
TH]−1 is evaluated as

[TH]
−1
=



1 1j 0 0 0

1 −1j 0 0 0

0 0 1 1j 0

0 0 1 −1j 0

0 0 0 0 1


(52)

For ease of representation, let

J11 =
1
σ 2
v
E
N−1∑
n=0

snsHn , (53)

J13 =
2
σ 2
v
E
N−1∑
n=0

(RehHsn Re x′
H
n ), (54)

J14 =
2
σ 2
v
E
N−1∑
n=0

(RehHsn Im x′Hn ), (55)

J22 =
1
σ 2
v
E
N−1∑
n=0

snsHn , (56)

J23 = j
2
σ 2
v
ImhHE(

N−1∑
n=0

sn Re x′
H
n ), (57)

J24 = j
2
σ 2
v
ImhHE

N−1∑
n=0

(sn Im x′Hn ), (58)
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J31 =
1
σ 2
v
E
N−1∑
n=0

(Re sn[Re sn]HReh), (59)

J32 =
1
σ 2
v
E
N−1∑
n=0

(Re sn[Re sn]HImh), (60)

J33 =
1
σ 2
v
E
N−1∑
n=0

(hH Re x′n)(hH Re x′n)
H
, (61)

J41 =
1
σ 2
v
E
N−1∑
n=0

(Im sn[Im sn]HReh), (62)

J42 =
1
σ 2
v
E
N−1∑
n=0

(Im sn[Im sn]HImh), (63)

J44 =
1
σ 2
v
E
N−1∑
n=0

(hH Im x′n)(hH Im x′n)
H

(64)

Then, [TH]
−1

[J(Re θ )]−1T−1 yields the CRLB for the
complex case expressed as,

var(θ∗ − θ̂∗) ≥



2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1


[J(Re θ )]−1 (65)

where

[J(Re θ )]−1 =



J11 0 J13 J14 0

0 J22 J23 J24 0

J31 J32 J33 0 0

J41 J42 0 J44 0

0 0 0 0
4N
σ 2
v



−1

(66)

=



[
J11 0
0 J22

]−1[J13 J14
J23 J24

]−1
0[

J31 J32
J41 J42

]−1[J33 0
0 J44

]−1
0

0T σ 2
v /4N


(67)

The CRLB can be written as:

var(θ∗ − θ̂∗) ≥



2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1




[
J11 0
0 J22

]−1[J13 J14
J23 J24

]−1
0[

J31 J32
J41 J42

]−1[J33 0
0 J44

]−1
0

0T σ 2
v /4N

 (68)

For each sub-block, using the block matrix inverse identity
we can rewrite the above inequality as:

var(θ∗ − θ̂∗) ≥


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1



×


a11 0 a13 a14 0
0 a22 a23 a24 0
a31 a32 a33 0 0
a41 a42 0 a44 0
0 0 0 0 1

 (69)

where

11 = J13 − J14J24−1J23, (70)

12 = J31 − J32J−142 J41, (71)

a11 = J−111 , (72)

a13 = 1
−1
1 , (73)

a14 = −1
−1
1 J14J−124 , (74)

a22 = J−122 , (75)

a23 = −J−124 J231
−1
1 , (76)

a24 = J−124 + J−124 J231
−1
1 J14J−124 , (77)

a31 = 1
−1
2 , (78)

a32 = −1
−1
2 J32J

−1
42 , (79)

a33 = J−133 , (80)

a41 = −J−142 J411
−1
2 , (81)

a42 = J−142 + J−142 J411
−1
2 J32J−142 , (82)

a44 = J−144 . (83)

Simplifying the above expression we get,

var(θ∗−θ̂∗) > σ 2
v



J(Reh) 0 0 0 0

0 J(Imh) 0 0 0

0 0 J(Re x0) 0 0

0 0 0 J(Im x0) 0

0 0 0 0 1
4N


(84)

where

J(Reh)−1 = 2σ 2
v tr(

N−1∑
n=0

E[snsHn ]
−1

) (85)

J(Imh)−1 = 2
N−1∑
n=0

E[snsHn ]
−1

(86)

J(Re x0)−1 = 2
N−1∑
n=0

[
E[(hH Re x′n)(hH Re x′n)

H
]
]−1

(87)

J(Im x0)−1 = 2
N−1∑
n=0

E[(hH Im x′n)(hH Im x′n)
H
]
−1

(88)
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B. CRLB FOR DATA IN REAL DOMAIN
Here we show the derivation of the CRLB for data in real
domain, denoted as CRLB(Re θ ). The first and second order
partial derivatives are:

(a)
∂`(y|θ )
∂h

=
1
σ 2
v
[
N∑
n=1

ynsn − hT
N∑
n=1

snsTn ]

(b)
∂`(y|θ )
∂x0

=
1
σ 2
v
[
N−1∑
n=0

(yn − hTsn)hTx′n]

(c)
∂`(y|θ )
∂σv

= −
N
σv
+

1
σ 3
v

N−1∑
n=0

(yn − hTsn)
2

(d)
∂2`(y|θ )
∂σ 2

v
=

N
σ 2
v
−

3
σ 4
v

N−1∑
n=0

v2n = −
2N
σ 2
v

(e)
∂2`(y|θ )
∂h2

= −
1

2σ 2
v

N−1∑
n=0

snsTn

(f)
∂2`(y|θ )

∂x20
=

1
σ 2
v

N−1∑
n=0

vnhTx′′n − (hTx′n)
2

(g)
∂2`(y|θ )
∂x0∂h

=
1
σ 2
v

N−1∑
n=0

(vnx′n − sn[x′n]
Th)

(h)
∂2`(y|θ )
∂h∂x0

=
1
σ 2
v

N−1∑
n=0

(vnx′n − hTsn[x′n]),

where
∑N−1

n=0 v
2
n = Nσ 2

v
The FIM of the inverse map becomes,

J(θ ) = −E



∂2`(y|θ )
∂h2

∂2`(y|θ )
∂h∂x0

∂2`(y|θ )
∂h∂σv

∂2`(y|θ )
∂x0∂h

∂2`(y|θ )

∂x20

∂2`(y|θ )
∂x0∂σv

∂2`(y|θ )
∂σv∂h

∂2`(y|θ )
∂σv∂x0

∂2`(y|θ )
∂σ 2

v


=

1
σ 2
v


∑N−1

n=0 E[sns
T
n ]

∑N−1
n=0 E[sn[x

′
n]

Th] 0∑N−1
n=0 E[h

Tsnx′n]
∑N−1

n=0 E[(h
Tx′n)

2
] 0

0 0 2N

.
(89)

For ease of representation, let

J11 =
1
σ 2
v

N−1∑
n=0

E
[
snsTn

]
, (90)

J12 =
1
σ 2
v

N−1∑
n=0

E[sn[x′n]
Th], (91)

J21 =
1
σ 2
v

N−1∑
n=0

E[hTsnx′n], (92)

J22 =
1
σ 2
v

N−1∑
n=0

E[(hTx′n)
2
] (93)

The CRLB can then be written as:

J−1(θ ) = σ 2
v

J11 J12 0
J21 J22 0
0 0 2N

−1 (94)

= σ 2
v

[J11 J12
J21 J22

]−1
0

0T 1/2N

 (95)

Using block matrix inverse identity, we can rewrite the above
inequality as,

= σ 2
v

 1−11 −1−11 J12J
−1
22 0

−J−122 J211
−1
1 J−122 + J

−1
22 J211

−1
1 J12J

−1
22 0

0 0 1/2N


(96)

where 0 = [0, 0]T and 11 = J11 − J12J
−1
22 J21. We are inter-

ested in the estimation error variance of h, i.e., E[1hT1h],
where1h = ĥ−h and ĥ is the estimate. From (96), we have

E[1hT1h] ≥ tr(1−11 ) = σ 2
v tr([J11 − J12J

−1
22 J21]

−1
) (97)

By chaos representation of the RS we are exploiting the
Lyapunov Exponents (LE) of the chaos map. We believe that
by exploiting this unique characteristic of chaos, system iden-
tification performance can be improved. Moreover, the chaos
representation of random signal allows the chaotic map to
behave as the source of information with entropy depending
on the LE. The LE depends on the number of piecewise
linear segments as explained in this section. From the inverse
mapping function we have the derivative as:

x ′n+1 = f −1sn
′
(xn+1) = {p1, p2, . . . , pm} (98)

and the square of the gradient x ′n is independent of x. The first
order derivative of f is

f ′(x) =
1
p1
, 0 < x < p1,

...

=
1
pm
, 0 < x < pm (99)

and the square of the gradient f ′(x) is independent of x.
Since, f is equivalent to σ [49], LE does not change and is
expressed as [50]

λ =

m∑
i=1

pi log(f ′) (100)

where p ∈ (0, 1). For example, when m = 2 the LE in (100)
evaluates to λ = (1 − p) ln(2/(1 − p)) + p ln(1/p) where p
denotes the probability of occurrence of symbol 0. As a result,
employing the LEwhich is unique to chaos is certainly advan-
tageous in system identification. Since, the PWL chaotic map
is a 1D nonlinear dynamical system, it has only one positive
λ. Assuming that the process is ergodic, the time average is
equivalent to the phase-space average, it follows that when
N →∞, we have

E
[
(
∂xN
∂x0

)
2]
=

〈(
∂xN
∂x0

)2〉
= exp (2(N )λ) (101)
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where 〈.〉 represents the phase space average. As λ > 0,
exp (2(N )λ) >> exp (2λ) and exp (2(N )λ) increases expo-

nentially, we have E
[∑N−1

n=0

(
∂xn
∂x0

)2]
→ ∞ as N → ∞.

Therefore,

J−122 = E[
∑N−1

n=0 hT[x′n]
2]→ 0 (102)

We have the CRLB of the proposed method as:

J−1(h) = σ 2
v tr([J11]

−1) = σ 2
v tr
([
E
[ N−1∑
n=0

snsTn
]]−1)

. (103)

and approaches the CRLB asymptotically for large N . The
estimates are efficient and theMSE converges to the theoretic
CRLB as N→∞.
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