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ABSTRACT Recovering missing values from incomplete traffic sensor data is an important task for
intelligent transportation system because most algorithms require data with complete entries as input. Self-
representation-based matrix completion attempts to optimally represent each sample by linearly combining
other samples when conducting missing values recovery. Typically, it implements sparse or dense combina-
tion through imposing either l1-norm or l2-norm regularization over the representation coefficients, which is
not always optimal in practice. To permitmore flexibility, we propose in this paper a novel approach termed as
lp-norm regularized sparse self-representation (SSR-lp) by incorporating nonconvex lp-normwith 0 < p < 1
as regularization. In such a way, it is able to produce more sparsity than l1-norm and in turn facilitates the
accurate recovery of missing data. We further develop an efficient iterative algorithm for solving SSR-lp. The
performance of this method is evaluated on a real-world road network traffic flow data set. The experimental
results verify the advantage of our method over other competing algorithms in recovering missing values.

INDEX TERMS Traffic sensor data, missing values, lp-norm regularization, sparse self-representation.

I. INTRODUCTION
Traffic flow data collected by geographically distributed sen-
sors has come to play an important role in advanced intel-
ligent transportation system (ITS) because most traffic ser-
vices provided by ITS depend on the accuracy and complete-
ness of data. For example, short-term traffic flow forecast-
ing [1], [2], which is of paramount importance for realizing
proactive traffic control and effective route planning, requires
data fed into specific predictive models, e.g. support vector
machine [2], [3], neural networks [4], etc., to be complete
withoutmissing entries. Despite the fast growing reliability of
sensing equipment and transmission network [5], [6], missing
sensor data is still prevalent and inevitable in current ITS.
For example, it was reported that for a dense road network
in the city of Melbourne, about 8% of sensor can reach up
to 56% missing data. Similarly, about 10% of daily traffic

flow in Beijing is missing. There are many reasons that lead
to missing data, such as sensor malfunction, transmission
distortion, and other unexpected exogenous factors. Without
proper preprocessing, datum with missing entries cannot be
directly utilized by most machine learning algorithms.

To address the above mentioned missing sensor data prob-
lem, many imputation methods have been proposed in the
literature during the past decades. Here, imputationmeans the
procedure that generates plausible estimations for themissing
values (MVs) in a given incomplete data [7]. By means of
MV imputation, the incomplete data can be converted into
complete one and then used in traditional machine learning
algorithms. Due to the connectivity of road network and the
regularity of human travel activity, traffic sensor data col-
lected at different time intervals and different road segments
is essentially correlated with each other. Consequently, such
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a kind of intrinsic correlation between traffic sensor data
makes the recovery of missing values feasible and reliable in
practice. Nowadays, some typical imputation methods have
been developed in the literature, including K-nearest neigh-
bors (KNN) [8], singularity value decomposition (SVD) [9],
local least squares regression (LLS) [10], [11], probabilistic
principle component analysis (PPCA) [12], [13], low-rank
matrix completion (LRMC) [14]–[17], etc.

Recently, self-representation based matrix completion [18]
was developed and shows competitive performance in com-
parison with other imputation methods. Essentially, self-
representation, as a general concept, refers to that each sam-
ple can be well represented as a linear combination of other
samples with representation coefficients (weights) character-
izing the contribution of other samples. Self-representation
has already beenwidely exploited in some pattern recognition
tasks, such as subspace clustering [19], [20], feature selec-
tion [21], etc., because of its simplicity and effectiveness.
However, far less work exists on missing data recovery via
self-representation. Different from self-representation with
complete data, the representation of each sample cannot be
obtained directly in the context of missing data. As a result,
the recovery of missing data and the search for representation
have to be implemented simultaneously. A key factor in self-
representation based matrix completion is the selection of
suitable regularization on representation coefficients. After
comparing l2-norm, l1-norm, and nuclear-norm [17], the
previous work [18] verified from experiments that l1-norm
regularization performs much better than other forms of reg-
ularization in terms of recovery accuracy. The advantages of
l1-norm regularization are two-fold. First, the representation
vector of a target sample with respect to all other samples
is sparse, implying that only a few of samples have nonzero
coefficients. This is because l1-norm is the tightest convex
relaxation of l0-norm [22]. Second, l1-norm minimization
generally leads to convex optimization problem [23] with
efficient implementation. Nevertheless, a potential issue con-
cerning l1-norm is that it may fail to find desired solution [22].
From this view of point, l1-norm could be too restrictive
and not sufficiently flexible, which in turn influences the
imputation accuracy of missing data.

Inspired by the above discussion, in this paper, we propose
a novel self-representation basedmatrix completion approach
for missing data recovery by incorporating lp-norm regu-
larization with 0<p<1 [24]. It has been observed that as a
nonconvex surrogate of l0-norm, lp-norm minimization can
often achieve more sparsity than l1-norm minimization [25],
since it is closer to l0-norm when p is smaller than 1. Theo-
retically, lp-norm requires weaker conditions than l1-norm to
guarantee successful recovery of sparse signal [26]. We also
take into account the nonnegative property of traffic sensor
data through optimization, which is an inherent requirement
for many real-world physical systems. The proposed method
is termed as lp-norm regularized sparse self-representation
(abbreviated as SSR-lp for brevity). Despite more flexibility
with lp-norm, it has difficulty in solving the resultant model

because lp-norm is typically nonconvex. To address this issue,
we further develop an efficient alternating algorithm which
combines iterative reweighted least squares (IRLS) [22] as
well as classic gradient projection (GP) method.

We summarize the main contributions of this paper as
follows: (1) SSR-lp is a general framework benefiting from
both self-representation and lp-norm regularization, provid-
ing flexible framework for MV imputation. (2) An effi-
cient alternating optimization algorithm is proposed to solve
SSR-lp model. (3) Extensive experiments on real-world traf-
fic sensor data verify the effectiveness of our method in
comparison with other related algorithms.

The rest of this paper is organized as follows. In Section II,
we briefly review and analyze some popular methods for
missing data recovery. In Section III, we present the proposed
SSR-lp model and its optimization algorithm. Section IV
reports the experimental results on real-world traffic sensor
data. Finally, Section V gives the conclusions and discusses
future work.

II. RELATED WORKS
So far, many MV imputation or recovery approaches have
been proposed in the literature. Thesemethods can be roughly
classified into the following categories.

A. REGRESSION BASED METHODS
The methods in this category attempt to characterize the
relationship between missing values and observed values by
regression models built based on training data. Regression
models can be divided into parametric and nonparametric
regression, thus further refining the division of imputation
methods in this category. Some typical regression models
include K-nearest neighbor (KNN) regression, least squares
regression [10], support vector regression [27], neural net-
works [28], [29], [43], etc. For example, KNN imputation
first select K nearest samples for the sample with MVs,
followed which the MVs can be estimated as the weighted
average of those selected samples. Following similar idea,
local least squares (LLS) imputation [10], [30] also selects
K nearest samples for the sample with MVs, but different
from KNN imputation, it describes the relation betweenMVs
and observed values by virtue of least squares regression,
allowing more flexibility than simple weighted average. LLS
has been proved to yield promissing performance in traffic
sensor data recovery [31] and other domains [11].

B. PROBABILISTIC MODEL BASED METHODS
In this type of methods, the complete data is supposed to
follow a probabilistic distribution with specific form but
unknown model parameters. Based on the observed val-
ues, both the model parameters and the missing data can
be simultaneously estimated following maximum likelihood
estimation (MLE) or full Bayesian framework [32], [33].
A popular algorithm to achieve such joint estimation is based
on expectation-maximization (EM) [34]. A typical method
belonging to this category is the so-called probabilistic
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principal component analysis (PPCA) [13] assuming that
the data follows multivariate Gaussian model. The missing
data and model parameters are alternatively estimated by EM
algorithm. This method has shown promising results in the
imputation of traffic sensor data. This type of methods [13],
[34], [35] imposes a global distribution assumption about
data, thus being effective when data is consistent with the
assumed distribution.

C. MATRIX COMPLETION BASED METHODS
This type of methods organizes all samples into a matrix
and achieve MVs recovery based on certain property of the
matrix. One of the most well-known approach belonging to
this class is low-rank matrix completion (LRMC) [14] which
assumes thematrix is of low-rank structure. For trafficmatrix,
this assumption is reasonable to a certain extent, because
traffic flows within the same road network are spatially and
temporally correlated with each other. Owing to such inherent
correlation, it was reported that LRMC is able to produce
accurate recovery of missing data [36], [37], [44]. Recently,
LRMC has attracted considerable attention and researchers
have developed many optimization algorithms dedicated
to solving LRMC model, such as SVT [14], FPCA [38],
ADMM [39], etc. However, LRMC takes a global view on the
data matrix, without sufficiently accounting for the difference
between samples [17]. It may produce suboptimal recovery
for samples with complex inherent structure, e.g., multiple
subspaces. To this end, self-representation based matrix com-
pletion [18] was presented recently, aiming to characterize the
relations between samples through linear combination. The
missing data recovery and effective representation are solved
jointly, indicating the two tasks can facilitate each other.

III. THE PROPOSED METHOD
In this section, we first present the formulation of lp-norm
regularized sparse self-representation. Then, an efficient opti-
mization algorithm for solving this model is proposed.

Formally, let X = [x1, x2, . . . , xN ] ∈ Rd×N be the given
data matrix, where xi ∈ Rd denotes the i-th sample with d
features, N is the total number of samples. Notice that in our
problems, not all of the elements in X are observable. Due
to diverse causes, many elements in X are missing. Here,
we use � to denote the indexes of missing values in X .
Thereby, the central task of MV imputation is to estimate X�
as accurately as possible.

A. lp-NORM REGULARIZED SPARSE
SELF-REPRESENTATION
In the spirit of self-representation [18], [19], each data sample
can be represented as a linear combination of other samples.
In particular, we have

xi ≈
N∑

j=1,j 6=i

wi(j)xj (1)

wherewi(j) denotes the combinatorial coefficient or weight of
xj in the resulting linear combination. Further, we introduce
the following lp-norm (0<p<1) regularization [22], [24] on
the weight vector wi = [wi(1),wi(2), . . . ,wi(N )]T

‖wi‖pp =
N∑
j=1

|wi(j)|p (2)

with hope that most elements in wi should be zero or close to
zero such that the corresponding samples can be eliminated
from the representation of xi.

Besides the above task, another difficulty comes from the
fact that many elements in X , i.e. X�, are unknownwhile only
the rest part of X are observed. As a result, it is infeasible to
find weight vector wi directly given a set of incomplete data
samples. In other words, we need to discover the above sparse
linear representation structure among data and meanwhile
estimate the involved missing values. In fact, it is expected
that the reliable estimation of MVs and the discovery of
sparse linear relations among data are related and thus would
benefit from each other, indicating the two tasks can be solved
in a uniformed framework. In addition, for many applica-
tions, the data that real physical system records is usually
nonnegative [6]. As a result, nonnegativity should also be
taken into account. Based on the above discussion, we present
lp-norm regularized sparse self-representation (SSR-lp) for
MV imputation as follows

min
X�,W

1
2

N∑
i=1

‖xi −
N∑

j=1,j 6=i

wi(j)xj‖2 + λ
N∑
i=1

‖wi‖pp

s.t. X� ≥ 0 (3)

where λ > 0 is a prameter controlling the strength of lp-norm
regularization.

LetW = [w1,w2, . . . ,wN ] and diag(W ) stand for the diag-
onal elements ofW . The above problem (3) can be expressed
in matrix form as follows

min
X�,W

1
2
‖X − XW‖2 + λ

N∑
i=1

‖wi‖pp

s.t. X� ≥ 0, diag(W ) = 0 (4)

Notice that in model (4), both X� and W are the decision
variables, differentiating it from traditional subspace cluster-
ing [19], [20] where only W is the variable need to solve.
It should be pointed out that problem (4) naturally reduces to
the models developed in [18] given p = 1 or p = 2.

B. OPTIMIZATION ALGORITHM
The problem (4) does not allow a closed-form solu-
tion because of the coupling between decision variables
X� and W , which leads the problem difficult to solve. How-
ever, we observe that the problem can be simplified if only
one variable is optimized each time while fixing the other
one. To this end, we develop an iterative algorithm to solve (4)
by alternatively optimizing over X� andW while holding the
other variable fix.
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Algorithm 1 Solve X� When W Is Fixed
Input current estimation of W
1: Initialize X�, let c = 10−4

2: while not converged do
3: Compute gradient ∇g(X�) of g(X�)
4: Find step-size l with Armijo rule, i.e.,

choose l = min{1, 12 ,
1
22
, . . .} such that

g(X∗�) ≤ g(X�)+ c · trace((X
∗
� − X�)

T
∇g(X�))

where X∗� = max{X� − l∇g(X�), 0}
5: Update MV estimation as X�← X∗�
6: end while
Output the estimated missing data X�

Concretely, we first fixW and seek for the optimal solution
of X�. In such a case, the problem (4) is equivalent to the
following constrained problem

min
X�

1
2
‖X − XW‖2

s.t. X� ≥ 0 (5)

In order to solve (5), we develop an iterative algorithm
based on gradient projection [23]. Let the derivative of
g(X�) = 1

2‖X − XW‖2 with respect to X� be denoted by
∇g(X�) = (X (I − W )(I − W )T )�, then the algorithm for
solving (5) can be summarized in Algorithm 1.
Secondly, we attempt to optimize W while holding X�.

In such a case, the original problem (4) becomes

min
W

1
2
‖X − XW‖2 + λ

N∑
i=1

‖wi‖pp

s.t. diag(W ) = 0 (6)

Notice that problem (6) is separable with respect to the
columns of W , therefore, we can solve each wi by

min
wi

1
2
‖xi − Xwi‖2 + λ‖wi‖pp

s.t. wi(i) = 0 (7)

In order to handle the constraint in (7), we denote
X i = [x1, . . . , xi−1, xi+1, . . . , xN ] ∈ Rd×(N−1), wi =
[wi(1), . . . ,wi(i − 1),wi(i + 1), . . . ,wi(N )]T , then, the con-
strained problem (7) can be converted into the unconstrained
problem as follows

min
wi

1
2
‖xi − X iwi‖2 + λ‖wi‖pp (8)

As we can see, a major difficulty is that problem (8)
is nonconvex when 0<p<1. In this work, in order to take
the advantage of the problem structure, we present an algo-
rithm targeting at (8) by means of iteratively reweighted
least squares (IRLS) [22] which is a popular technique in
optimization. Specifically, by computing the derivative of the
objective (8) with respect to wi and setting to zero, we have

X
T
i (X iwi − xi)+

λpwi(j)

(wi(j)2 + ε)1−
p
2
= 0 (9)

where ε is a small number to avoid division by zeros.

Algorithm 2 Iterative Algorithm for Solving SSR-lp
Initialization Give an initial W , parameter λ, p
1: while not converged do
2: Use Algorithm 1 to update current MVs X�
3: for i = 1, 2, . . . ,N do
4: Compute Dt by using (11)
5: Update wi by using (10) or (13)
6: end for
7: end while
8: Output the estimated missing data X�

Then, the iterative procedure for solving wi is given by

wi = (X
T
i X i + λDt )

−1X
T
i xi (10)

where Dt is a diagonal matrix defined as

Dt = diag(
p

(wti (j)
2
+ ε)1−

p
2
),

j = 1, . . . , i− 1, i+ 1, . . . ,N (11)

and wti is the solution at the t-th iteration.
Note that when the total number of samples is large, e.g.

N � d , the inversion of matrix X
T
i X i + λDt in (10) is

computationally expensive, i.e., O(N 3) in time complexity.
To address this problem and make our algorithm feasible
given large number of samples, we apply the well-known
Sherman-Morrison-Woodbury formula [40] shown below

(UCV + A)−1=A−1 − A−1U (C−1+VA−1U )
−1
VA−1 (12)

By combing (10) and (12), the optimal solution of wi can
be rewritten as

wi =
1
λ
D−1t −

1
λ
D−1t X

T
i (λI + X iD

−1
t X

T
i )
−1
X iD−1t (13)

where I is a d × d identity matrix. In formula (13), we only
need to solve the inversion of a matrix with size d × d .
To this end, when N � d , the time complexity for solving wi
can be significantly reduced from O(N 3) to O(d3). The time
complexity for solving all of wi can be estimated as O(Nd3),
which is linear with respect to the number of samples.

Finally, the whole iterative algorithm for solving SSR-lp
model (4) is summarized in Algorithm 2.

IV. EXPERIMENTS AND ANALYSIS
A. DATA DESCRIPTION
In this study, we evaluate the proposed SSR-lp algorithm
on a real-world traffic flow dataset. The data was collected
from Interstate 205 (I205) highways, serving the Portland-
Vancouver metropolitan area in Oregon and Washington
states, USA. The selected sub-area road network is shown
in Fig. 1. Thirty inductive loop detectors which records the
vehicle volume counts are chosen. The aggregation period
is 15 minutes, thus yielding 96 sampling points in each
day. In other words, each data sample can be viewed a
point in a 96 dimensional space. The collection time period
used in this study was from Mar. 1st to Aug. 31st in
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FIGURE 1. The selected sub-area road network of Portland, OR, USA.

FIGURE 2. Illustration of traffic flow profiles from 30 detectors in the same day.

the year 2015. The data is publicly available at website
(http://portal.its.pdx.edu/). After excluding weekends as well
as holidays, we finally get volume data of 97 days. Finally,
the total number of volume counts reaches 96 × 30 × 97 =
279360. The whole traffic sensor data is organized as a 96×
2910 matrix with each column representing a data sample.
In Fig. 2, we illustrate 30 data samples, each of which was
captured by a distinct detector in the same day. Note that the
horizontal axis and the vertical axis in Fig. 2 represent time
and traffic volume, respectively. These samples intuitively
reflect the traffic flow profiles at different road segments.
As can be seen, despite of overall similarity among traffic
flow profiles, it does exhibit some distinctions with respect

to the variation patterns of different detectors. For instance,
the maximum flow of some detectors is significantly larger
than that of other detectors. In addition, the traffic flow at
certain detectors clearly shows two peaks at rush hours while
it is not very notable for other detectors. These slight yet
important differences pose great challenge for MV imputa-
tion problem and render us to develop more flexible model
such that the homogeneity as well as heterogeneity can be
stimutanlously taken into accout.

B. CONFIGURATION
To comprehensively compare different methods, beside the
proposed SSR-lp, we also include some closely-related
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FIGURE 3. Convergence curve under different missing patterns. (a) MAR. (b) MIXED.

TABLE 1. Imputation error (×10−2) under MCAR missing pattern.

algorithms, including KNN, LLS [10], PPCA [13],
LRMC [41], SR-l2 [18] and SRSp [18]. Note that SRSp can be
viewed as a special case of SSR-lp when p equals to 1. These
methods covers the mainstream techniques for traffic data
imputation, such as regression model, probabilistic model,
etc. All of these algorithms were implemented in MATLAB
environment on a PC with Intel(R) Core(TM) i7-4712MQ
CPU and 12GB DDR4 RAM. There are some parameters
involved in each method, such as the number of nearest
neighbors for KNN and LLS, the subspace dimensionality
for PPCA, etc. Following previous stuides [18], we adjust
the parameters in each method such that best performance is
achieved.

In order to simulate MVs and evaluate the imputation
performance, we artificially generate missing entries for the
data. Specifically, three missing patterns [13], [17] are con-
sidered in the experiment. (i) missing completely at random
(MCAR) where the data points to be missing are completely
independent of each other and occur as a set of isolated points
randomly distributed, (ii) missing at random (MAR) where
the appearance of missing points depends on their neighbor-
ing points. Therefore, this type of missing pattern looks like a
group of successive MVs, (iii) a mixture of MCAR andMAR
(MIXED), where half of MVs obeyMCAR and the other half
are from MAR.

We measure the recovery performance of each method
by root mean squared error (RMSE) between the esti-
mated values and the real values for those missing entries.
Clearly, smaller RMSE indicates better recovery perfor-
mance. We also define the missiong ratio δ as the ratio of

the number of missing entries to the total number of entries.
Moreover, δ is changed from 0.1 to 0.5 with step 0.1 in order
to investigate the variation of recovery performance against
different missing ratios.

C. CONVERGENCE ANALYSIS
In this work, an iterative algorithm alternatively recovering
the missing data and optimizing sparse representation coef-
ficients is developed to solve the proposed SSR-lp model.
Next, we empirically investigate the convergence behavior
of this algorithm under varying missing ratios and different
missing patterns. Some convergence curves obtained in the
experiments are shown in Fig.3 where the x-axis denotes the
number of iterations and the y-axis denotes the logarithm
of objective function. From these results, we can observe
that our algorithm reduces the objective (13) in each iter-
ation, regardless of specific missing ratio and missing pat-
tern. Moreover, the iterative algorithm we develop is able to
converge quickly, usually requiring about 10-40 iterations in
most cases.

D. IMPUTATION PERFORMANCE COMPARISON
Considering the randomness when artificially simulating
missing entries, we repeat each experiment five times and
calculate the average imputation error (Mean) as well as
the associated standard deviation (Std). The experimental
results under MCAR, MAR, and MIXED missing patterns
are reported in Tables 1, 2 and 3, respectively. Note that the
number in parenthesis of SSR-lp column indicates the value
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FIGURE 4. Imputation results obtained by KNN.

TABLE 2. Imputation error (×10−2) under MAR missing pattern.

TABLE 3. Imputation error (×10−2) under MIXED missing pattern.

of p used in this experiment. As we can see, overall, MCAR
missing pattern is the easiest situation while MAR is the most
difficult case in terms of imputation. It is reasonable because
successivemissingwill losemuch valuable information about
correlation, thus increasing the difficulty of accurate recov-
ery. With respect to recovery performance, we find that KNN
performsworst among these algorithms. LLS, PPCA, LRMC,
SR-l2, and SRSp all significantly outperform KNN. In partic-
ular, LLS works well in low missing ratio, however, rapidly
degrades when missing ratio increases. Self-representation
based methods, including SR-l2, SRSp, and our proposed
SSR-lp, obtain superior imputation performance than other
competing methods. Comparing these three methods, we find
that SRSp obtains better performance than SR-l2, indicating

that sparsity is a crucial factor for self-representation based
imputation. This conclusion is consistent with that drawn
in [18]. At last, SSR-lp achieves best performance in most
cases. In fact, it is interesting to notice that as the miss-
ing ratio increases, a smaller p is preferred which implies
fewer samples should be selected for MV recovery in such
situations. Some examples under MIXED missiont pattern
and δ = 0.3 are shown in Fig.4-Fig.10. As we can see,
the proposed SSR-lp achieves small residual in the recovery
of missing data.

E. INFLUENCE OF lp ON PERFORMANCE
In what follows, we investigate the recovery performance
when varying the value of p in order to confirm that it is an
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FIGURE 5. Imputation results obtained by LLS.

FIGURE 6. Imputation results obtained by PPCA.

FIGURE 7. Imputation results obtained by LRMC.

important factor for self-representation based matrix comple-
tion. In particular, we change the parameter p in the range
of {0.2, 0.4, 0.6, 0.8, 1.0} and record the best performance

for each candidate value. Some experimental results under
MCAR, MAR and MIXED missing patterns are presented
in Fig.11. As we can see, the variation trends of performance

24286 VOLUME 6, 2018



X. Chen et al.: Nonconvex lp-Norm Regularized SSR for Traffic Sensor Data Recovery

FIGURE 8. Imputation results obtained by SR-l2.

FIGURE 9. Imputation results obtained by SRSp.

FIGURE 10. Imputation results obtained by SSR-lp.

when varying p is different under different missing ratio δ.
When δ is small, the performance can be improved by increas-
ing the value of p. In contrast, when δ is large, smaller p

is preferred. The results indicate that given more observed
entries, our method is apt to use more samples for accurate
imputation. On the contrary, when there are too manymissing

VOLUME 6, 2018 24287



X. Chen et al.: Nonconvex lp-Norm Regularized SSR for Traffic Sensor Data Recovery

FIGURE 11. Imputation performance variation with respect to different value of the parameter p. (a) MCAR, δ = 0.1. (b) MCAR, δ = 0.3.
(c) MCAR, δ = 0.5.

FIGURE 12. Variation of weights when increasing p from 0.2 (top row) to 1.0 (bottom row) with step 0.2.

values, our method adjusts itself to utilize samples as fewer
as possible. These results are essentially consistent with the
above quantitative comparison.

Next, we investigate how the parameter p influences the
sparsity of the resulting model. In this experiments, we take
one data sample as instance and fix λ to a constant and change
p in the same range above. Fig. 6 demonstrates the resulting
w1 ∈ R2910 after optimization. We show the weights with
absolute value larger than 10−4 following [42], [22]. As we
can see, when p equals to 0.2, only four samples are selected.
When p increases to 0.4, three extra samples are selected.
In a similar way, with the increase of p, more and more
samples are selected. These results empirically verify that,
the proposed SSR-lp model is able to produce the solution
with more sparsity given a small value of p.

V. CONCLUSIONS
In this paper, we develop a novel MV imputation algorithm
based on self-representation and lp-norm minimization. With
the introduction of lp-norm, our method is able to find sparser
representation for each sample, which in turn facilitate the
accurate recovery of missing data. To solve the resulting
model, we further develop an algorithm which optimizes the
missing data and the representation coefficients alternatively.

The experimental results confirm the effectiveness of our
method. An interesting extension of our work is investigat-
ing the nonlinear formulation of the proposed model, which
is more powerful in modeling nonlinear structure of data.
Another future work is to extend our proposal to large-scale
problems by applying some techniques, such as paralleliza-
tion, etc.
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