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ABSTRACT In this paper, a generalized disturbance observer (GDO) is proposed for estimating a broad
range of disturbances including fast-varying ones. The estimation error of the proposed GDO is proven to be
ultimately bounded provided that an arbitrary r th time derivative of disturbance is bounded. A broader range
of disturbances can be estimated by the proposed GDO in comparison with the conventional disturbance
observers (DO) or even recent fast-varying disturbance observers (FVDO) because conservative assumptions
such as zero time-derivatives of disturbances are avoided. Furthermore, intuitive rules for gain-tuning
and selecting the weighting matrices in the observer design are systematically presented. To validate the
superiority of the proposed GDO to conventional FVDOs, comprehensive studies using the linear and
nonlinear systems with different types of disturbances are conducted in the MATLAB/Simulink platform.
In a specific application of wind energy conversion systems, the proposed GDO is employed to precisely
estimate the aerodynamic torque. Then, a completed control systemwith a linear quadratic regulator (LQR) is
designed and implemented to verify the final performance with the proposed GDO. The proposed observer-
based LQR is proved to ultimately be bounded stable with superior performances to further validate the
proposed GDO.

INDEX TERMS Disturbance observer, fast-varying disturbance, optimal control, uncertainties estimation,
wind energy conversion system (WECS).

I. INTRODUCTION
Disturbance observers (DOs) have been widely used to esti-
mate disturbances, uncertainties and noise [1], [2] due to
their simplicity, transparence of design, and effectiveness.
During last three decades, DO are extensively applied to a
broad range of systems such as robot manipulators [3], [4],
disk drivers [5]–[7], navigation control systems [8], air-
breathing hypersonic vehicles [9], missiles control [10], and
wind turbine [11].

In conventional DOs [3]–[8], [10], [11], the convergence
of DOs was guaranteed with an assumption that disturbances
are slowly varied in comparison with observer dynamics.
Without this assumption, the convergence of estimation error
was not assured. Unfortunately, in practice, disturbances usu-
ally have fast dynamics. As a result, the conventional DOs
design associated with the slow-varying assumption does
not satisfy the estimation accuracy and disturbance rejection
performance.

Advanced DOs such as extended state observer (ESO)
in active disturbance rejection control (ADRC) [12], [13],

unknown input observer (UIO) [14], [15], and equivalent
input disturbance (EID) estimator [16], [17] were introduced.
Although these approaches were developed from the differ-
ent bases and prospects, their stability analyses were still
based on the key assumption that the first time-derivative
of disturbance is zero. Recent works presented enhanced
DOs such as adaptive DO for permanent magnet linear syn-
chronous machines (PMLSMs) [18], nonlinear optimal DO
for permanent magnet synchronous motors (PMSMs) [19]
with high-performance of estimation and interesting char-
acteristics. However, the aforementioned assumption is still
required.

Fast-varying disturbance observers (FVDOs) were first
introduced in [20] with the analysis in frequency domain,
and further discussed in [21]–[23]. Although the frequency
approaches are intuitive and simple, they are only applicable
to a class of linear systems and unable to analyze the tran-
sient performance. Meanwhile, state-space approaches allow
the transient behavior analysis such as investigated FVDOs
in [9], [24]–[28]. Although the disturbance estimation
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performances are improved in some aspects, the problems
encountered in these methods [9], [24], [25], [27], [28]
are the lack of gain-tuning rules, which limit their applica-
tions to practical systems. In [26] and [28], the concept of
multiple-integral observer was proposed with pole placement
technique for gain selections. However, the information of
derivative and higher-order derivatives of disturbances which
are essential in mismatched disturbance rejection control, are
not available.

Wind energy is one of the most promising renewable
energy sources as it does not produce any pollutant during
operation, other than requirements for maintenance. At each
wind speed, there is an optimal operating point for turbine
to capture the maximum power. Therefore, there is a desire
for designing feedback control schemes to track the opti-
mal reference of rotor speed associated with variable wind
velocity [29]–[31]. However, it is difficult to precisely mea-
sure the wind speed via traditional cup-anemometers. Other
estimation methods such as physical estimation methods
in [32], [33], Gray models and Kalman filter [34]–[37],
genetic algorithm [38] are either ineffective for short-term
estimation, poor in estimation performance, or complicated.
On the other hand, instead of estimating wind speed, the aero-
dynamic torque is observed [39]–[43]. In this approach,
the conventional observer algorithms such as sliding-mode
observers, robust observers are applied to estimate the aero-
dynamic torque based on the assumption that aerodynamic
torque is slowly-varying. Unfortunately, as aerodynamic
torque is proportional to the square of wind speed, this
assumption is unreasonable. Although simulation and exper-
imental results showed that with this assumption, the estima-
tion performance is acceptable, there is no rigorous reasoning
to guarantee the convergence of the observer.

Considering these issues, first, this paper proposes a
generalized disturbance observer (GDO) for estimating dis-
turbances including fast-varying ones. The gains of the pro-
posed observer are systematically tuned via selecting appro-
priate value for elements of weighting matrices. The rules
for choosing weighting matrices are also clearly presented
for practice. Comparative studies are conducted to prove the
superiority of the proposed observer cto conventional FVDO.
For further verifying the effectiveness and feasibility of the
proposed observer, it is applied to estimate the aerodynamic
torque in the wind turbine (WT) optimal speed tracking prob-
lem. Hence, both the aerodynamic torque and wind speed
measurements are avoided. The stability analysis of closed-
loop control system with a linear quadratic regulator (LQR)
is presented in detail. The comparative studies with con-
ventional FVDOs and validation scenarios in WT applica-
tion with the GDO based LQR schemes are carried out in
MATLAB/Simulink to comprehensively verify the advan-
tages of the proposed GDO. The contributions of this paper
are summarized as follows:
1. A new theorem in the proposed GDO to estimate a

broad range of disturbances by overcoming the drawbacks
of existing observers [1]–[28], [25], [43]–[45] (i.e., the

assumption that the first and/or higher order-time derivate
of the disturbances is zero).

2. Further advantages of the proposed GDO in comparison
with recent FVDOs:
a. Better noise rejection ability (e.g., superior to the

observer in [28]).
b. Applicability into systems with unavailable state vari-

ables to solve the problem of recent methods which
require all the state variables measurable [25], [45].

3. A proposed GDO-based LQR for systems with fast-
varying disturbances, a theorem to analyze the overall
stability of the proposed control system.

4. Practical application of the proposed GDO-based LQR
to WT optimal speed tracking problem where the
aerodynamic torque and speed reference are estimated
by GDO.

II. GENERALIZED FAST-VARYING DISTURBANCE
OBSERVER BASED ON OPTIMAL CONTROL APPROACH
A. PROBLEM STATEMENT
Consider the system [28], [44]{

ẋ = Ax + Bu+ Dd
y = Cx

(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rs, A, B, C , and D are known
matrices, u is the control input , and d is the lump sys-
tem disturbance, which may include parameter uncertainties,
external disturbances, and system faults.
Assumption 1: The disturbance is continuous and its

r th time-derivative is bounded (i.e., |d (r)i | ≤ ε with
i = 0, 1, 2, . . . q where d (r) denotes the r th-time deriva-
tive of the disturbance and ε is an unknown positive
number).

It should be noted that this is the first time such a gener-
alized assumption is presented for an observer design. With
r = 1 and ε = 0, it turns out the common assumption
in conventional DOs [1]–[8], [10] where the disturbance is
considered as a slowly-varying variable or constant. With
r = 1 and ε 6= 0, it turns out the assumption in [45].
With r ≥ 2 and ε = 0, the common assumption is released
as the varying level of disturbance is represented by the
value of r via the order polynomial of time [9], [28], [44].
However, if the disturbances include the oscillation terms
such as sinusoidal, the bound ε cannot be zero. Therefore,
it is ineligible for the assumption on the disturbance as a finite
r-order polynomial of time as in [9], [28], and [44]. In [25],
the bound assumption is required for the disturbance and all
of its time-derivatives, i.e.,

∣∣∣d (j)i ∣∣∣ ≤ ε, with i = 0, 1, 2, . . . q;
j = 0, 1, 2, . . . r .
Based on this assumption, the disturbance can be modeled

as follows {
ż = Sz+Md (r)

d = Nz
(2)
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where z =
[
d ḋ . . . d (r−1)

]T , S, M , and N are the system
matrices and have the following structures:

S =
[
0q(r−1)×q diag

(
W1 · · · Wr−1

)
0q×q 0q×q(r−1)

]
,

Wi =

[
0(r−1)×1 Ir−1

0 01×(r−1)

]
, (3)

M =
[
0(r−1)×qIq

]
,

N =
[
Iq 0q×(r−1)

]
.

B. GENERALIZED OBSERVER DESIGN
Combining (1) and (2), an extended system can be achieved
and given by, {

˙̄x = Āx̄ + B̄u+ M̄d (r)

y = C̄ x̄
(4)

where x̄ =
[
z x

]T ,
Ā =

[
S 0qr×n

(DN )n×qr A

]
, B̄ =

[
0qr×m
B

]
,

C̄ =
[
0qr×s C

]
, M̄ =

[
M
0n×q

]
Lemma 1: If (A,C) is observable and rank

[
A D
C 0s×q

]
=

n+q,
(
Ā, C̄

)
is observable for any positive integer value of r .

Proof: This proof can be completed similarity to that of
Theorem (i) in [26].
The optimal observer for estimating disturbance and its

derivatives is expressed as

d ˆ̄x/dt = Ā ˆ̄x + B̄u+ L(y− C̄ ˆ̄x) (5)

where control signal u is the function of x will be achieved
from the output of the controller and L = PoC̄TR−1o , with Po
is the solution of the following Riccati equation

ĀPo + PoĀT − PoC̄TR−1o C̄Po + Qo = 0 (6)

In (6), Qo is a symmetric positive semidefinite matrix and Ro
is a symmetric positive definite matrix.

Based on the assumption, the error dynamics of the
observer is obtained as follows:

d ˜̄x/dt =
(
Ā− LC̄

)
˜̄x + M̄d (r) (7)

where ˜̄x is the estimation error defined as ˜̄x = x̄ − ˆ̄x.
Theorem 1: With the proposed optimal observer given in

(5) and (6), the estimation error is bounded.
Proof: Consider the following Lyapunov function:

V
(
˜̄x
)
= ˜̄xTH ˜̄x, where H = P−1o . Its time derivative along

the error dynamics (7) is given by

V̇ =
d
dt
˜̄xTH ˜̄x

= 2 ˜̄xT
(
HĀ− PCTR

−1
C
)
˜̄x + 2 ˜̄xTHM̄d (r)

= ˜̄xTH
(
ĀPo + PoĀ

T
− 2PoC̄TR

−1
C̄Po

)

×H ˜̄x + 2 ˜̄xTHM̄d (r)

≤ −˜̄xTHQoH ˜̄x + 2 ˜̄xTHM̄d (r)

≤ −

∥∥∥ ˜̄x∥∥∥ (λm1 ∥∥∥ ˜̄x∥∥∥− 2
∥∥HM̄∥∥ ε) (8)

where λm1 denote the smallest eigenvalue of HQoH .
Therefore, with an appropriated selection of Qo and Ro

and after a sufficiently long time, the norm of estimator is
bounded by ∥∥∥ ˜̄x∥∥∥ ≤ λ1 (9)

where λ1 = 2
∥∥HM̄∥∥ ε/λm1.

Remark 1: It is noted that the upper bound λ1 has an
influence on the accuracy of the observer. However the upper
bound λ1 can be directly adjusted by tuning the weighting
matrices Qo, Ro to obtain the suitable λ1. Therefore, the esti-
mation error is regulated by choosing weighting matrices
such that the reasonable accuracy of observer is guaran-
teed. Therefore, by referring to [46], the observer guarantees
ultimate boundedness and uniform stability of an arbitrarily
small ball centered at ˜̄x = 0.

C. FURTHER DISCUSSION
Discussion 1: In (1), for simplification, d is considered to

be a scalar. However, the proposed GDO is not limited to this
assumption. It is obvious that with d can be amulti-dimension
vector, the design procedure of proposed GDO is remained
the same, only dimensions of S, M , and N are required to be
modified.
Discussion 2: The following nonlinear systems [28] is

considered as

ẋ = f (x, u)+ Dd . (10)

The proposed GDO is also applicable by transforming (9)
to (1):

ẋ = Ax + [f (x, u)− Ax]+ Dd (11)

where matrix A now is defined as A = diag (a1, a2, . . . , an)
with its elements are designed parameters. Then GDO can
be designed for (10) as in (5) by just replace the term B̄u by
[f (x, u)− Ax].
Discussion 3: The proposed observer in (5) is the

Kalman-Bucy optimal observer which minimizes the perfor-
mance index E( ˜̄xT ˜̄x) representing the expectation value of
˜̄xT ˜̄x for the following perturbed model{

˙̄x = Āx̄ + B̄u+ M̄d (r) + p
y = C̄ x̄ + q

(12)

where p and q are independent white Gaussian noise signals
with E(p) = 0, E(q) = 0, E(ppT ) = Qo, and E(qqT ) = Ro.
Accordingly, the observer performance is mainly influ-

enced by the system model if the measurements are noisy
(Ro large) and the input noise is small (Qo small). Therefore,
L is small. This leads to a slow observer as measured by
the location of its eigenvalues. However, if the measurements
are good and the input noise intensity is large, the observer
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performance is dependent on the measurement. In this case,
L is large, resulting in a fast observer with high bandwidth.
Thus, by assuming that the measurement is good, the fast
observer is desirable. The subsequent procedure summarizes
the tuning process of the observer gain matrix L [47]:
1) Set Qo and Ro as diagonal matrices with initial elements

is set as one (i.e., initial guess of Qo and Ro are identity
matrices);

2) Gradually, increase elements of Qo and decrease ele-
ments of Ro, then calculate L as in (5) and (6);

3) If the observer performance is not satisfied, return to
step 2. Otherwise, quit.

Discussion 4: In recent FVDOs such as in [28], [45],
and [25], all state variables need to be measurable in order
to construct the observers. Meanwhile, in the proposed GDO,
this drawback is solved. The observer is designed as long as
the Lemma 1 is satisfied. In this context, both disturbance
and the unavailable state(s) are estimated. In section III, this
advantage will be discussed in detail.
Discussion 5: Finally, note that the proposed disturbance

observer is applicable to any control law such as in [1]–
[28], and [25], [39]–[45] to improve their overall control
performance and extend range of applications. In section IV,
a GDO-based LQR will be designed for WECSs.

III. COMPARING THE PROPOSED GDO TO
CONVENTIONAL HIGH-ORDER OBSERVERS
A. COMPARING TO THE HIGH-ORDER DISTURBANCE
OBSERVER IN [28] CONSIDERING A RAMP DISTURBANCE
In [28], the following system is considered:

ẋ = −2x + d (13)

where d is a sawtooth waveform.
Then the disturbance observer (DOB) in [28] is constructed

as follows
˙̂x = −2x + d̂

˙̂d = γ0
(
x − x̂

)
+ γ1

t∫
0

(
x − x̂

)
dτ (14)

Note that in the form of (1), A = −2,C = D = 1 and it
is easy to check that condition of Lemma 1 is satisfied. Also,
the conventional DOB in (13) is designedwith the assumption
that d̈ = 0. Thus, for a fair comparison, the proposed GDO
with r = 2 is used for comparison that has the dynamics as

ḋ = d̂1 + l1
(
x − x̂

)
˙̂d1 = l2

(
x − x̂

)
˙̂x = −2x + d̂ + l3

(
x − x̂

)
(15)

where L =
[
l1 l2 l3

]T is calculated from (6) with

Ā =

 0 1 0
0 0 0
1 0 −2

, C̄ =
[
0 0 1

]
(16)

Note that in this example, there is no controller included.

FIGURE 1. Comparative results for system (12) of the conventional DOB
in [28] and the proposed GDO under the condition of case 1
(no noise).

Case 1 (No Noise): Fig. 1 shows the comparative simula-
tion results of the DOB and proposedGDOwith the following
selected gains: (γ0, γ1) = (40, 400) (the same as in [28]) and
the weighting matrices:

Qo = 102 × diag
(
104 0.8 250

)
, Ro = 10−2.

It is observed that although both methods achieve zero
steady-state error; however, the proposed GDO provides
shorter settling time.

FIGURE 2. Comparative results for system (12) of the conventional DOB
in [28] and the proposed GDO under the condition of case 2 (with noise).

Case 2 (With Noise): Assuming that there is a sample
Gaussian noise with frequency of 1000, zero-mean, and stan-
dard deviation of 0.01 is included in the measured state.
For the conventional DOB, In order to deal with the noise,
the first equation of (13) is revised to ˙̂x = −2x + d̂ +
k
(
x − x̂

)
. The gains of the conventional DOB is (k, γ0, γ1) =

(100, 40, 400) [28]. Also, the weighting matrices of the
proposed GDO are the same as case 1. Fig. 2 shows the
comparative results of this conventional DOB in [28] and
the proposed GDO considering the noise. It is easy to
see that the proposed GDO can mitigate the noise more
effectively.
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B. COMPARING TO THE EXTENDED DISTURBANCE
OBSERVER IN [25] WITH A COMPLEX DISTURBANCE
Consider the following systems [45], [25],{

ẋ1 = x2 + d
ẋ2 = −2x1 − x2 + ex1 + u

(17)

where
d =

1
2
x21 + x1 sin (2t)+ 0.2x2 +

t
6
+ sin2 (2t)

− cos (2t) for t < 2

d =
1
2
x21 + x1 sin (2t)+ 0.2x2 +

t
6
+ sin2 (2t)

− cos (2t)+ 1 for t ≥ 2

(18)

1) WITH ALL STATES ARE AVAILABLE
The second-order extended disturbance observer (EDO)
in [25], is constructed as,

d̂ = p11 + l11x1

ṗ11 = −l11
(
x2 + d̂

)
+ d̂1

d̂1 = p12 + l12x1

ṗ12 = −l12
(
x2 + d̂

)
(19)

It should be noted that, in (18), only the first equation of
the system (17) is considered for forming the EDO. Also,
this conventional EDO is designed with the assumption that∣∣d (j)∣∣ ≤ ε, with j = 0, 1, 2. Thus a fair comparison,
the proposedGDO is designed by only using the first equation
of (18) with r = 2. In the form of (1), A = 0,C = D = 1 and
it is easy to check that the condition of Lemma 1 is satisfied.
Then, the dynamics of the proposed GDO in this case is given
as,

ḋ = d̂1 + l1
(
x1 − x̂1

)
˙̂d1 = l2

(
x1 − x̂1

)
˙̂x1 = x2 + d̂ + l3

(
x1 − x̂1

)
(20)

where L =
[
l1 l2 l3

]T is calculated from (6) with

Ā =

 0 1 0
0 0 0
1 0 0

, C̄ =
[
0 0 1

]
(21)

Fig. 3 demonstrates the comparative simulation results of
these two observers. Fig. 3 (a) illustrates the waveforms of the
state x1 and estimation errors of two observers. Fig. 3 (b) is
the zoomed-in results of the lower plot in Fig. 3 (a). It is noted
that these results are achieved by using the same controller as
in [25] as

u = 2x1 + x2 − ex1 − 5
(
x2 + d̂

)
− 50

(
x2 + cx1 + d̂

)
. (22)

The gains of observers are tuned as follows:

(l11, l12) = (100, 20) ,

Qo = 103 × diag
(
103, 10, 1

)
, Ro = 10−2.

FIGURE 3. Comparative results for system (16) of the conventional EDO
in [25] and the proposed GDO with r = 2 in case both x1 and x2 is
measurable. (a) waveforms of state variable (x1) and estimation error (d̃ )
for the time range from 0 sec to 10 sec. (b) Zoomed-in results of
estimation error.

It is observed that the proposed GDO can give faster
responses and smaller steady-state error of estimation and
consequently, it results in smaller steady-state error of track-
ing error.

2) WITH ONLY STATE x1 IS AVAILABLE
It is easy to see that the observer (18) and controller (21)
in [25] for the system (16) require the information of x2. With
only x1 is measurable, the EDO-based controller in [25] is
inapplicable. However, we will show that with this condition,
our proposed EDO is applicable and utilized to estimate both
d and x2. In this case, (1) can be transform to

A =
[

0 1
−2 −1

]
, C =

[
1 0

]
, D =

[
1
0

]
(23)

So the rank of observable matrix

rank (Ob) = rank
([

C
CA

])
= rank

([
1 0
0 1

])
= 2,

and rank
([

A D
C 0

])
= rank

 0 1 1
−2 −1 0
1 0 0

 = 3.

It means the condition of Lemma 1 is satisfied. Thus,(
Ā, C̄

)
is observable any positive integer value of r . With

the estimated value of x2, the controller (21) is available by
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FIGURE 4. Performance of the proposed GDO for system (16) with r = 2
and 3 in case only x1 is measurable.

replacing x2 by x̂2. This controller is used for the simulation
studies in this case. The observer laws are constructed sim-
ilarly as previous case. Fig. 4 demonstrates the estimation
error of x2 and d with r = 2 and 3. Here, the weighting
matrices for r = 2 are

Qo2 = 103 × diag
(
103, 10, 1, 103

)
, Ro2 = 10−2;

and for r = 3, the matrices are:

Qo = 103 × diag
(
103, 10, 10, 1, 103

)
, Ro = 10−2.

As seen from Fig. 4, the estimation errors with r = 3 are
slightly smaller than those with r = 2.

IV. GDO BASED LQR FOR TRACKING CONTROL OF WIND
ENERGY CONVERSION SYSTEMS
A. WIND ENERGY CONVERSION SYSTEM MODELLING
The dynamics of wind energy conversion systems (WECSs)
[31], [48], can be expressed as,

θ̇r = ωr

Jt ω̇r = Ta − Ktωr − Btθr − Tg
LsṪg = −RsTg + u

(24)

where θr is the angular position of the rotor, ωt is angular
velocity of the rotor, Ta is aerodynamic torque, Tg is electro-
magnetic torque of generator, u is the control input, Jt is the
equivalent inertial constant,Kt is equivalent external damping
constant, Bt is equivalent stiffness constant, and Ls and Rs are
the lumped inductance and resistance of the generator.

The equation in (23) can be rewritten in the state-space
form as (1) with

x =

 θrωr
Tg

, A =

 0 1 0
−a1 −a2 −a3
0 0 −a4

, B =
 0
0
b

,
D =

 0
d1
0

, d = Ta, C =

 1 0 0
0 1 0
0 0 1

. (25)

and

a1 =
Bt
Jt
, a2 =

Kt
Jt
, a3 =

1
Jt
, a4 =

Rs
Ls
, b =

1
Ls
, d1 =

1
Jt
.

(26)

The aerodynamic torque is calculated as,

Ta = Pa/ωt (27)

where Pa is the aerodynamic power that the wind turbine
extracts from the wind which is given as follows

Pa =
1
2
ρπR2Cp (λ, β) v3 (28)

where ρ is the air density, R is the WT rotor radius, v is the
wind speed, and the power coefficientCp(λ, β) represents the
turbine efficiency to convert the kinetic energy of the wind
intomechanical energy. This coefficient depends on the shape
and geometrical dimensions of the turbine and it is a nonlinear
function of the pitch angle of the blades β and the tip-speed
ratio

λ =
ωrR
v
. (29)

According to (27), the captured power is linearly propor-
tional to coefficient Cp, which is reached its maximum value
Cpmax at the optimal tip-speed ratio λopt . For a given wind tur-
bine, λopt is a constant value. Therefore, maximum captured
power is achieved by tracking the optimum reference of rotor
speed given by:

ωref =
λopt

R
v. (30)

For this problem, it is assumed that the wind speed v is
unknown. Then consequently, ωref and Ta are unknown.
According to (26), (27), and (29) wind speed, wind speed
reference, and aerodynamic torque can be calculated if one of
them is known. So if one of them is estimated, the others are
achievable. In this paper, the proposed GDO in section II.B
is used to estimate aerodynamic torque with the parameters
given in (23).

B. LQR DESIGN FOR OPTIMUM REFERENCE TRACKING
A LQR will be proposed for WT in this subsection. The WT
system (23) and (24) can be transformed to the following
form:

ẋ = Ax + Bc (u− uc) (31)

where x =
[
θ̃r ω̃r T̃g

]T
,Bc =

[
0 0 b

]T ; θ̃r is the tracking
error of angular position, ω̃r is the tracking error of angu-
lar velocity, T̃g is the tracking error of the electromagnetic
torque, uc is the compensating terms of control inputs, respec-
tively. They are defined as follows:

θ̃r = θr − θref ; ω̃r = ωr − ωref ; T̃g = Tg − Tref ;

θref =

∫
ωref dt;

Tref =
1
a3

(
d1Ta − ω̇ref − a1θref − a2ωref

)
;

uc = −
1
b

(
Ṫref + a4Tref

)
. (32)

where θref is the speed reference of angular position, and Tref
is the reference of electromagnetic torque. As a3 and b are
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calculated as in (25) with Jt and Ls always positive numbers,
calculations of Tref and uc as in (31) are always feasible.
Noted that uc is achieved through some transformation in
order to include all the terms which cannot be expressed as
functions of state variable x.
Define the following linear quadratic performance index:

J (x, u) =
∫
∞

0

(
xTQx + uTTu

)
(33)

where Q ≥ 0 and is an 3× 3 matrix, T > 0 and is a scalar.
To minimize this performance index, a LQR is proposed as

follows [49],

u = uc − Kx (34)

whereK = R−1BTP is the gain matrix of the controller and P
is the positive-definite solution of following algebraic Riccati
equation,

PA+ ATP− PBcT−1BTc P+ Q = 0 (35)

The gain tuning rule for LQR can be found in detail in [49]
and [50].
Theorem 2:With the control law in (34), the state vector x

in the system (23), (24) exponentially converges to zero.
Proof: Select the following Lyapunov function:

V (x) = xTPx (36)

So V (x) is positive-definite and radially unbounded. From
(23), (24), and (35), the time derivative of V satisfies,

V̇ (x) =
d
dt
xTPx

= 2xTP (A+ BK ) x

= 2xTP
(
A− BT−1BTP

)
= xTP

(
PA+ ATP− 2PBT−1BTP

)
x

≤ −xTQx (37)

It means the time-derivative of V is negative for all of non-
zero x. It implies that x exponentially converges to zero.

C. GDO BASED TRACKING CONTROL
It is easy to check that the condition of Lemma 1 is satisfied.
With the estimated disturbance d̂ = T̂a by using GDO
presented in previous section and the system as in (23), (24)
according to (26)-(28), the estimation of rotor speed reference
can be achieved by,

ω̂ref =

√
T̂a
kopt

(38)

where kopt = 1
2ρπR

5Cpmax/λ3opt .
Based on the estimated aerodynamic torque T̂a, the track-

ing error and compensating terms are now expressed as

ˆ̃
θr = θr − θ̂ref ; ˆ̃ωr = ωr − ω̂ref ;

ˆ̃Tg = Tg − T̂ref ;

θ̂ref =

∫
ω̂ref dt;

T̂ref =
1
a3

(
d1T̂a − ˙̂ωref − a1θ̂ref − a2ω̂ref

)
;

uc = −
1
b

(
˙̂Tref + a4T̂ref

)
. (39)

Control law (34) now becomes

u = ûc − Kx̂ (40)

where x̂ =
[
ˆ̃
θr ˆ̃ωr

ˆ̃Tg
]T

.
Then, from (38), the following equations are achieved,

x̂ = x + Fxe
ûc = uc + Gxe (41)

where

xe =
[
e ė ë

]T
, e = Ta − T̂a,

F =


n1 0 0

n2 0 0

n3 n4 0

, G =
[
g1 g2 g3

]
,

n1 =
2
(
Ta+T̂a+

√
TaT̂a

)
3
√
kopt

(
√
Ta+

√
T̂a

) , n2=
1√

kopt

(
√
Ta +

√
T̂a

) ,

n3 =
1
a3

d1−a2h2−a1h1+ ˙̂Ta

2
√
koptTaT̂a

(√
Ta+

√
T̂a
)
,

n4 =
1

2a3
√
koptTa

, g1 = −
1
b
(ṅ3 + a4n3) ,

g2 = −
1
b
(n3 + a4n4 + ṅ4) , g3 = −

n4
b1
.

D. STABILITY ANALYSIS OF CLOSED-LOOP SYSTEM
In order to analyze the stability of the system, (40) is rewritten
based on (41) as

u = uc − Kx + Exe (42)

where E = KF + G.
On the other hand, we have

xe = U ˜̄x (43)

where U =
[
I3 03×(n+r−3)

]
. Note that in this case, n = 3.

Theorem 3: The state vector x and the estimation vector ˜̄x
exponentially converges to zero.

Proof: Consider the following Lyapunov function:

V
(
x, ˜̄x

)
= xTPx + γ ˜̄xTH ˜̄x (44)

where γ is a positive constant.
Then its time derivative is given by,

V̇ (x, xe)

= 2xTP (Ax + Bcu− Bcuc)+ 2γ ˜̄xTH
(
Ā− LC̄

)
˜̄x
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= 2xTP
(
Ax − BcKx + BcEU ˜̄x

)
+ 2γ ˜̄xTH

(
Ā− LC̄

)
˜̄x

+ 2γ ˜̄xTHM̄d (r)

≤ −xTQx + 2xTPBcEU ˜̄x − γ ˜̄xTHQoH ˜̄x + 2γ ˜̄xTHM̄ε

(45)

We further denote xa =
[
x ˜̄x

]T
, so

x = T1xa
˜̄x = T2xa (46)

where T1 =
[
In 0n×(n+r)

]
,T2 =

[
0(n+r)×n I(n+r)

]
.

Then,

−xTQx + 2xTPBcEU ˜̄x − γ ˜̄xTHQoH ˜̄x + 2γ ˜̄xTHM̄ε

= −xTa T
T
1 QT1xa + 2xTa T

T
1 PBcEUT2xa

− γ xTa T
T
2 HQoHT2xa + 2γ xTa T

T
2 HM̄ε

≤ −λm2 ‖xa‖2 + 2γ
∥∥∥T T1 PBcEUT2∥∥∥

· ‖xa‖2 + 2γ ε
∥∥∥T T2 HM̄∥∥∥ ‖xa‖

= −‖xa‖
[(
λm2 − 2γ

∥∥∥T T1 PBcEUT2∥∥∥) ‖xa‖
− 2γ ε

∥∥∥T T2 HM̄∥∥∥] (47)

where λm2 denote the smallest eigenvalue of (T T1 QT1+
γT T2 HQoHT2). It is easy to see that we can always choose
γ to ensure that

(
λm2 − 2γ

∥∥T T1 PBcEUT2∥∥) > 0. So with
an appropriated selection ofQo, Ro,Q,R. After a sufficiently
long time, ‖xa‖ is bounded as

‖xa‖ ≤ λ2 (48)

where λ2 = 2γ ε
∥∥T T2 HM̄∥∥ / (λm2 − 2γ

∥∥T T1 PBcEUT2∥∥).
[1] Therefore, the state vector x and the estimation vector ˜̄x

are ultimately bounded and the bounds can be lowered
by appropriately selecting of the weighting matrices of
controller and observer. Thus the stability of the GDO-
based LQR is proven in the sense of [46].

E. SIMULATION VERIFICATION
In this section, the simulation studies will be done with
the following parameters [35], [48]: Jt = 16,Bt = 52,
Kt = 3,Ls = 0.01,Rs = 0.01,R = 21.65, ρ = 1.29, and
Cpmax = 0.4291 at λopt = 8.1. Fig. 5 shows the profile of the
wind velocity.

The weighting matrices of LQR are selected as follows:
Q = diag

(
1, 103, 1

)
and T = 10−3×diag (1, 1, 1). To verify

the effectiveness of the proposed GDO, we will simulate with
three case: r = 1, r = 2, and, r = 3. Accordingly, weighting
matrices associated with these three values of r are tuned by
referring to subsection II.C and achieved as follows,

Qo1 = diag(102, 103, 1, 1), Ro1 = 10−6 × diag(1, 1, 1),

Qo2 = diag(102, 102, 103, 1, 1), Ro2 = Ro1,

Qo3 = diag(102, 10
2
, 102, 103, 1, 1), Ro3 = Ro1.

FIGURE 5. Wind velocity profile.

FIGURE 6. Control and estimation performance of the proposed
GDO-based LQR with r = 1 for the WECS (23).

FIGURE 7. Control and estimation performance of the proposed
GDO-based LQR with r = 2 for the WECS (23).

Figs. 6-8 illustrate the simulation results of proposedGDO-
based LQR with r = 1, 2, and 3, respectively. In each figure,
the waveform of the estimated angular velocity reference
(ω̂ref ), the angular velocity response (ωr ), the aerodynamic
torque (Ta), the estimated aerodynamic torque (T̂a), tracking
error of angular velocity (ω̃), and estimation error of the
aerodynamic torque (eT = T̂ a−Ta) are shown. The tracking
error and estimation error of three control schemes (three
value of r) are included in one figure as illustrated in Fig. 9.
As being observed from these figures, the best estimation
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FIGURE 8. Control and estimation performance of the proposed
GDO-based LQR with r = 3 for the WECS (23).

FIGURE 9. Comparative estimation errors of the proposed GDO-based
LQR with r = 1, 2, 3 for the WECS (23).

performance is associated with r = 3((eT )max = 20.2%,
11.8% and 6.7% for r = 1, 2, and 3, respectively). In other
words, as the order of the observer increases, the aerody-
namic torque is more precisely estimated. As a consequence,
the estimation performance affects the tracking performance.
Hence, the best tracking performance is also for the case
r = 3 ((ω̃)max = 10.3%, 7.2% and 6.1% for r = 1, 2, and 3,
respectively).

V. CONCLUSION
This paper proposed a generalized disturbance observer
called GDO for estimating a broad range of disturbances,
including fast-varying ones. By using the proposed GDO,
the common assumption that the first time-derivative of dis-
turbance is slowly varied, is avoided. Also, our assump-
tion loosens up the assumptions of conventional FVDOs to
include more types of fast-varying disturbance. The proposed
GDO has a very intuitive gain tuning rule which is straight-
forward and easy to implement. To validate the effective-
ness of the proposed GDO, comparative studies with other
conventional FVDOs has been conducted. Finally, the pro-
posed GDO is applied to a WECS to estimate the aero-
dynamic torque while avoiding the measurement of wind
velocity and aerodynamic torque. To verify by a specific

application, a well-known LQR is combined with DGO to
control the speed of the wind turbine. The overall stability
analysis of the GDO-based LQR is also analyzed in detail and
the advantageous performances are verified. The proposed
GDO can be applied to any DO-based control scheme. There-
fore, its applications are still opened which encourage more
research works in the future.
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