
SPECIAL SECTION ON NOVEL LEARNING APPLICATIONS AND SERVICES FOR SMART CAMPUS

Received March 26, 2018, accepted April 23, 2018, date of publication May 2, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2832222

CampusTalk: IoT Devices and Their Interesting
Features on Campus Applications
YI-BING LIN 1, (Fellow, IEEE), LI-KUAN CHEN 1, MIN-ZHENG SHIEH2, (Member, IEEE),
YUN-WEI LIN1, (Member, IEEE), AND TAI-HSIANG YEN1
1Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan
2Information Technology Service Center, National Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Yi-Bing Lin (liny@cs.nctu.edu.tw)

This work was supported in part by the Ministry of Science and Technology under Grant 106-2221-E-009 -006 and Grant 106-2221- E-009
-049 -MY2, in part by the Ministry of Education through the SPROUT Project-Center for Open Intelligent Connectivity, National Chiao
Tung University, Taiwan, in part by Academia Sinica under Grant AS-105-TP-A07, and in part by the Ministry of Economic Affairs under
Grant 106-EC-17-A-24-0619.

ABSTRACT Internet of Things (IoT) allows interactive learning of students by inspiring their innovation
everywhere on the campus. This paper proposes CampusTalk that provides convenient access to cyber
and physical devices through the web technology. In this way, the campus applications can be accessed
anywhere in the world through any computing device with a display and a browser without installing any
mobile app. CampusTalk unifies the concepts of automatic creation of ‘‘mirror device features’’ (simulated
counterpart) and talkPal device features, which are nicely demonstrated through several applications on
campus. The core application of CampusTalk is SmartPhoneTalk that allows other applications to be accessed
by students through their smartphones without installing any mobile apps. We describe three CampusTalk
applications, including MusicTalk, PingPongTalk, and SkeletonTalk, to demonstrate cyber and physical
interaction with SmartPhoneTalk. After the IoT devices of these applications have been developed and are
accommodated in CampusTalk, the students can use the CampusTalk GUI to connect them with various
combinations for innovative applications without extra programming effort.

INDEX TERMS Art design, campus applications, cyber and physical interaction, Internet of Things.

I. INTRODUCTION
Internet of Things (IoT) has become very popular because it
provides interconnection of uniquely identifiable computing
devices within the existing Internet infrastructure [12]–[14].
IoT applications have been successful for B-to-B services,
but have not been widely deployed for sustainable com-
mercial B-to-C services. We found that university campus
provides excellent sustainable service trial environment for
both B-to-B and B-to-C services. Particularly, IoT allows
interactive learning of students by expiring their innovation
everywhere on the campus. To integrate IoT with learning
environments is not trivial, especially if we want to create
the environments outside the classrooms. To promote smart
campus, National Chiao Tung University (NCTU) is deploy-
ing several IoT-based smart campus applications including
temperature/PM2.5 detection (Figure 1), parking (Figure 2),
emergency button, and dog tracking. These applications are
created based on IoTtalk [7]–[10], an IoT application man-
agement platform that can be installed on top of IoT protocols
such as OpenMTC [5], AllJoyn [6], OM2M [11] and an
arbitrary proprietary protocol.

We propose CampusTalk by tailoring IoTtalk for campus
applications, which is designed such that the IoT devices
and network applications are modularized and can be con-
veniently reused through the graphical user interface (GUI).
Therefore, the students with programming ability can easily
create IoT innovation with new applications.

CampusTalk is also designed with a friendly GUI that
allows students of non-computer science major to create their
innovations without programming. Furthermore, the students
can use their smartphones to access IoT-based smart campus
services without installing any mobile apps. To achieve the
above goals, the design and implementation of CampusTalk is
not trivial. The remainder of this section describes how these
goals are achieved.

A. CampusTalk ARCHITECTURE
Figure 3 illustrates the CampusTalk functional blocks, which
consists of the IoTtalk server (Figure 3 (a)) [9], [10],
the IoT devices (Figure 3 (b) and (c)), and possibly a
smartphone (Figure 3 (d)) that serves as the gateway for
the IoT devices [7]. The IoTtalk engine (Figure 3 (3))

26036
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6841-4718
https://orcid.org/0000-0002-9281-5738


Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 1. PM2.5 detection in NCTU campus. (a) The NCTU campus map
with 11 PM2.5 sensors and 2 LoRa gateways. (b) An outdoor
PM2.5 sensor device.

FIGURE 2. Smart parking in NCTU campus.

interacts with the Device Application (DA; see Figure 3 (2))
to deliver/retrieve the IoT data. The IoTtalk GUI (Fig-
ure 3 (1)) provides a friendly web-based user interface to
quickly establish connections and meaningful interactions
among the IoT devices (to be elaborated). Through this GUI,
a user instructs the IoTtalk engine to create or set up device
features, functions, and connection configurations.

The DA is responsible for connecting IoT devices to
the IoTtalk server, which consists of two software com-
ponents. The Device Application to Network (DAN; see
Figure 3 (4)) and the Device Application to IoT Device
(DAI; see Figure 3 (5)). The DAI is device dependent, which
communicates with the IoT device following the message
format specified by the the IoT device application (IDA;
Figure 3 (6)). The IDA implements the sensor and/or actuator
software to be executed in the IoT device hardware. For
a sensor IDA, the DAI may also implement sensor fusion
algorithms (such as Kalman Filter and Extended Kalman
Filter, sensor data storage and sensor power management)
to manipulate the new data obtained from the IDA. The
DAN communicates with the IoTtalk server for IDA registra-
tion and data exchange. The connection is established with
wireline or wireless technologies (LTE, NB-IoT or WLAN).
When an IoT device attaches to CampusTalk, the DAN initi-
ates the registration procedure to inform the IoTtalk server
of this connection. After the registration, a corresponding
network application assigned to the IoT device is executed by
the IoTtalk server. In the current implementation, the IoTtalk
server provides HTTP-based RESTful application program-
ming interfaces (APIs) or MQTT APIs for the DA to deliver
the IoT data. To connect the DA to an IoTtalk server with
other protocols, we only need to modify the DAN. The DAI
and IDA are not affected.

The DAN and the DAI of a DA are always co-located in
the same hardware. There are two scenarios to place the DA
and the IDA. In both scenarios, the DANs are the same and

FIGURE 3. The CampusTalk functional diagram.

can be reused. In the internal DA scenario, both the DA and
the IDA are installed in the IoT device (Figure 3 (b)). In the
external DA scenario, the DA resides in, e.g., a smartphone
(Figure 3 (d)), and the IDA is located at a separate IoT
device (Figure 3 (c)). In this scenario, the DAI typically
communicates with the IDA by using Bluetooth. We note
that a smartphone itself can be an IoT device following the
internal DA scenario. With the DAN, DAI and IDA structure,
we effectivelymodularize the software components of the IoT
devices, and can easily reuse these components to speed up
the creation of IoT devices for IoTtalk applications.

B. DEVICE FEATURES
To allow students to easily create their applications, there
must be a simple way to manipulate sensors and actua-
tors. Also, some IoT devices must be automatically created.
To achieve above goals in CampusTalk, every IoT device
is characterized by its functionalities or ‘‘device features’’.
A device feature (DF) is a specific input or output ‘‘capabil-
ity’’ of the IoT device. The input device features (IDFs) can
be sensors (such as a temperature sensor, an accelerator or a
PM2.5 sensor) or control mechanisms (such as a keyboard,
a button or a switch). The output device features (ODFs)
are actuators such as a display screen, a speaker and so on.
CampusTalk automatically generates a network application
for every IoT device connected to the IoTtalk server. When
the values of the IDFs are updated, an IoT device informs the
network application to take some actions, and the network
application sends the result to the ODF of the same or another
IoT device to affect that output device. In other words, the
network application describes how IoT devices interact with
each other through their device features.

A DF can be physical or cyber (virtual). A cyber DF is
implemented as an animation displayed in the standard screen
of a computer or a mobile device. A cyber ODF can be shown
in an arbitrary display hardware. On the other hand, a cyber
IDF must be shown in a touch-screen display so that the user
can give inputs to the IDF. An IoT device may have both
IDFs and ODFs. For each IoT device, we group its IDFs in
a subset called the input device. Similarly, the ODF subset is

VOLUME 6, 2018 26037



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 4. Two formats of display talkPal for Acceleration IDF (the y axis).

called the output device. If all DFs of a device are physical
(cyber), then it is called a physical (cyber) device. For every
IDF, CampusTalk automatically creates a ‘‘simulated’’ IDF (a
mirror IDF) that uses a random number generator to simulate
the values produced by the IDF.

For every DF, CampusTalk automatically creates a ‘‘talk-
Pal’’ DF. The talkPal DF for an IDF is a display ODF. This
talkPal ODF illustrates the data produced by the IDF in the
table (text) format or in the chart (curve) format (Figure 4).
The talkPal DF for an ODF is a cyber remote control IDF
(two examples will be illustrated in Figures 9 and 25 (a)). The
talkPal DF concept guarantees that every IoT device connect
to the IoTtalk sever can talk to ‘‘someone’’. That is, an IDF
talks to the user through its display talkPal ODF. The user
talks to an ODF through its remote control talkPal IDF. The
display talkPal ODF is a convenient mechanism that allows
the students to test and debug the IDFs with little or without
any programming effort. Therefore, CampusTalk supports the
IoT applications with cyber and physical interaction.

CampusTalk provides convenient access to cyber devices
through theweb technology. In this way, the cyber devices can
be accessed anywhere in the world through any computing
device with a display and a browser without installing any
application software. In [9], we have shown that all cyber
remote controllers (to actuators) can be automatically created
as web pages. Most IoT solutions have focused on connect-
ing physical devices [4]–[6], and some interactive designs
focused on cyber devices (but do not consider them from
the IoT viewpoints) [3]. None of them consider the concepts
of automatic creation of ‘‘mirror device features’’ (simulated
counterpart) and talkPal device features. CampusTalk uni-
fies the above concepts and implementations, which will be
demonstrated through several applications on campus. Devel-
opment of the IoT devices for these applications requires
skillful programing effort. After these IoT devices have been
created and are accommodated in CampusTalk, the students
can use the GUI to connect them in different combinations
for various innovative applications. This paper is organized
as follows. Section 2 introduces SmartPhoneTalk that turns a
smartphone into an IoT device without installing any mobile
app. With SmartPhoneTalk, every student and any visitor in
NCTU can access smart campus applications at anytime and
anywhere. Section 3 describes MusicTalk that allows a large
number of students to participate in big campus events, where
their smartphones serve asmusical glow sticks. Section 4 uses
PingpongTalk as an example for sport activities as well as
Physics lecturing. Section 5 demonstrates SkeletonTalk for
interactive design to inspire students in the art class.

FIGURE 5. The web-based device application for smartphone.

II. SmartPhoneTalk
Most students have smartphones that can serve as input
and/or output devices to access campus applications. Many
IoT approaches utilizing smartphones require installation of
mobile apps in the smartphones. On the other hand, campus
applications using CampusTalk do not need to install any
app software, even if the sensors of the smartphones are
involved. To our knowledge, SmartPhoneTalk is the first
approach that utilizes the sensors of smartphones without
the need of mobile app installation. With our approach,
the students with any smartphones can access NCTU cam-
pus applications at anytime and anywhere. In CampusTalk,
‘‘Smartphone’’ is an input device with three IDFs Accelera-
tion, Gyroscope and Orientation, where these IDFs are sent
to the IoTtalk server through a web-based DA. As shown
in Figure 5 (1), the user opens the browser in the smartphone,
e.g., Chrome, to access the web page and directly execute
this DA without extra application installation. The values of
the three IDFs are shown in the screen of the smartphone.
The Acceleration IDF (Figure 5 (2)) provides the acceler-
ation values in three axes (x, y, z) measured by the smart-
phone. The Gyroscope IDF (Figure 5 (3)) provides the rates
(α, β, γ ) at which the smartphone rotates around three axes
(x, y, z). The Orientation IDF (Figure 5 (4)) provides the
motion (α, β, γ ) from the physical orientation in three axes
(x, y, z) of the smartphone, and is expressed in degrees ranging
from 0 to 360.

In our implementations the values of these IDFs are
obtained from the built-in inertial measurement unit of the
smartphone through the JavaScript Web APIs ‘‘Device-
MotionEvent’’ and ‘‘DeviceOrientationEvent’’ [2]. The
JavaScript code of the web-based Smartphone DA is listed
below.

To obtain acceleration and gyroscope values, the IDA reg-
isters an event listener (Line 1) to start receiving the changes

26038 VOLUME 6, 2018



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 6. VR experience with smartphones at the student activity center.

of Acceleration and Gyroscope. Lines 2-4 read the values
for Acceleration. Lines 5-7 read the values for Gyroscope.
Line 8 registers an event listener to receive the Orientation
changes. Lines 9-11 obtain the current orientation of the
smartphone.

After the values of Acceleration, Gyroscope, and Orienta-
tion are obtained, the DA periodically (e.g., for every 250ms)
pushes those values to the IoTtalk server (Lines 12-16). Then
the student can use these three IDFs to arbitrarily control
other ODFs.

In CampusTalk, the sensors of smartphones have been
intensively used for games and physics experiments carried
out on NCTU campus. For example, NCTU has developed an
VR game called ‘‘A Boy Fighting Devil Party’’ (which allows
the students to shake their mobile phones (to produce the
changes for the Acceleration IDF) to enhance, e.g., the sandy
wind effect in the game (Figure 6). The audience experiencing
the game loved the effects.

Note that some sensors or actuators such as flashlight and
sounds are not standard, and some handset manufacturers do
not allow access to these features through web pages. The
rest of this paper will show how a smartphone is used in the
campus IoT applications without installing any mobile app.

III. MusicTalk
A CampusTalk device itself can be a system that controls
multiple IoT devices. An example is MusicTalk, a musical
glow stick application used in big events on campus (e.g.,
the commencement ceremony), where the students use their
smartphones as glow sticks that can be coordinated to sing
and flash to generate the chorus and the Mambo dance flash
light effects. We also use MusicTalk in the campus Christmas
party where students hang their smartphones in a Christmas
tree to automatically sing the songs and flash color lights for
season’s greetings (Figure 7 (a)).

Figure 7 (b) illustrates theMusicTalk network architecture.
To control MusicTalk, CampusTalk automatically generates
a cyber (input) device as MusicTalk’s talkPal called ‘‘MBox-
Ctl’’ (Music Box Controller) when the user selects the DFs
and the input device in the GUI (to be elaborated). This
talkPal device consists of two parts, i.e., the stage manager
(Figure 7 (1)) and the conductor (Figure 7 (2)), which control
several players (music instruments; Figure 7 (3)) and coor-
dinate them to play a song. In this application, a player is
an output IoT device (such as a smartphone) that can play

FIGURE 7. MusicTalk in a student dorm. (a) Singing tree. (b) The network
architecture.

music and/or flash light. The players are connected to a server
(Figure 7 (4)) through a wired/wireless network (Figure 7
(5)). This server and the connected players together are
treated as an output IoT device called MusicBox.

Similarly, the stage manager and the conductor are
implemented as an input IoT device that connects to
MusicBox through the IoTtalk server (Figure 7 (6)). The
wireless technologies for the IoT devices can be BLE,
Wi-Fi, LTE, or NB-IoT. Both the IoTtalk server and the
MusicBox server can be installed in a wireless Access Point
connected directly to the devices (Figure 7 (1), (2) and (3))
without involving public Internet.

The conductor determines which song to play and how
to play the song (such as selection of the key, the mode,
the period and the volume). The stagemanager determines the
roles of the players and the light design. The stage manager
first determines the maximal number of players involved, and
then groups these players into several clusters. The players
in a cluster will have the same behavior, i.e., play the same
music instruments. For example, all of them play violins.

CampusTalk implements MusicTalk by automatically
configuring the connections between the stage man-
ager/conductor and MusicBox in the GUI window illustrated
in Figure 8. In this GUI, an input device is represented by
an icon placed at the left of the window, which consists of
smaller icons that represent IDFs, and an output device is
represented by an icon placed at the right-hand side of the
window, which includes ODF icons. For example, the icon
in Figure 8 (1) represents the MBoxCtl input device, which
includes two parts. The stage manager part consists of three
IDFs: an integer C (Figure 8 (3)) that represents the number
of clusters, an integer N (Figure 8 (4)) that represents the
number of the players in a cluster, and a floating-point number
L (Figure 8 (5)) that represents the luminance intensity of the
light (for a player with the flash capability). For the purpose of
readability, if both an IDF and an ODF have the same name,
the GUI will append the IDF name with ‘‘-I’’ and the ODF
name with ‘‘-O’’. In Figure 8, for example, we have C-I IDF
and C-O ODF.

The conductor part includes the following IDFs:
a JSON-format object Song (Figure 8 (6)) representing
a MIDI (Musical Instrument Digital Interface) file [1],

VOLUME 6, 2018 26039



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 8. The GUI for connecting the IoT devices in MusicBox.

FIGURE 9. The MBoxCtl web page for the stage manager/conductor.

an integer Period P (Figure 8 (8)) representing the length of
a music segment, an integer Key(Figure 8 (9)) representing
the altered scale of the played song, a floating-point number
Volume (Figure 8 (10)) in decibels (dB), which represents
the volume of the played song and an integer Mode (Fig-
ure 8 (7)) representing the playing mode. In the sequential
mode, the server cuts a song into several P-second segments,
and the players sequentially perform the music segment in
rotation. Assume that the song is partitioned into I segments
and the players are grouped into C clusters. Every player in
cluster c performs the i-th segment where c ≡ i(modC) for
1 ≤ c ≤ C and 1 ≤ i ≤ I . In the parallel mode, the server
sends a song to all players simultaneously then the players
perform the song in parallel.

Based on Figure 8 (1), a web page called MBoxCtl (Music
Box Controller) is developed for stage manager/conductor as
illustrated in Figure 9. In this figure, (1) - (3) are pull-down
lists controlled by the stage manager. Through these lists,
one can set C, N and L. In Figure 9, C = 1, N = 5 and
L = 1.0. Figure 9 (4) - (8) are controlled by the conductor.
Figure 9 (4) - (6) are pull-down lists that only show the
selected values just like (1) - (3). Figure 9 (7) is the
song playlist and Figure 9 (8) are play-control buttons
including play/pause, previous, next, repeat-once functions.
Figure 9 (9) is a sliding bar for volume control.

FIGURE 10. Layout of the MusicBox web page. (a) Initial layout (C=6,
N=5). (b) After the player joins the red cluster.

With the web-page implementation in Figure 9, multi-
ple smartphones can serve as the stage manager/conductor
by typing the IP address of the web page through their
browsers. Therefore multiple parties (people who hold the
smartphones) can simultaneously control the behavior of
MusicBox.

In the GUI, the MusicBox output device is represented by
an icon with 8 ODFs (Figure 8 (11)) to be controlled by
the stage manager/conductor. Through C , N and L. given
by the stage manager, a MusicBox web page is created and
can be browsed by multiple smartphones as illustrated in
Figure 10, where C = 6 and N = 5. The layout of this web
page consists of C color boxes with a number no larger
than N . A color box represents a cluster, and the number
inside the box represents the number of players who can join
the cluster. A player (e.g., a smartphone) joins MusicBox by
accessing the MusicBox web page through its browser. Then
the layout shown in Figure 10 (a) is displayed in the smart-
phone screen. When a color box is clicked, the screen of the
player will become the color of the selected box with the texts
indicating the parameter values for N , Key, Volume and Note
(Figure 10 (b)).

When the next player browses MusicBox, the number in
the red box in Figure 10 is decremented by 1 (i.e., 4 in our
example). AfterN players, have selected the same cluster, the
number in the box of the cluster becomes 0, and no new player
is allowed to join the cluster. When the play button of the
MBoxCtl web page (Figure 9 (8)) is pressed, the players will
play the song and flash the light with the color representing
their clusters.

The DA and the IDA of the MusicBox are illustrated
in Figure 11, which follows the external DA scenario. The
MusicBox DAI is a web server. When MusicBox is activated,
its DAI registers to the IoTtalk server through the DAN, and
creates C × N IDAs. An IDA is a web-page browser to be
executed at, e.g., a smartphone, while the DA resides in a
separate computer. Each of the IDAs establishes a connection
to the DAI via the WebSocket protocol.

The DAI consists of four components. Through the DAN
(Figure 11 (1)), the DAI MsgHandler (Figure 11 (2)) receives
the messages from the stage manager and the conductor.
The messages include the parameters C , N and L. Accord-
ing to these parameter values, the WebPage Generator (Fig-
ure 11 (3)) creates C × N IDAs (the web pages) by using
HTML, CSS and JavaScript to manipulate the MIDI files

26040 VOLUME 6, 2018



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 11. The MusicBox DA and IDA.

stored in the Static Files (Figure 11 (4)). In a typical web
page design, all browsers can access and interact with the web
page. For example, the MBoxCtl web page can be accessed
by several smartphones and can be controlled by them simul-
taneously. On the other hand, the MusicBox web page can
only be accessed by a limited number of smartphones for
every cluster. We implement a simple mechanism in the DAI
MsgHandler of MusicBox to achieve this feature. The details
are given in Appendix A.

Based on the WebSocket library, Socket.io (Figure 11 (5))
provides communications between the DAI and the IDAs.
An IDA consists of 5 components. The User Event Handler
(Figure 11 (6)) detects the color box selected by the user,
displays the chosen color with the decremented number, and
sends the corresponding cluster number to the DAI through
the IDA MsgHandler (Figure 11 (7)). The DAI updates the
number of players joining that cluster. The IDA MsgHandler
receives the messages sent from the DAI and dispatches them
to the corresponding task modules to control the background
luminance of the display for the player. The Player module
(Figure 11 (8)) plays the chosen song, and instructs the Light
module (Figure 12 (9)) when to flash.

The DA and the IDA for MBoxCtl are illustrated
in Figure 12, which follows the internal DA scenario. The
IDA consists of three components (Figure 12 (1), (3) and (4)).
When the conductor selects a song, the User Event Handler
(Figure12 (1)) sends this request to the DAI Handler (Fig-
ure 12 (2)). The DAI Handler then instructs the MIDI Reader
(Figure 12 (3)) to read the MIDI file of the song in the Static
Files (Figure 12 (4)) and parse it into a JSON object. Then the
object is sent to MusicBox through the DAN (Figure 12 (5)).
Note that MBoxCtl is a talkPal of MusicBox whose IDFs
can be automatically generated by CampusTalk except for
the song playlist (Figure 9 (7)). The developer only needs to
provide the names by creating the static files to produce this
list.

In Figure 8, after the MusicBox DA/IDA has been devel-
oped, the students can re-configure it to create various alert
applications without extra programming efforts. For example,
the students can control the Christmas tree in Figure 7 (a) by
a door bell button (Figure 8 (2)).

IV. PingPongTalk
Some IoT applications require tight coordination between the
physical input devices and the cyber output devices. That is,

FIGURE 12. The MBoxCtl DA and IDA.

FIGURE 13. The ping pong paddle with the Koala device.

FIGURE 14. PingPongTalk setup. (a) Paddle height. (b) Table marks.

the behavior of the output device must be adjusted based
on the experiments conducted on the physical input device.
A good example is the college Physics experiments such as
the pendulum swing and spring harmonic motion. The details
can be found in [8]. We have implemented 46 interactive
physics experiments from the first-year college Physics text-
books. This section elaborates on how to implement this type
of cyber output devices by an example called PingPongTalk.

As an extension of the animation for parabola experiments
in the Physics class, PingPongTalk animates the interaction
between a ping pong paddle and a ping pong ball, which
is used in ping pong ball practice in NCTU. Specifically,
this application measures the paddle behavior by utilizing the
Koala IoT device (Figure 13) that is an inertial measurement
unit including an acceleration sensor. We attach this device
to the back of a ping pong paddle. The acceleration sensor
collects the measured data, and transmits them to the IoTtalk
server.

The paddle is fixed at the height of, e.g., 35cm above the
table (Figure 14 (a)). The area of the table is partitioned into
fourteen lanes marked by the yellow tape, so that we can
observe where the ball hits the table. In this way, the students
can replay the real ball motion in the PingPongTalk animation
and to make sure that the animated ball behavior is consistent
with the real scenario. The widths of lanes 1-6 and 9-14 are
20 cm ((1) - (6) and (9) - (14) in Figure 14 (b)). The widths
of lanes 7 and 8 are 17 cm ((7) and (8) in Figure 14 (b)).

VOLUME 6, 2018 26041



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 15. Calculation of the angle.

FIGURE 16. The az (i ) values against 1t(i ).

To obtain the acceleration and the initial speed of the ball,
we conduct experiments with a real ball hitting in a ping
pong table. For j ≥ 0, at time tj let ay(j) and az(j) represent
the y-axis and the z-axis accelerations, respectively, where t0
is the time when the ball is dropped. For simplicity, denote
ay = ay (1) and az = az(1), where t1 is the time when
the paddle hits the ball. Figure 15 illustrates how to use the
acceleration data (ay, az) to calculate the angle θ between the
y’-axis and the y-axis in Figure 15 (which is the ODF Angle
of PingPongTalk). According to the law of cosines, we use
the (ay, az) to calculate Angle by Equation (1):

Angle =


90− cos−1

 ay√
a2y + a2z

(180
π

)
, if az> 0

90+ cos−1

 ay√
a2y + a2z

(180
π

)
, otherwise

(1)

The initial speed is computed as follows. When the player
swings the paddle along with negative z-axis acceleration
direction, the Koala device records the acceleration data
(ax(j),ay(j),az(j)) and the time interval1t(j). Figure 16 illus-
trates the az(j) curve against time points tj in the observation
period. We use Riemann sum to compute the gray area Az.
In Figure 16, for 0 < i ≤ I , az(i) < 0 is the z-axis accelera-
tion values, and1t (i) = ti− ti−1 is the time interval between
ti and ti−1. Then

Az =
∑I

i=1
az(i)1t(i) (2)

Let S be the horizontal distance between where the ball
is hit by the paddle and where the ball hits the table (see
Figure 17). We obtain az (i) through experiments and use

FIGURE 17. The locus of the ping pong ball.

TABLE 1. Az,k , Sk and Vz,k for 1 ≤ k ≤ 10.

Equation (2) to calculate areaAz through the velocities at tj for
0 ≤ j ≤ I , where az (0) = az (I ) = 0. The results are listed
in the first raw of Table 1 where Az,k , Sk and Vz,k are the Az,
the S and the Vz values measured in the k-th experiment for
1 ≤ k ≤ 10. We measure S by repeatedly observing the loci
of a real ping pong ball. The first two rows of Table 1 list Az,k
against Sk .

The initial speed of the ball is computed by using the
horizontal displacement S. In Figure 17, the ball is positioned
at point A = (0,y0), B = (0,y1), and C = (z0, 0) at times t0,
t1 and tZ , respectively. Denote the velocity V (i) of the ball at
time ti as (Vz(i),Vy(i)). The player holds the ball at position
(0, y0) at time t0, where y0 is the height of the ball. The player
drops the ball at V (0)= (0, g(t1−t0)) and the paddle hits the
ball at position (0, y1) at time t1. Then the ball hits the table
at position (S, 0) at time tZ . At time t1 the horizontal velocity
of the ball is Vz = V z (1) computed as follows:

S = Vz × (tZ − t1) (3)

Based on Equation (3), the third row of Table 1 listsVz,k for
Sk at the second row. Using Az,k and Vz,k in Table 1, we build
a linear regression model to compute the locus of the ball.
The model is established by the least squares method with
two regression coefficients ω and δ. In Equation (4), ω̂ and δ̂
are the least squares estimates of ω and δ:

Vz = Az × ω̂ + δ̂ (4)

we compute

ω̂ =

∑10
k=1 (Az,k − Az)(Vz,kVz)∑10

k=1 (Az,k − Az)
2 and δ̂ = Vz − ω̂ × Az (5)

where

Az =

∑10
k=1 Az,k
n

and Vz =

∑10
k=1 Vz,k
n

(6)

26042 VOLUME 6, 2018



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 18. The estimated regression line.

FIGURE 19. The ping pong game animation. (a). Before the ball touches
the table. (b). When the ball touches the table.

Az and Vz can be obtained by using Equation (6) and Az,k
and Vz,k in Table 1, and then we substitute the computed
results into Equation (5) to yield ω̂ = 2.1778 and δ̂ =
33.587. Figure 18 illustrates the estimated regression line,
where the diamonds represent Vz obtained in Equation (6),
and the squares represent the speeds computed by using the
regression model.

The regression statistics are 0.966359432 for the mul-
tiple R, 0.933850552 for the R-squared, 0.925581871 for
the adjusted R-squared, and 17.12899786 for the standard
deviation. Therefore, our calculation is accurate.

The Az,k , Sk and Vz,k values obtained from the experiments
are used to create a cyber device for ping pong game ani-
mation. When a student swings the Koala-attached paddle
without actually hitting a ping pong ball, the acceleration
values are sent to the IoTtalk server, and we can investigate
the locus of the ball in a 3-D animation shown in Figure 19.
This animation provides a virtual grid in the Y-Z plane
(Figure 19 (1)) and the ping pong table serves as the X-Z
plane (Figure 19 (2)). The virtual grid helps to observe the
locus of a ping pong ball (Figure 19 (4)) hit by the paddle
(Figure 19 (3)). We also draw the table lags (Figure 19 (5))
and the table net (Figure 19 (6)) for visual effect. The statistics
are shown in Figure 19 (7) and (8). When the ball hits the
table, the hit lane turns from blue to yellow (Figure 19 (9)).

In the GUI (Figure 20 (a)), the PingPongTable animation is
an output device with twoODFs:Angle and Speed. This cyber
output device follows the internal DA scenario. The Koala
is a physical input device with one IDF Acceleration. Koala
follows the external DA scenario where the IDA is installed
in the Koala device and the DA is installed in a smartphone.
The Acceleration IDF is connected to the AngleODF through
Join 1, and is connected to the Speed ODF through Join 2.
As mentioned in [9], the GUI allows one to use a function
to manipulate the data delivered in a connection. By clicking
the join circle of the connection, the GUI pops up a window
for creation of the function. In PingPongTalk, we click the
Join 1 circle to write a Python function to calculate the

FIGURE 20. The connection of PingPongTalk through Koala and a
smartphone. (a) PingPongTalk configuration in the GUI. (b) A smartphone
serving as ping pong paddle.

angle of the paddle using Equation (1). Similarly, in Join 2,
we write the initial speed function using Equation (4). After
PingPongTable and the functions in Joins 1 and 2 have been
implemented, a student can also use a smartphone as a ping
pong paddle (Figure 20 (b)), and connect its Acceleration
IDF to PingPongTable through Joins 3 and 4. The function
in Join 3 (Join 4) is the same as that in Join 1 (Join 2). In this
way, a student can easily connect his/her smartphone to this
application without any extra programming effort.

V. SkeletonTalk
The Institute of Applied Art in NCTU has created
many cyber-physical interactive designs. It is particularly
interesting to produce the physical device and its cyber coun-
terpart in an interactive design. This section shows the sce-
nario where an output device has both the cyber and the
physical implementations that share the same DA. We use
an artwork called SkeletonTalk as an example, which is an
CampusTalk application allowing various input devices to
control the shape change (i.e., compression) of a skeleton.
We have implemented both physical Skeleton (Figure 21 (a))
and cyber Skeleton (Figure 21 (b)). Skeleton is a special
hexagonal prism in which the top and the bottom are the
regular hexagonal pyramids. Besides the top and the bottom
pyramids, a S-size Skeleton has S layers, and every layer
has the same graphical pattern constructed by three types of
stalks: stalk s0 (Figure 22 (a)), stalk s1 (Figure 22 (b)) and
stalk s2 (Figure 22 (c)). A layer consists of three sub-layers
called left (Figure 22 (d)), middle (Figure 22 (e)) and right
(Figure 22 (f)). The sub-layers are connected by stalks s0.
When the skeleton is not compressed, every stalk s0 is placed
horizontally. When the skeleton is compressed, the end point
of the stalk s0 connected to the left (or the right) sub-layer
moves toward the middle sub-layer.

With a color lightbulb inside the skeleton body, the phys-
ical Skeleton is an interactive ceiling lamp. As we pointed
out before, Skeleton can grow and compress. Through grow-
ing and compressing, Skeleton’s shadow in the floor shows
beautiful geometric patterns (Figure 23). This physical out-
put device follows the internal DA scenario, where the DA
and the IDA are implemented in an Arduino board [9], and
the IDA controls the mechanical skeleton stalks through the
output pins of the board.

The cyber Skelton reuses the internal DA of its physical
counterpart, where the IDA implements the animation to

VOLUME 6, 2018 26043



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

FIGURE 21. Physical and cyber Skeletons. (a) Physical (Size = 2).
(b) Cyber (Size = 5, Angle = 0◦).

FIGURE 22. A skeleton graphical pattern.

FIGURE 23. The Skeleton shadow on the floor.

FIGURE 24. Skeletons with different angles (Size = 2). (a) Angle = 30◦.
(b) Angle = 60◦.

illustrate compression of the stalks of the skeleton with color
change. Therefore, the output IoT device for Skeleton has
three ODFs: Size, Angle and Color. The Size ODF represents
the ‘‘layer’’ of Skeleton to be grown, which ranges from 0 to
10. For example, Size= 2 in Figure 21 (a) and Figure 24, and
Size = 5 in Figure 21 (b). The Color-O ODF represents the
color of Skeleton. The AngleODF represents the compressed
degree of Skeleton, which ranges from 0 to 90 degrees. For
example, Angle = 0◦ in Figure 21 (b), Angle = 30◦ in Fig-
ure 24 (a), and Angle = 60◦ in Figure 24 (b).

We implement the cyber Skeleton in Java, which continu-
ously draws the graphical skeleton patterns with the specified
ODF values. We use a web-based keypad to control the
color of Skeleton (see Figure 25 (a)), which can be accessed
through a web browser. We also encourage the students to
use other input devices to control the Skeleton’s color, e.g.,
the color sensor [8].

Figure 26 illustrates an example for remote controlling
of Skeleton. The remote controller follows the internal DA
scenario, which is a browser in a smartphone or a com-
puter. Keypad 1 (K1; the keypad of the first smartphone;

FIGURE 25. The Color input device feature. (a) a color keypad. (b) a color
sensor.

FIGURE 26. Remote Control connection to Skeleton.

see Figure 26 (2)) connects to Angle (A), where K1 ranges
from 0 to 9, and A ranges from 0 to 90 degrees. The IoTtalk
sever automatically makes the following conversion: A =(
90
9

)
K1 = 10K1. Keypad 2 (K2; the second smartphone’s

keypad; see Figure 26 (3)) connects to Size (S), where S
ranges from 0 to 10. That is, S =

⌊(
10
9

)
K2

⌋
=b1.1K2c.

Color-I (the third smartphone keypad that represents the color
map; see Figure 26 (1)) connects to Color-O (Figure 26 (5))
and the triple RGB values of Color-I are directly assigned to
Color-O.

A student can connect the smartphone to Skeleton, and
use, for example, the Acceleration (Figure 26 (7)) and the
Gyroscope IDFs (Figure 26 (8)) to control Skeleton without
any programming effort. Note that the current version of the
remote control is Skeleton’s talkPal automatically created by
IoTalk. For a physical Skeleton, the size is fixed, and any
input from the Keypad2 IDF to the Size ODF will not have
any effect.

VI. CONCLUSION
This paper proposed CampusTalk, a series of IoT applications
developed in NCTU campus based on the IoTtalk platform.
Through this platform all cyber and physical IoT devices cre-
ated in CampusTalk can be quickly reconfigured and reused
to create new applications without or with little program-
ming efforts. CampusTalk unifies the concepts of automatic
creation of ‘‘mirror device features’’ (simulated counterpart)
and talkPal device features, which are nicely demonstrated
through several applications on campus. The core applica-
tion of CampusTalk is SmartPhoneTalk that allows other
applications to be accessed by students through their smart-
phones without installing any mobile apps. We described
three CampusTalk applications for cyber-physical interaction
with SmartPhoneTalk. MusicTalk serves as an example for a
big campus event, where a large number of students can use
their smartphones to play flashing glow sticks. PingPongTalk

26044 VOLUME 6, 2018



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

showed how animation of experiments in the Physics class
can be integrated with the IoT technology to provide inter-
action with the students, and then turned into sport exercise
such as a ping pong game. SekeletonTalk is an example of
student innovation in inactive art. The IoT devices developed
in these applications can be reused to interact with each other.
In particular, the students can create new applications (for
example, use the singing Christmas tree to control the com-
pression and lighting of Skeleton) without extra programming
effort. Video demos for SmartPhoneTalk, MusicTalk and
SkeletonTalk can be found in https://youtu.be/ZLoXieCG9_g,
https://youtu.be/p8usRSIoaok and https://youtu.be/scfeKSLj
JmA. These videos show how the real GUI interface works
and how the IoT devices behave.

APPENDIX
This appendix illustrates the code for DAI MsgHandler. Fig-
ure 27 lists the stage manager part. Line 2 specifies seven
clusters in the variable clusterArray. Line 3 gives the default
values for C = 7, N = 5 andL = 1.0 (full-intensity of the
light). At Line 4, numberArray stores the number of members
who join each of the clusters. Lines 5-7 define the functions
to reset the values for C , N and L. Line 9 defines the pull
function to be called by the DAN (Figure11 (1)). This func-
tion obtains the new values for C , N and L from the stage
manager (Figure 12) through the IoTtalk server.

In Figure 11 (5), the web socket is used for communica-
tion between the DAI (i.e., serverSocket) and the IDA (i.e.,
clientSocket). Four event types are defined. The event type
‘‘connect’’ is handled by serverSocket to connects the IDA
with the DA (Line 16).

Three types of the events are handled by clientSocket:

• getNumbers: Lines 17 and 18 handle the IDA request
(Figure 11 (3)) to obtain the number of the clusters.

• join: Lines 19-27 handle the IDA request to join a cluster
c. If less than N players have joined this cluster, then
the IDA’s request is accepted (Lines 21-25). Otherwise,
the request is rejected (Line 27).

• close: When a player closes his/her IDA webpage,
Line 28 detects this event, and the IDA leaves cluster c
(Line 29). The number numberArray[c] is decremented
by one at Line 30. Lines 31 and 32 update the member
number of cluster c shown in other players’ webpages.

Figure 28 lists the code of the conductor part for DAI
MsgHandler. Line 2 gives the default values for Song = null
(no song is selected),Mode= 0 (to play sequentially), Period
= 20 (20 second per music segment), Key = 0 (stay in the
same scale) and Volume= 0.5 (play with the volume in half).
Line 3 defines a flag playState to indicate if a song is played.
Line 4 defines a flag repeatSong to determine if a song will be
repeated or not. Line 5 defines a variable progress to indicate
the progress of the Song. Line 6 defines a variable nextC to
indicate the next cluster to play in the sequential mode. Lines
7-16 define the functions to reset the values for Song, Mode,
Period, Key and Volume. Line 18 defines the pull function to
be called by the DAN (Figure11 (1)). This function obtains

FIGURE 27. DAI MsgHandler: stage manager.

FIGURE 28. DAI MsgHandler: conductor.

the new values for Song, Mode, Period, Key and Volume from
MBoxCtl (the conductor in Figure 12) through the IoTtalk
server. At Lines 28-36, three event types are defined. The
event type ‘‘connect’’ is handled by serverSocket to connects
the IDA with the DA (Line 28).

Two types of the events are handled by clientSocket:
• playEndACK:When a song ends, this event is triggered.
The DAI takes one of three actions. The first action
(Lines 30 and 31) repeats the Song in the sequential
mode. The second action (Lines 32 and 33) repeats the
Song in the parallel mode. For the third action (Lines
34), the DAI sends the next part of the Song to the next
cluster to play.

• close: When a player closes his/her IDA webpage, Line
35 detects this event. If the closed player is the only
member in the current cluster (Line 37) in the sequential
mode, then the DAI sends the next part of the Song to
the next cluster to play.

VOLUME 6, 2018 26045



Y.-B. Lin et al.: CampusTalk: IoT Devices and Their Interesting Features on Campus Applications

ACKNOWLEDGMENT
The physical skeleton was created by Chih-Chieh Huang. The
cyber skeleton was implemented by Qing Liu. PingPongTalk
was implemented by Ya-Lan Chang.

REFERENCES
[1] J. Chadabe, ‘‘Part IV: The seeds of the future,’’ Electron. Musician, vol. 16,

no. 5, May 2000.
[2] Mozilla Developer Network. (2016). DeviceMotionEvent. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/API
[3] S. Huang, Transparent Organ. Genèva, Switzerland: Salon Int. Des

Invention, 2014.
[4] Arduino. (2018). Arduino Yun. [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardYun
[5] Machine-to-Machine Communications (M2M): MIa, DIa

and MId Interfaces. document ETSI TS 102 921 V1.3.1,
2014. [Online]. Available: http://www.etsi.org/deliver/etsi_ts/
102900_102999/102921/01.03.01_60/ts_102921v010301p.pdf

[6] AllJoyn. (2018). Open Connectivity Foundation. [Online]. Available:
https://openconnectivity.org

[7] Y.-B. Lin, et al., ‘‘EasyConnect: A management system for IoT devices
and its applications for interactive design and art,’’ IEEE Internet Things J.,
vol. 2, no. 6, pp. 551–561, Dec. 2015.

[8] Y.-B. Lin, Y.-W. Lin, C.-M. Huan, C.-Y. Chih, and P. Lin, ‘‘IoTtalk:
A management platform for reconfigurable sensor devices,’’ IEEE
Internet Things J., vol. 4, no. 5, pp. 1552–1562, Oct. 2017,
doi: 10.1109/JIOT.2017.2682100.2017.

[9] Y.-W. Lin, Y.-B. Lin, M.-T. Yang, and J.-H. Lin, ‘‘ArduTalk: An Arduino
network application development platform based on IoTtalk,’’ IEEE Syst.
J., pp. 1–9, Nov. 2017.

[10] Y.-W. Lin, Y.-B. Lin, C.-Y. Hsiao, and Y.-Y. Wang, ‘‘IoTtalk-RC: Sensors
as universal remote control for aftermarket home appliances,’’ IEEE Inter-
net Things J., vol. 4, no. 4, pp. 1104–1112, Aug. 2017.

[11] oneM2M. (2016). Standards for M2M and the Internet of Things. [Online].
Available: http://www.onem2m.org/

[12] Y.-Y. Shih, A.-C. Pang, and P.-C. Hsiu, ‘‘A storage-free data parasitizing
scheme for wireless body area networks,’’ in Proc. IFIP Netw., Trondheim,
Norway, Jun. 2014, pp. 1–9.

[13] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, ‘‘Smart community:
An Internet of Things application,’’ IEEE Commun. Mag., vol. 49, no. 11,
pp. 68–75, Nov. 2011.

[14] H.-W. Kao, Y.-H. Ju, and M.-H. Tsai, ‘‘Two-stage radio access for group-
based machine type communication in LTE-A,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), London, U.K., Jun. 2015, pp. 3825–3830.

YI-BING LIN (M’96–SM’96–F’03) received the
bachelor’s degree fromNational Cheng Kung Uni-
versity, Taiwan, in 1983, and the Ph.D. degree
from the University of Washington, USA, in 1990.
From 1990 to 1995, he was a Research Scientist
with Bellcore. He then joined National Chiao Tung
University (NCTU), Taiwan. In 2010, he became a
lifetime Chair Professor of NCTU, and the Vice
President of NCTU in 2011. From 2014 2016,
he was a Deputy Minister with the Ministry of

Science and Technology, Taiwan. Since 2016, he has been appointed as the
Vice Chancellor with the University System of Taiwan (for NCTU, NTHU,
NCU, and NYM). He is currently an Adjunct Research Fellow with the
Institute of Information Science, Academia Sinica, and the Research Center
for Information Technology Innovation, Academia Sinica, and a member of
the Board of Directors with Chunghwa Telecom. He was co-authored the
books Wireless and Mobile Network Architecture (Wiley, 2001), Wireless
and Mobile All-IP Networks (John Wiley, 2005), and Charging for Mobile
All-IP Telecommunications (Wiley, 2008). He is AAAS Fellow, ACM Fel-
low, and IET Fellow. He received numerous research awards, including the
2005 NSC Distinguished Researcher, the 2006 Academic Award of Ministry
of Education, the 2008 Award for Outstanding Contributions in Science and
Technology, the Executive Yuen, the 2011 National Chair Award, and the
TWAS Prize in Engineering Sciences in 2011 (the Academy of Sciences for
the Developing World). He is the Chair of the IEEE Taipei Section.

LI-KUAN CHEN received the B.S. degree from the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, in 2014, and
the M.S. degree with the Department of Computer
Science, Nation Chiao Tung University, Hsinchu,
in 2018. His research interests include operating
system and Interent of Things.

MIN-ZHENG SHIEH received the B.S. and M.S.
degrees in computer science and information engi-
neering and the Ph.D. degree in computer sci-
ence and engineering from National Chiao Tung
University, Taiwan, in 2003, 2004, and 2011,
respectively. From 2012 to 2016, he served as
an Assistant Research Fellow with the Informa-
tion and Communication Technology Laborato-
ries, National Chiao Tung University. Since 2016,
he has been an Assistant Professor with the Infor-

mation Technology Service Center, National Chiao Tung University. His
main research interests include computational complexity, algorithms, cod-
ing theory, and discrete mathematics.

YUN-WEI LIN received the B.S. degree in com-
puter and information science from Aletheia Uni-
versity, Taipei, Taiwan, in 2003, and the M.S. and
Ph.D. degrees in computer science and informa-
tion engineering fromNational Chung Cheng Uni-
versity, Chiayi, Taiwan, in 2005 and 2011, respec-
tively. He has been an Assistant Research Fellow
with National Chiao Tung University since 2013.
His current research interests include mobile ad
hoc network, wireless sensor network, vehicular ad

hoc networks, and IoT/M2M communication.

TAI-HSIANG YEN received the bachelor’s degree
in application mathematics from National Chiao
Tung University, Taiwan, in 2011, where he is cur-
rently pursuing the M.S. degree with the Depart-
ment of Computer Science. His current research
interests include Internet of Things, machine
learning, and artificial intelligence.

26046 VOLUME 6, 2018


	INTRODUCTION
	CampusTalk ARCHITECTURE
	DEVICE FEATURES

	SmartPhoneTalk
	MusicTalk
	PingPongTalk
	SkeletonTalk
	CONCLUSION
	REFERENCES
	Biographies
	YI-BING LIN
	LI-KUAN CHEN
	MIN-ZHENG SHIEH
	YUN-WEI LIN
	TAI-HSIANG YEN


