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ABSTRACT In recent years, the classification of breast cancer has been the topic of interest in the
field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women.
Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The
diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However,
if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in
image processing and machine learning, there is an interest in attempting to develop a reliable pattern
recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine
learning approaches for the automatic classification of breast cancer histology images into benign and
malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set
of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding)
and trained by support vector machines, while the second approach is based on the design of convolutional
neural networks. We have also experimentally tested dataset augmentation techniques to enhance the
accuracy of the convolutional neural network as well as ‘“handcrafted features + convolutional neural
network” and “‘convolutional neural network features + classifier”” configurations. The results show convo-
Iutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy
between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class
classification.

INDEX TERMS Histology images, convolutional neural networks, engineered features, bag of words,

locality constrained linear coding.

I. INTRODUCTION

Breast cancer is the most common invasive cancer in women
and the second main cause of cancer death in women, after
lung cancer [1]. According to the International Agency for
Research on Cancer (IARC), which is part of the World
Health Organization (WHO) [2], the numbers of deaths
caused by cancer in the year of 2012 alone come to around
8.2 million. The number of new cases is expected to increase
to more than 27 million by 2030 [3].

Breast cancer can be diagnosed using medical images
testing, like histology and radiology images [4]-[6]. The
radiology images analysis can help to identify the areas where
the abnormality is located. However, they cannot be used to
determine whether the area is cancerous [5], [6]. The biopsy,
where a tissue is taken and studied under a microscope to see

if cancer is present, is the only sure way to identify if an area is
cancerous [5]-[7]. After completing the biopsy, the diagnosis
will be based on the qualification of the histopathologists,
who will examine the tissue under a microscope, looking for
abnormal or cancerous cells [5], [6]. The histology images
allow us to distinguish the cell nuclei types and their architec-
ture according to a specific pattern. Practically, histopathol-
ogists visually examine the regularities of cell shapes and
tissue distributions and determine cancerous regions and
malignancy degree [5], [6]. If the histopathologists are not
well-trained, this may lead to an incorrect diagnosis. Also,
there is a lack of specialists, which keeps the tissue sample
on hold for up to two months, for example, this occurs often
in Norway [8]. There is also the problem of reproducibil-
ity, as histopathology is a subjective science. This is true
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especially between non-specialized pathologists, where we
can receive a different diagnosis on the same sample. There-
fore, there is an insistent demand for computer-assisted
diagnosis.

With the onset of pattern recognition and machine learning,
many handcrafted (engineered) features-based studies are
proposed for classifying breast cancer histology images.
Some studies have focused on nuclei segmentation such as
in [9]-[11]. After selecting the region of interest, a set of
features are extracted and fed into traditional classifiers to
classify the breast histology images into either benign or malig-
nant. These studies were conducted on small data sets com-
prising 500 and 92 images. Other studies have focused on
extracting global or local features from the whole images
such as in [12], where Zhang et al. combined local binary
pattern, statistics from gray level co-occurrence matrix and
curvelet transform, using a cascade random subspace ensem-
bles scheme with reject options. In the first level of the
cascade, the authors tried to solve the easy cases, while in the
upcoming levels, the hard cases are sent to a more complex
pattern classification system. The samples were classified
into normal tissue, carcinoma in situ, and invasive carcinoma.
In another study [13], the same authors evaluated a one-
class kernel principal component analysis (KPCA) model
ensemble using the same data (361 images) in [12]. The
ensemble consists of one-class KPCA models trained with
different features, a product-combining rule was then used
to combine the KPCA models to get the scores. In [14],
Spanhol et al. constructed a database of histology breast
cancer images named ‘“BreaKHis” to overcome the problem
of small data sets that are the main obstacle leading to the
lack of development of new analysis method as pointed by
Veta et al. [15]. In addition to the database, the authors pre-
sented the performances of the baseline pattern recognition
system, which was designed to distinguish between benign
and malignant tumors.

The convolutional neural networks (CNN) are regarded
as a variant of the standard neural networks. This variant
introduces a new special network, which compromises so-
called convolution and pooling layers [16], instead of fully
connected hidden layers. They were first introduced for over-
coming known problems of fully connected deep neural net-
works when handling high dimensionality structured inputs,
such as images or speech [17]. CNNs have become state-of-
the-art solutions for large-scale object classification [18], [19]
and object detection tasks [19]-[21]. CNNs have been applied
to address the task of breast cancer histology images classi-
fication such as in [22], where the authors divided the histol-
ogy images into small batches and then used to train CNN.
To get the final classification result, the patches results are
combined for the whole image. In [23], Aratjo et al. also used
CNN to classify breast histology images into four classes -
normal tissue, benign lesion, in situ carcinoma, and invasive
carcinoma. The authors also extracted a set of features from
the CNN and fed them into support vector machines. In [24],
Spanhol et al. used deep features extracted from a CNN.
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The approach is based on the reuse of previously trained
convolutional neural networks only, as a feature extractor.
The extracted deep feature vectors are then used as an input
to a traditional classifier. In [25], Bayramoglu ef al. also used
convolutional neural networks to classify breast histology
images into benign and malignant. However, the approach
was now magnification independent. The authors proposed
two architectures, one named the “‘single task convolutional
neural network™ which was used to predict the malignancy
and a “multi-task convolutional neural network™ which was
used to predict both the malignancy and the magnification
factor. In [26], a structured deep learning model is proposed
for addressing the breast cancer subordinate classes while
in [27], local and frequency domains with convolutional neu-
ral networks are used.

With the recent advances in image processing and machine
learning, the classification and diagnosis of breast cancer
using histology images attract much interest, and develop-
ing pattern recognition-based diagnostic systems became a
necessity to help experts optimize diagnostic quality. In this
paper, we have proposed two approaches to classifying breast
cancer histology images into benign and malignant, as well as
their sub-classes. The first approach is based on the extrac-
tion of a set of handcrafted features encoded by two coding
models (bag of words and locality constrained linear coding)
and trained by support vector machines, while the second
approach is based on the design of convolutional neural net-
works. The breast images consist of adenosis, fibroadenoma,
phyllodes tumor, tabular adenoma, ductal carcinoma, lobular
carcinoma, mucinous carcinoma, and papillary carcinoma.
The objectives of our study are: (a) to compare the hand-
crafted features-based classification methods and the con-
volutional neural networks, (b) to compare the performance
of the same convolutional neural networks on binary and
multi-class classification tasks., (c) to see how experimental
dataset augmentations influence performances, (d), to com-
pare between bag of words and locality constrained linear
coding models, which are used to encode local descriptors.

The rest of the paper is organized as follows: in Section II,
we give information about the data, while Section III is ded-
icated to the proposed convolutional neural network and the
handcrafted features-based classification. In Section IV and
Section V, the implementations settings, performances and
experimental results comparisons are given and discussed.

Il. MATERIALS

The data set used in this work is BreaKHis [14], which
comprises microscopic images of biopsy for benign and
malignant breast tumors with a total number of 7909 images.
Each slide of breast tumors is stained with hematoxylin
and eosin (HE). To obtain the digitized images from the
slides, an Olympus BX-50 system microscope with a relay
lens with magnification of 3.3x coupled to a Samsung dig-
ital color camera SCC-131AN is used. The data set com-
prises eight types of benign and malignant tumors. The
four benign tumors types are: Adenosis, fibro adenoma,
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TABLE 1. The number of histology images samples per class.

CLASS SUB-CLASS Magnification factor
40X 100X 200X 400X
BENIGN ADENOSIS 114 113 111 106
FIBROADENOMA 193 260 264 137
PHYLLODES 149 150 140 130
TUMORS
TABULAR 109 121 108 115
ADENOMA
MALIGNANT DucTAL 864 903 896 788
CARCINOMA
LOBULAR 156 170 163 137
CARCINOMA
MuciNnous 205 222 196 169
CARCINOMA
PAPILLARY 145 142 135 138
CARCINOMA

phyllodes tumors, and tabular adenoma. The four malignant
tumors types are: Ductal carcinoma, lobular carcinoma, muci-
nous carcinoma, and papillary carcinoma. The images are
acquired using four magnification factors: 40X, 100X, 200X,
and 400X. The number of samples for each magnification
factor is provided in TABLE 1. FIGURE 1 shows a sample
image from each type of breast benign and malignant breast
seen in magnification factor 40X.

FIGURE 1. Samples from each type of breast tumors, (A): Adenosis,

(B), Fibroadenoma, (C): phyllodes tumor, (D): Tabular adenoma, (E): ductal
carcinoma, (F): lobular carcinoma, (G): mucinous carcinoma, (H): papillary
carcinoma.

lll. METHODOLOGY

The proposed methods comprising convolutional neural net-
works and the handcrafted features-based approach are pre-
sented in this section. The proposed CNN topology is given
in Section A. A schematic representation of the handcrafted
features approach is depicted in FIGURE 2. FIGURE 2 pro-
vides an overview of the proposed approach used for gener-
ating a feature representation from an image. A set of local
features were extracted and a feature coding method was
employed in order to aggregate the local features into an
image representation. Spatial pyramid matching was used
to capture spatial structure of the images. Support vector
machines were then used to classify images. The dataset has
been randomly split into 70% training and 30% testing for
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each magnification factor. Twenty-five percent of the training
data is retained and used for cross validation to select the best
model’s parameters. After selecting the best parameters, it has
been added to the training data. The same testing dataset is
used in all experiments. The dataset augmentation techniques
are only applied to the CNN approach, where each image is
flipped and rotated.

A. CNN TOPOLOGY
Convolutional neural network became a substantial trend in
machine learning, and it had much success in many fields
such as computer vision and speech recognition. The pro-
posed CNN topology has been implemented using BVLC
Caffe [28], which is a popular and robust framework of
UC Berkeley. Caffe makes easy the design, the implemen-
tations of the CNNs, and comes up with simple interfaces
for both MATLAB and Python. Caffe provides an expressive
architecture that supports CPU and GPU training. The CNN
model and the optimization parameters are specified in the
configuration. Our proposed CNN topology is given below
and it comprises five convolutional layers followed by two
fully connected layers.
« 1% convolutional layer with filter size 3 x 3 and
64 feature maps.

« 2" convolutional layer with filter size 3 x 3 and
96 feature maps.

« 3" convolutional layer with filter size 3 x 3 and
128 feature maps.

« 4" convolutional layer with filter size 3 x 3 and
256 feature maps.

« 5™ convolutional layer with filter size 3 x 3 and
256 feature maps.

« Fully connected layer with 2000 hidden units.

« Fully connected layer with number of hidden units equal

to the number of classes.

« Softmax layer.

We have applied the RELU layer to all convolutional and
fully connected layers to make fast the convergence learning
and to introduce the non-linearity. The RELU layer changes
all negative activation values to zero of the given input by
applying the following function: f(x) = max (0, x). We have
also used max pooling for the first two convolutional layers
and the fifth layers and it has not applied for the third and the
fourth layers. The max pooling layer is applied after RELU
layer to reduce the spatial dimension with a filter of 3 x 3 and
a stride of the length equal to two. The network’s weights are
initiated using the Gaussian distribution with low standard
deviation equal to 0.01 for all the layers. Dropout layer was
applied after the fully connected layer with keep probability
of p = 0.5 which improved the performance of the network.
We have also used weight decay as another common regular-
ization technique through performing L2 regularization with
a value of A = 1073 to prevent the model from overfitting of
the training data. We have also set the learning rate value to
= 0.001 and it is decayed during training by using inverse
decay policy after every five epochs. This parameter scales
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FIGURE 2. A schematic illustration of the proposed features-based approach’s feature representation.

the size of the updates or the steps a neural network takes.
The loss function was optimized using stochastic gradient
descent with batch size equal to 32. The dataset was randomly
shuffled to avoid any negative impact on the learning by
using ordered training data. We have also set the value of
the momentum factor to 0.9 which helps the loss function to
move to the global minimum and do not stuck in one of the
local minima.

The dataset augmentation techniques have been applied
to increase the cardinality of the training set for all classes
and also to overcome the problem of overfitting. We have
used two augmentation techniques including rotation and
horizontal flip.

« Rotation: Rotation by 90°, 180°, and 270° has been
applied to the images, augmenting the size of the training
dataset.

« Horizontal flip: Horizontal flip has been applied to the
whole training images, also doubling the cardinality of
the training dataset.

B. HANDCRAFTED FEATURES-BASED CLASSIFICATION

We have made a comparison between CNN and features-
based classification. The feature-based approaches consist of
the features extraction phase, features coding phase, and the
classification phase. Two features-based approaches are pro-
posed; the first approach focuses on extracting local descrip-
tors and encoding them with the bag of words model, while
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in the second approach, the local descriptors are encoded
using locality constrained linear coding. Also, we have used
spatial pyramid matching to capture the spatial structure of
the images. The extracted features are trained using support
vector machines. Finally, we compared the performance of
the used feature coding models with the local descriptors.

1) LOCAL FEATURES EXTRACTION
We have used two types of local descriptors named Dense

Scale Invariant Feature Transform (DSIFT) features and
Speeded-Up Robust Features (SURF).

a: DENSE SIFT

Dense SIFT [29]-[31] is a variant of SIFT and, as opposed
to SIFT, dense SIFT does not identify nor compute inter-
est points. In other words, dense SIFT does not consist of
both detection and description; it only uses the descriptor
on the regular dense grid (uniform way). DSIFT uses a his-
togram of the oriented gradient method. Thus, it produces
a 128-dimensional feature vector. DSIFT outputs a very large
set of local descriptors, which provide more information
when compared to SIFT.

b: SURF

SURF [29]-[31] is a fast and robust version of SIFT; SURF
computation also consists of three main steps, like the
SIFT descriptor. The steps are: (a): create a scale-space
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representation of a given input image, (b): detect SURF
interest points’ in the scale and assignment of the orientation
to keypoints, and (c) finally, construct the SURF descriptor
for each keypoint. The main difference between SIFT and
SUREF in the detection phase is that SIFT uses the Gaussian
derivatives while SURF uses a simple 2D box filters. It uses a
scale-invariant blob detector based on the determinant of the
Hessian matrix for both scale selection and locations [34].
After computing the interest points, the next step is to cal-
culate their descriptions. A square region centered on the
interesting point is constructed and then the sum of the Haar
wavelet response is applied around the point of interest. The
extracted descriptor is a 64-dimensional feature vector.

2) FEATURES CODING

Features coding is an important step in the classification
process when working with local features (SURF and DSIFT
descriptors ...etc.). Most classifiers only accept a fixed-
length vector as the input for image recognition. Thus, provid-
ing the descriptors as inputs is not possible because there are
a variable number of feature vectors per image [35]. We have
used two types of feature coding, named “bag of words”
and “locality constrained linear coding” which are used to
aggregate the local features into an image representation.

a: BAG OF WORDS

Bag of Words (BoW) is widely applied as a feature cod-
ing method for medical [36] and natural image classifica-
tion [37], [38]. To construct the bag of words model, we first
need to build a vocabulary of visual words (a codebook) from
the extracted local descriptors by applying clustering. The
sets of descriptors extracted from the training set are clustered
into K-clusters using K-means. Afterward, the centroids of
these clusters will be considered as visual words and will be
used to encode the local descriptors. Each descriptor activates
a visual word and generates a code vector. The length of
the code vector is equal to the number of clusters. After
computing the code vector of each descriptor, the output of
this step is a coding multi-dimensional vector for the whole
image. The final step is final image representation, also called
pooling, where a frequency histogram of visual words is built
of length K for the entire image.

b: LOCALITY CONSTRAINED LINEAR CODING

Locality constrained linear coding is an efficient variant of
sparse coding, which utilizes the local linear property of
manifolds to project each descriptor into its local coordinate
system, and the projected coordinates are integrated by max
pooling to generate the final representation [39]. It has shown
improved performance over Bag of words model for image
classification [40], [41]. Also, it is very a representative
model with fast coding speed. Let X € RP*N is a set
of D-dimensional local descriptors in an image, i.e. X =
[x1,%2...xy] € RP*N. Given a visual codebook with M
entries B = [by,by...by] € RP*M each descriptor is
converted into M-dimensional code. LLC coding uses the
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following criteria to compute the codes C = [c1,¢2...cN] €
RD xN

N
argming = Y |X; — Bei|* + v |ldi ® cil)?
i=1

st.17e, =1 M
Where: ® denotes the element wise multiplication and
dist(x;, B)
di = exp(———) @

And
dist(x;, B) = [dist(x1, by), dist(xy, by) . . .dist(x;, byy)] (3)

Where the distance dist(x;, bj) is the Euclidean distance
between x; and b;. o is decay parameter which used to adjust
the weight decay speed for the locality adaptor d;;.

A fast approximation to LLC was proposed in [39] to
speed up the encoding process by ignoring the second term
in equation (1), where a k nearest basis descriptors of x; are
directly used to minimize the first term. The encoding process
is simplified by just solving a much smaller linear system [38]
given below:

N

. 2

argmin, = E IX; — Be;l|
i=1

st.1Te, =1, Vi )

Thus, the coefficients of the selected K basis vectors are
given while the others are set to zero. The image representa-
tion zi of an image [j is then obtained by pooling the sparse
codes associated with the local descriptor.

Preserving the spatial relationship between the code vec-
tors may enhance the performance of the classification. Thus,
we decided to apply spatial pyramid matching [41], [42],
which is an efficient extension of pyramid matching [43].
The main idea is to divide the image into levels. Each level
divides the images into sub-regions, building a histogram of
codes in each block. Level 0 will consist of a single histogram,
level 2 will comprise of level 0, comprising a single his-
togram, level 1, comprising of 4 histograms [44]...etc. The
constructed histograms are finally pooled to achieve the final
presentation of the image.

IV. RESULTS

The results in Section A are related to the CNN classifi-
cation performance applied to the original dataset and the
dataset with augmentation. The results of each test are given
in terms of accuracy (% of correctly classified instances).
The learning rate curves for testing and training losses are
given too. We have also tested ‘CNN+4-SVM’ configuration
by replacing the fully-connected layer with linear support
vector machines, ‘CNN Features+Classifiers’ configuration
through extracting CNN features at the fully connected layer
with 2,000 outputs and classifying them by the K-nearest
neighbor (KNN), radial basis support vector machines
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(RBF SVM), linear SVM and random forests, and we
also tested ‘Handcrafted Features+-CNN’ configuration.
In Section C, we gave the performances of the handcrafted
features-based while in Section D, we provided the results
of “Handcrafted Features+-CNN” configurations for both
BOW and LLC models. To evaluate the proposed models,
we used accuracy, precision, recall, Fl1-score and confusion
matrix as evaluation metrics.
TP TP

—, RECALL = ——

TP + FP TP + FN

TP: True positive, FP: false positive, FN: false negative.
F1-score is a measure of test accuracy, and it uses both preci-
sion and recall to compute the scores. F1-score is calculated
using the following formula:

PRECISION =

precision x recall

F1 —score =2 x —
precision + recall

A. CNN RESULTS

1) BINARY CLASSIFICATION

a: BASELINE CONFIGURATIONS WITH DATASET
AUGMENTATION

Following the proposed CNN topology in Section IILA,
the images were trained for 20,000 iterations. The obtained
accuracies are 94.65%, 94.07%, 94.54%, and 93.77% for
images with magnification factors 40X, 100X, 200X, and
400X, respectively. After augmenting the training dataset by
applying flipping and rotation and by training the model
for 20,000 iterations, we reached an accuracy of 96.82%,
96.96%, 96.36% and 95.97. Applying image augmentation
techniques has improved the accuracy for all images with dif-
ferent magnification factors. The data set was trained on Tesla
K40m GPU. The training log and test accuracy curves regard-
ing the number of iterations are shown in FIGURE3 (A),
FIGURE3 (B) for the original data set and the augmented
one respectively applied to the images with 40X magnifica-
tion factor. The confusion matrixes related to the augmented
dataset are given in FIGURE4. All accuracy results are given
in TABLE 2. The accuracy performances per class are given
in TABLE 3. In the FIGURES, we gave the visualization of
the convolution layers’ activations for an example image.

TABLE 2. The accuracy performance of CNN configuration applied to the
original and augmented, and “CNN+ Classifier” configuration as well as
ensemble model.

MAGNIFICATION 40X 100X 200X 400X
ORIGIN 94.65 94.07 94.54 93.77
AUGMENTED 96.82 96.96 96.36 95.97
SVM 92.71 93.75 92.72 92.12
ENSEMBLE 98.33 97.12 97.85 96.15
MODEL

As an assessment way of the deep learned features, we have
visualized the first layer weights. The visualization of the
weight is an efficient way that indicates if the network is
well trained or not. Well trained networks display smooth and
satisfactory filters without noisy patterns. Having noisy filters
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FIGURE 3. CNN results of images with 40X magnification factor: Log loss
and test accuracy of the tested dataset: (A). Accuracy results of the
original baseline dataset, (B). Accuracy results of the augmented dataset,
(C). Accuracy results of the “CNN+ Classifier” configuration.

TABLE 3. The accuracy performance per class for the four magnification
factors applied to the augmented data set.

ACCURACY PER 40X 100X 200X 400X
CLASS

BENIGN | 95.19 96.89 89.84 94.89

MALIGNANT | 97.57 96.98 99.28 96.49

FIGURE 4. Confusion matrix: (A). Confusion matrix of CNN models
applied to the augmented dataset with 40X magnification

factor, (B). Confusion matrix of 100X magnification factor, (C). Confusion
matrix of 200X magnification factor, (D). Confusion matrix of 400X
magnification factor. 1: Benign, 2: malignant.

may indicate that the network has not been trained for long
enough. FIGURESG shows a visualization of the weights of the
first layer (with 64 filters) which look smooth. The weights
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FIGURE 5. Visualization of the convolutional layers’ activations,

(A): the input images, (B): The first convolutional layer’s activation,
(C): The second convolutional layer’s activation, (D): The third
convolutional layer’s activation, (E): The fourth convolutional layer's
activation, (F): The last convolutional layer’s activation.

FIGURE 6. lllustration of the learned filters on the first layer of the
proposed CNN, (A): The learned filters for images with 40X magnification
factor, (B): The learned filters for images with 100X magnification factor,
(C): The learned filters for images with 200X magnification factor,

(D): The learned filters for images with 400X magnification factor.

were visualized for four examples from each magnification
factor.

To enhance the accuracy, we thought of using an ensemble
model. CNNs have a final fully connected layer with softmax
activation, which provides a vector of probabilities for each
sample. At different iterations, the accuracy may be different
and also the probabilities for a given sample. Therefore,
we have used 10 predictive models that provide the highest
accuracies using the augmented data at different iterations
to get the probabilities for the testing data. Then, we have
summed them (the 10 vectors) up. Finally, the max value
among them is taken and its class is given as output. This
simple ensembling method was efficient and it helped to
increase the performance for the four magnification factor to
98.33%, 97.12%, 97.85% and 96.15 respectively. The results
are given in TABLE 2.

TABLE 4 provides the evaluation metrics including pre-
cision, recall and Fl-score values computed from the CNN
models applied to the augmented data. TABLE 5 provides the
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TABLE 4. Precision, recall and F1-score values computed from the CNN
models applied to the augmented data set.

MAGNIFICATION 40X 100X 200X 400X
PRECISION 97.80 98.58 95.61 97.54
RECALL 97.57 96.98 99.28 96.49
F1-SCORE 97.68 97.77 97.41 97.01

TABLE 5. Training time of CNN applied to original and augmented data
sets with different magnification factors.

MAGNIFICATION 40X 100X 200X 400X

46 47 42 46

ORIGIN DATA MINUTES, MINUTES, MINUTES, MINUTES,
17 SECONDS 14 29 47

SECONDS SECONDS SECONDS

59 1 HOUR, 59 1 HOUR 7

AUGMENTED MINUTES, 22 MINUTES, MINUTES,
DATA 05 SECONDS ~ SECONDS  47SECONDS 30

SECONDS

training time of CNN applied to the original and augmented
datasets with different magnification factors.

b: USE OF LINEAR SVM ON THE TOP OF CNN

We investigated a hybrid approach ‘CNN+ Classifier’. Fol-
lowing the same used in [21], we put a small fully-connected
layer downstream of the last convolutional layer, with neu-
rons equal to two, which is the number of classes, and with-
out using activation layer (non-linearities), feeding a hinge
loss layer. As mentioned in [21], learning this architecture
is equivalent to work with a linear SVM acting on features
learned by the CNN. The accuracies obtained were 92.71%,
93.75%, 92.72%, and 92.12%, respectively, which is less
than the accuracy reached by using CNN in Section 1.1. The
decreasing result is due to the linearity of support vector
machines.

2) BENIGN AND MALIGNANT CANCER

SUB-CLASSES CLASSIFICATION

a: BASELINE CONFIGURATIONS WITH

DATASET AUGMENTATION

Following the same CNN topology used for the binary clas-
sification, the images were trained for 20,000 iterations.
The obtained accuracies are 86.34%, 84.00%, 79.83%, and
79.74% for images with magnification factors 40X, 100X,
200X, and 400X, respectively.

After augmenting the training dataset by applying flipping
and rotation and by training the model for 20,000 itera-
tions, we reached an accuracy of 83.79%, 84.48%, 80.83%,
and 81.03%. Applying image augmentation techniques has
improved the accuracy for all images with different magni-
fication factors, except for images with magnification fac-
tor 40X, where the accuracy is decreased from 86.34%
to 83.79%. The confusion matrixes related to the original
dataset are given in FIGURE7. All accuracy results are
given in TABLE 6. The accuracy performances per class are
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FIGURE 7. Confusion matrixes, (A): Confusion matrix of CNN model
applied to the augmented data set with 40X magnification factor,

(B): Confusion 100X magnification factor, (C): 200X magnification factor,
(D): 400X magnification factor. 1: Adenosis, 2: ductal carcinoma,

3: fibroadenoma, 4: lobular carcinoma, 5: mucinous carcinoma,

6: papillary carcinoma, 7: phyllodes tumor, 8: tabular adenoma.

TABLE 6. The accuracy performance (%) of CNN configuration applied to
the original and augmented, and “CNN+ Classifier” configuration as well
as ensemble model.

MAGNIFICATION 40X 100X 200X 400X
ORIGIN 86.34 84.00 79.83 79.74
AUGMENTED 83.79 84.48 80.83 81.03
SVM 82.89 80.94 79.44 77.94
ENSEMBLE 88.23 84.64 83.31 83.98
MODEL

FIGURE 8. Classification results examples, (A): Well-classified adenosis,
(B): Adenosis classified as phyllodes tumor, (C): Tabular adenoma
classified as fibroadenoma, (D): Well-classified ductal carcinoma,

(E): Well-classified tabular adenoma, (F): Well-classified papillary
carcinoma, (G): Well-classified lobular carcinoma, (H): Lobular carcinoma
classified as ductal carcinoma.

given in TABLE 7. The data set was also trained on
Tesla K40m GPU. TABLE 8 provides the evaluation met-
rics including precision, recall and Fl-score values com-
puted from the CNN models applied to the augmented data.
TABLE 9 provides the training time of CNN applied to the
original and augmented datasets with different magnification
factors. In FIGURES, we gave classification results for some
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TABLE 7. The accuracy performance (%) per class for the four
magnification factors applied to the augmented data set.

ACCURACY PER 40X 100X 200X 400X
CLASS
ADENO 85.29 79.41 84.85 90.63
DUCTAL 91.51 90.77 91.14 92.74
FIBRO 86.84 91.03 91.14 77.46
LOBULAR 78.72 54.90 63.27 56.10
MUCINOUS 70.49 82.09 61.02 70.59
PAPILLARY 67.44 83.72 57.50 68.29
PHYLLODES 76.19 63.89 62.50 58.82
TABULAR 75.56 93.33 76.19 82.05

TABLE 8. Precision, recall and F1-score values computed from the CNN
models applied to the augmented data set.

MAGNIFICATION 40X 100X 200X 400X
PRECISION 84.27 84.29 81.85 80.84
RECALL 83.79 84.48 80.83 81.03
F1-SCORE 83.74 84.31 80.48 80.63

TABLE 9. Training time of CNN applied to original and augmented data
sets with different magnification factors.

MAGNIFICATION 40X 100X 200X 400X
37 39 40 46
ORIGIN DATA MINUTES, MINUTES, MINUTES, MINUTES,
29 SECONDS 54 30 47
SECONDS SECONDS SECONDS
53 53 1 HOUR, 9 1 HOUR
AUGMENTED MINUTES, MINUTES, MINUTES 43
DATA 54 SECONDS 01 MINUTES
SECOND

TABLE 10. The softmax probabilities output of images given in figure 8.

IMAGE A B C D E F G H
ADENO | 99.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Duct 21.39 0.0 0.57 0.0 0.0 0.0 78.04 0.0
FiBRO 0.0 0.0 99.49 0.0 0.12 0.0 0.0 0.39
LoBu 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0
Mucl 0.0 0.0 0.41 0.0 0.0 0.28 0.0 99.31
PAPI 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0
PHY 0.0 0.16 0.0 99.84 0.0 0.0 0.0 0.0

TABU 0.0 9484 0.0 463 054 001 0.0 0.0

right-classified and misclassified instances, and we also pro-
vided their Softmax probabilities output in TABLE 10. Sim-
ilarly to the binary classification, the model ensembling
method has been applied for the multi-class classification and
the results are given in TABLE 6.

b: USE OF LINEAR SVM ON THE TOP OF CNN

We also investigated the hybrid approach ‘CNN+ Classifier’
for benign and malignant cancer sub-classes classification.
Following the same used in [21], we put a small fully-
connected layer downstream of the last convolutional layer,
with several neurons equal to eight, which is the number of
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classes, and without using activation layer (non-linearities),
feeding a hinge loss layer. The accuracies obtained were
82.89%, 80.94%, 79.44%, and 77.94%, respectively, which
is less than the accuracy reached by using CNN in Section
2.1. The decreasing result is due to the linearity of support
vector machines.

B. ‘CNN FEATURES + CLASSIFIER'CONFIGURATION
Convolutional neural networks’ layers produce activations for
input images. A set of features can be extracted from these
layers and used for classification with traditional classifiers.
We opted for ‘CNN Features + Classifier’ configuration,
where we have extracted features from the fully connected
layer with 2000 outputs and then gave them as the input to
K-nearest neighbors, support vector machines, and random
forests. For K-nearest neighbors, the number of neighbors
is set to 3. Support vector machines were tested with two
kernels, linear and radial basis kernels. Radial basis kernels
were used with the following parameters, which provided
the best accuracies: C = 5 and gamma = (1/number of
features). The construction of the trees for random forests was
carried out using Gini index which used as a split criterion
for the attributes and the number of trees was set to 50.
The features are extracted from the convolutional neural
network applied to the augmented dataset for all magnifi-
cation factors. The performance of the classifiers is given
in TABLE 11 for both binary and multi-class classification.
By comparing the performances of the classifiers for the
binary classification, we find that linear SVM provided the
highest accuracies for the four magnification factor. This is
due to a decision boundary that separates the training data (the
data distribution is linearly separable). For the multi-class
classification, the RBF kernel worked better on images with
40X and 100X, while KNN worked better on images with a
200X magnification factor and linear SVM worked better on
images with a 400X magnification factor. Thus, the perfor-
mance of the classifiers greatly depends on the characteris-
tics of the data and the ability to discriminate between the
classes.

TABLE 11. The performance of different classifiers with deep features
extracted from the fully connected layer with 2000 output.

MAGNIFICATION  KNN RBF Linear = Random

FACTOR SVM SVM Forest

40X 88.80 84.45 90.64 86.70

BINARY 100X 85.42 86.21 89.58 86.05
200X 88.58 87.09 90.23 88.25

400X 75.16 73.88 75.96 75.32

40X 70.48 75.43 72.35 66.38

MULTI- 100X 68.00 71.20 67.68 65.12
CLASS 200X 70.08 67.27 66.45 69.80
400X 66.38 65.12 64.95 67.96

C. HANDCRAFTED FEATURES-BASED APPROACH RESULTS

In this section, we will provide the results of DSIFT
and SURF features encoded with bag of words and
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locality constrained linear coding. Firstly, we will give the
implementation setting which chosen carefully to pro-
vide the best performances. The size of codebook used
for both coding models is 1500 visual words. The pub-
lic library, vlfeat [45], was used for vocabulary build-
ing for bag of words model. After extracting both DSFIT
and SUREF features, first, a vocabulary of 1500 visual is
built. The 1500 visual words are selected using K-means
clustering where the extracted features are divided into
1500 clusters and the centroid of each cluster is taken
as a visual word. The max number of iterations for
K-means is set to 100. In order to encode a descriptor and
assign it to one of the centroids, we need to use K-nearest
neighbors to measure the distance. We have set the number
of neighbors to 20. For LLC, we used the implementation
of LLC from [39] with also 20 nearest neighbors (K = 20)
and max pooling to pool the encoded descriptors and to
provide the final image presentation. K-means is also used
for clustering for LLC to build the dictionary (Codebook).
Spatial pyramid matching was also used in order to enhance
the performance of LLC with different levels. Libsvm [46]
library is used to train and build the SVM. For DSIFT fea-
tures, we used the following settings: Binsize = 8 and the
step = 4. The results of BoW model are given in Section 1,
and the results of LLC are given in Sections 2.

1) DSIFT/SURF FEATURES ENCODED WITH BOW MODEL

In this sub-section, we provided the performance of the set
of features extracted from the images and encoded with the
bag of words model. The BoW model’s codebook com-
prises 1500 visual words. TABLE 12 provides the accura-
cies for each magnification factor for the binary and the
multi-class classification. The performances of the binary
classification using SURF features were satisfying compared
to the one of DSIFT features (The difference is between
18% and 23%). For the multi-class classification, all the
accuracies were less than 50% due to the number of han-
dled classes. Also, bag of words model ignores the high-
level semantics and spatial information which is another
reason of the low performances. Much semantic information
is lost during the generation of the codebook, because the
visual vocabulary is constructed by directly clustering the
low-level visual feature vectors [47], [48]. The extracted
features were trained using support vector machines with
radial basis kernel, which offered the best results compared to
linear SVM.

TABLE 12. The performance of the features encoded with bow and
classified with svm for the binary and the multi-class classification tasks.

FEATURES 40X 100X 200X 400X

BINARY DSIFT 52.68 56.22 50.12 50.00
SURF 79.95 74.30 70.96 72.02

MULTI- DSIFT 18.77 17.28 20.16 17.49
CLASS SURF 49.65 47.00 38.84 29.50
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TABLE 13. The performance of the features encoded with LLC model, classified with svm for the binary and the multi-class classification tasks.

SPL: spatial pyramid level.

Task SPL 40X 100X 200X 400X
DSFIT SURF  DSIFT SURF DSIFT  SURF  DSIFT SURF
Binary 0 69.40 84.78  72.11 81.57 70.36 83.77 7032  82.05
1 69.73 8527  70.67 82.85 70.53 84.93 71.61 82.60
2 70.06 85.79  71.80 81.73 71.19 79.64 67.77  83.15
0 48.46 55.80  49.44 54.24 43.97 40.83 3260  37.20
Multi-class | 1 47.44 54.61 44.32 53.92 44.46 48.10 32.86  38.12
2 44.54 53.75 51.68 44.30 44.30 45.30 3554  40.88

TABLE 14. The performance of DSIFT/SURF features encoded with BOW/ LLC models and classified with CNN FOR the binary and the multi-class

classification tasks.

Model Task Feature 40X 100X 200X 400X
Binary DSIFT 66.72 69.06 62.42 52.75

Classification SURF 85.45 79.77 78.97 78.57

BoW Multi-class DSIFT 41.80 38.56 49.75 38.67
Classification SURF 53.07 60.80 70.00 51.01

Binary DSIFT 72.74 78.04 78.97 75.00

LLC Classification SURF 87.00 82.50 84.00 87.91

Multi-class DSIFT 60.58 57.44 70.00 46.96

Classification SURF 80.37 63.84 74.54 54.70

2) DSIFT/SURF FEATURES ENCODED WITH LLC MODEL

This section focuses on the performance of locality con-
strained linear coding applied to the DSIFT and SURF fea-
tures, with and without adding spatial information. The set
of features vectors are also trained with radial basis kernel
SVM. The results are given in TABLE 13 for the binary clas-
sification and the multi-class classification. Similarly to the
configuration in Section 1, the results of SURF features were
higher than the one of DSIFT. Also, the results of the binary
classification were much better than the one on the multi-
class classification. Incorporating the spatial information of
the local descriptors allowed increasing the performance of
the models, in most of the cases.

D. 'HANDCRAFTED FEATURES+ CNN’ RESULTS

In order to test an alternative ‘Handcrafted Features+CNN’
configuration, and instead of using traditional classifiers
(such as SVM and K-nearest neighbors) to classify the hand-
crafted features extracted from the images, we replaced the
traditional classifiers with fully-connected layers and we gave
the set of features as an input to CNN. The features were
stored in the HDF5 format. Fully-connected layers are simply
convolutional layers. The only difference is that fully con-
nected layers use filters with the same size as the input. Also,
for each unit in this layer, it has full connections with units
of the previous layer. The same CNN topology is applied to
the binary and the multi-class classification. The used CNN
for features encoded with BoW and LLC coding comprises
three fully-connected layers. The first fully-connected layer
has 2,000 outputs followed by a RELU function with a
dropout rate of 50%. The second fully-connected layer has
100 outputs followed by a RELU function with a dropout
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rate of 50%. The third fully-connected layer has (two/ eight)
outputs and the number of classes without a dropout or RELU
function. The network weights are initiated using Gaussian
distribution. The regularizing parameter weight decay is set
to 0.1. The number of iterations is set to 20000 iterations.
The learning rate is initiated to 0.001, and the used policy
is inverse decay. The batch size is set to 32. The standard
gradient descent is used in training. This topology has given
higher accuracy compared to the traditional approach. For
example, this topology has given an accuracy of 70% for
SUREF features extracted from images with 200X magni-
fication factor for the multi-class classification, while the
traditional classifier (SVM) gave an accuracy of 38.84%. All
the results are given in TABLE 14.

V. DISCUSSION

In this work, we have made a direct comparison of con-
volutional neural networks against the handcrafted features-
based classification in classifying breast cancer histology
images into benign and malignant (binary classification) and
also into benign and malignant sub-classes (multi-class clas-
sification). The same CNN topology was applied to both
classification tasks. For the binary classification, we reached
an accuracy ranging from 93.77 % to 94.65 % using the
original data. By applying data augmentation, we succeeded
to increase it for all the magnification factors (ranging from
95.97% to 96.96). Although the CNN topology provided
very promising results for the binary classification, the per-
formance for the multi-class classification was a bit less
(ranging from 79.74 % to 86.34%). The reasons behind
that are: (1) the number of classes is large (eight) compared
to the binary classification, (2) the difficulty of discriminating
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FIGURE 9. Confusion matrixes, (A): Confusion matrix of CNN models applied to the
original data set with 40X magnification factor, (B): Confusion matrix of CNN models
applied to the augmented data set with 40X magnification factor, 1: adeno, 2: ductal, 3:
Fibro, 4: lobular, 5: mucinous, 6: papillary, 7: phyllodes, 8: tabular.

between the classes and especially between ductal carcinoma
and lobular carcinoma and also between tabular adenoma and
fibroadenoma, as shown in the confusion matrix depicted in
FIGUREDY, (3). Another reason could be the small number
of training samples present per class, even after adopting
data augmentation techniques. Data augmentation techniques
allowed us to extend the data with a set of transformations
(rotation and flipping) of the original data. Applying data
augmentation helped to increase the accuracy of images with
the 100X, 200X, and 400X magnification factors.

TABLE 15. Accuracy per class for images with 40X magnification factor
with and without applying data augmentation.

ACCURACY PER ORIGINAL Augmented
CLASS DATA SET
ADENO 97.06 85.29
DUCTAL 90.35 91.51
FIBRO 93.42 86.84
LOBULAR 78.72 78.72
MUCINOUS 78.69 70.49
PAPILLARY 74.42 67.44
PHYLLODES 71.43 76.19
TABULAR 73.33 75.56

For images with the 40X magnification factor, the accuracy
dropped from 86.39% to 83.79%. To analyze the reason
for this, we computed the accuracy per class for the orig-
inal and the augmented data set given in TABLE 15 and
also depicted the confusion matrixes in FIGURE 9. As we
can see in TABLE 15, data augmentation worked well for
some classes (ductal carcinoma, lobular carcinoma, phyl-
lodes tumor and tabular adenoma) and for some (adenosis,
fibroadenoma, mucinous and papillary carcinoma), it led to
a drop in the performance. The reason could be that the aug-
mented data for the classes where the performance decreased
does not represent the intended output, thus creating con-
fusion for the CNN model with other classes’ outputs. For
example, in the confusion matrix FIGURE 9 (A) and by
using the original data set, the number of correctly classified
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samples for fibroadenoma was 71. However, after apply-
ing data augmentation, this number dropped to 66 samples.
Five samples are misclassified as tabular adenoma (3 sam-
ples), lobular carcinoma (1 sample) and mucinous carcinoma
(1 sample).

The design of the right convolutional neural networks is
a crucial step and it affects the performance of the CNN.
Howeyver, there are no firm rules about the exact number of
layers that should be used in order to attain the highest perfor-
mances. It is usually based on experimentation, background
knowledge, and the type of problem at hand. In this work,
we have used a topology comprising five convolutional layers
which have been chosen using cross-validation. The same
topology is used for the binary and the multi-class classifi-
cation tasks. This topology brought the model to have the
flexibility to capture high-level features and non-linearities
in the data, while also providing promising results. We have
used small filters of 3 x 3 for all the layers in order to capture
fine details in the images. Now, we will compare our topology
and the achieved results with the recent works where CNN
and the handcrafted features-based approaches are used. The
comparison results are given in TABLE 16.

In [22], Spanhol et al. tested out LeNet [17] topology
(which consists of two convolutional layers and three fully-
connected layers) to classify breast cancer tumors into benign
and malignant. However, they only reported an accuracy
of 72%. Thus, they decided to use a complex topology which
is a variant of AlexNet [18] networks. This topology consists
of three convolutional layers with a filter size of 5 x 5 and
two fully-connected layers. To train the network, the images
were divided into small patches using sliding window and
random strategy with different sizes and to get the final
classification result, the patches results are combined for the
whole image. The authors reported an accuracy ranging from
80.8% to 85.6% where they used sum fusion rules on the dif-
ferent trained models with different patch sizes. On the other
hand, in [24], Spanhol et al. reused the weights of the pre-
trained BVLC CaffeNet architecture to extract a set of deep
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TABLE 16. Comparative analysis OF CNN’S results with existing CNN in the literature.

AUTHORS DATA SET Classes Accuracy Precision Recall F1-score
BreaKHis
a. 40X 89.6+6.5 92.9
SPANHOL ET AL [22] b. 100X BENIGN/ MALIGNANT 85.0+4.8 - - 88.9
¢. 200X 84.0+3.2 88.7
D. 400X 80.8 £3.1 85.9
CARCINOMA/NON- 90.00 - - -
ARAUJO ET AL [23] 269 CARCINOMA
IMAGES NORMAL/BENIGN/IN 85.00 - - -
SITU/ INVASIVE
BreaKHis
a. 40X BENIGN/ MALIGNANT 84.6 £2.9 --- --- 88.0
SPANHOL ET AL [24] b. 100X 848440 88.8
¢. 200X 88.7
84.2 +1.7
P 400X 816437 867
BreaKHis
a. 40X BENIGN/ MALIGNANT 83.0+£3.0
BAYRAMOGLU ET AL b. 100X 83.143.5 - - ---
[25] ¢. 200X 84,6427
D 400X 82.124.4
BreaKHis
NAHID ET AL [26] a. 40X 94.40 94.00 96.00 95.00
b. 100X BENIGN/ MALIGNANT 95.93 98.00 96.36 97.00
¢. 200X 97.19 98.00 98.20 98.00
D. 400X 96.00 95.00 97.79 96.00
95.8 £3.1
BreaKHis BENIGN/ MALIGNANT 96.9+1.9 - - -
a. 40X 96.7+2.0
b. 100X 94.94+2.8
HANET AL [27] c. 200X
D. 400X
MULTI-CLASS 92.8+2.1
93.9+1.9
93.7+2.2
92.9+1.8

features and input them into logistic regression classifier. The
reported accuracy was ranging from 83.6% to 84.8%. In [25],
Bayramoglu et al. proposed an approach that is magnification
independent. The authors proposed two architectures, one
named ‘‘single task convolutional neural network’ which is
used to predict the malignancy, and a “‘multi-task convo-
lutional neural network” which is used to predict both the
malignancy and the magnification factor. For the single task,
the average accuracy (based on patient score) was 83.25%
while for the multi-task; the average accuracy was 82.13%
for the benign/malignant classification task. In [26], raw
images, handcrafted features, and frequency-domain infor-
mation were fed into a CNN to classify the breast histol-
ogy images into benign and malignant. The reported perfor-
mance was between 94.40% and 97.19%. In [27], the use
of a structured deep learning model allowed reaching an
accuracy of between 94.9% and 96.9% for the binary classifi-
cation and accuracy between 92.8% and 93.9% for the multi-
class classification. When we compare our CNN network
results for the binary classification, we find that our topology
outperforms the proposed approaches in [22] and [24]-[27]
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in terms of accuracy where we achieved the state-of-the-art
accuracy between 96.15% and 98.33 %. By comparing the
accuracies and the Fl-scores, we find that our CNN topol-
ogy (without using ensemble model) provided the highest
accuracies and Fl-scores for images with 40X and 100X
magnification factors compared to the study in [26] and it
provided the highest accuracies and F1-scores for images
with 40X, 100X and 400X magnification factors compared
to the study in [27]. The results of [27] for the multi-class
classification were better (between 92.8% and 93.9%).

In [23], Aradjo et al. classified breast histology images into
four classes, normal tissue, benign lesion, in situ carcinoma,
and invasive carcinoma. The proposed CNN comprises three
convolutional layers and three fully-connected layers. The
authors also extracted deep features from the CNN and fed
them into support vector machines. The highest accuracy
the authors reported was 85% for four classes’ problem and
90% for carcinoma/ non-carcinoma classification. While the
authors only reported 85% for the four-class classification;
with our CNN, and for eight-class classification problem,
we achieved 88.23% for images with a 40X magnification
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factor as the highest accuracy. Also, for the binary classifica-
tion, we achieved higher results.

In [14], Spanhol et al. have compared the performances
of texture features including local binary pattern (LBP),
completed local binary pattern (CLBP) and Gray Level
Co-Occurrence Matrices (GLCM)) and also Oriented FAST
and Rotated BRIEF (ORB) which is a developed alterna-
tive for SIFT and SURF for the classification of histology
images into benign and malignant categories. By comparing
the achieved results with ours, where we used encoded local
descriptors, we found that the encoded SURF features with
LLC coding and classified with support vector machines
outperformed both texture features and also ORB features.

VI. CONCLUSION

In this work, we compared the performance of convolu-
tional neural networks with various configurations for the
classification of breast cancer histology images into benign
and malignant, and also into benign and malignant sub-
classes too. The designed CNN topology worked well on
both binary and multi-class classification tasks. However,
the performance of the multi-class classification was lower
when compared to the one of the binary classification due to
the number of handled classes and also due to the similarities
between the sub-classes. The performance of the handcrafted
features-based approach where we used coding models to
encode the local descriptors to build image representation was
too low compared to the CNN. Convolutional neural networks
are also used to replace traditional classifiers with fully-
connected layers to train the handcrafted features (DSIFT and
SURF), which helped increase the performance of the hand-
crafted features. Convolutional neural networks have become
state-of-the-art, demonstrating an ability to solve challenging
classification tasks. Our proposed CNN topology has beaten
the previous ones for the binary classification task, where we
reached a performance of between 96.15% and 98.33.
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