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ABSTRACT This paper presents an artificial neural network (ANN)-based detection algorithm for an
unmanned aerial vehicle (UAV). The slope, kurtosis, and skewness of the signal received from the UAV
are employed in this algorithm. The training of the three corresponding feature matrices is done using UAV,
and non-UAV signals can be classified effectively for the UAV sensor network based on ANN. Outdoor data
over a bridge in the Jimo District, Qingdao, and indoor data from a research laboratory are used for system
training and evaluation. The results obtained show that the proposed detection algorithm based on an ANN
outperforms methods based on the slope, kurtosis, and skewness of the received signal in terms of the error
rate. The recognition rate with the proposed algorithm is greater than 82% within a distance of 3 km, which
is better than other UAV detection methods such as active radar, acoustic, and visual recognition.

INDEX TERMS Unmanned aerial vehicle (UAV), wireless sensor networks, artificial neural network (ANN),
signal detection, slope, kurtosis, skewness.

I. INTRODUCTION
In recent years, there has been significant research on wire-
less sensor networks (WSNs) [1]–[4]. Unmanned aerial vehi-
cle (UAV) sensor networks are becoming important for both
civilian and military applications because of their low cost,
coverage, and agility and the availability of small-scale
sensors [5]. According to BI Intelligence, the global UAV
market is expected to grow at a compound annual growth
rate (CAGR) of 19% between 2015 and 2020, with the mil-
itary market growing by 5%. This because UAVs are now
widely used in the fields of mapping, military operations, pre-
cision agriculture, aerial photography, environmental moni-
toring, search and rescue, and video recording [6]. However,
beyond these applications, there have been problems such
as a UAV crashing at the White House and another inter-
rupting a US Open tennis match. A UAV collided with a
Lufthansa jet near Los Angeles International Airport (LAX)
on March 29, 2016, which raises concerns regarding the
safety of government buildings, air traffic and other facili-
ties [7]. Small UAVs can also be used to invade the privacy of

people. Shooting aUAV is themost direct approach to dealing
with a threat. In [8] and [9], a genetic algorithm (GA) was
used for UAV jamming. Jamming the GPS or radio signals
was considered in [10] to disable a UAV without damaging
it [10]. However, these methods are based on the assumption
that the UAV has been detected and its location is known.

The urgent need for human safety, security, and privacy has
made UAV detection a research focus. Many detection algo-
rithms have been proposed such as active radar probe, acous-
tic recognition, infrared spectrum identification, visual recog-
nition and radio frequency signal detection [7], [11]–[15].
In [11], an active radar system using a frequency modulated
signal was proposed to detect a small UAV within a distance
of 500 m. A calibrated radar cross section (RCS) was used
in [12] to recognize a UAV within a range of 2 km regardless
of the flight pattern [12]. A regularized 2-D complex-log-
Fourier transform algorithm was considered in [13] to extract
spectrogram features to identify the Doppler signature of a
UAV. Space-variant resolution (SVR) and log-polar transfor-
mations (LPTs) were employed in [14] to identify UAVs even
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with scale and rotational changes [14]. However, beyond a
distance of 1.5 km detection system have difficulty distin-
guishing between birds and UAVs [13], [16]. Beamforming
with an acoustic array was considered in [15] to locate and
track UAVs, but its effective range is less than 300 m. In [7],
a passive detection algorithm was employed to extract the
low-frequency communication signals between the UAV and
controller. In this paper, the statistical features of the corre-
sponding high-frequency signals.

Many characteristics have been employed in the statistical
analysis of signals such as power quality, brain-computer
interface, and energy [17]–[20]. Most are closely related to
the slope, skewness, and kurtosis of the signals. For example,
the power quality was examined and the disturbances classi-
fied in [17] using the skewness, kurtosis and Shannon entropy
of the voltage. The initial dips in a brain-computer interface
were obtained in [18] by considering five features: signal
mean, peak value, signal slope, skewness, and kurtosis. Thus,
it can be concluded that the statistical features of a signal
should prove useful in detection UAVs, even in complex
environments.

As we all know, common nonlinear-system-modeling
methods include artificial neural network (ANN), support
vector machine (SVM), k-nearest neighbor (KNN), GA,
naive Bayes classifier (NBC), decision tree, Kalman filter,
etc [21]–[23]. GA has better performance compared with
ANN but it requires higher receiver complexity. SVM has a
little advantage on the recognition rate than ANN, but it is
difficult to implement training and classification for a large
number samples in the large-scale and long-time UAV detec-
tion. KNN usually tends to be a poor robustness in nonlinear
recognition because of its lazy learning method and low pre-
diction speed. NBC and decision tree only apply to the system
with the assumption of characteristics being independent of
each other, which is not suitable for the UAV signal involved
in this paper. While ANN is a popular self-learning method
for characterizing complex relationships to achieve robust
nonlinear approximations [24]. They have been widely used
in the field of statistical signal processing. It has advantages
of simple structure, strong learning ability, high accuracy,
great approximation ability and good fault tolerance for the
noise, which is very suitable for UAV detection requirement.
With this approach, it is important that the ANN is trained
appropriately to obtain suitable weights in the layers. Then
an accurate target classification and recognition system for
UAV signal can be developed.

In this paper, feature extraction and classification from
radio frequency (RF) signals using an ANN is considered for
UAV detection. The main innovations and contributions are
as follows.

Different from other articles of UAV detection, the UAV
communication signal is used as an identification marker for
the first time in this paper. Besides, UAV signal features
in the frequency domain are extracted innovatively, which
includes the slope, kurtosis, and skewness. Meanwhile, in this
paper, the first combination of improved features and ANN

FIGURE 1. System model.

algorithm is achieved to classify the received signals as
UAV or non-UAV. In addition, a lot of real data is collected
from indoor and outdoor environments for the first time to
test the effectiveness of the proposed algorithm. By the com-
parison of experimental results, it is proved that the proposed
method of this paper is more suitable for UAV detection than
other means.

The remainder of this paper is organized as follows. The
UAV system model and the noise reduction method are
introduced in Section II. Section III considers the statistical
characteristics of UAV communication signals. In Section IV,
three characteristics are improved for identifying a UAV, and
an ANN-based algorithm to recognize UAV RF signals is
proposed. Section V presents performance results using data
from both indoor and outdoor environments which confirm
the effectiveness of the proposed detection strategy. Finally,
some concluding remarks are given in Section VI.

II. SYSTEM MODEL
We consider a UAV u and a controller c which emit RF
signals when they communicate with each other, and an RF
signal receiver Rx. Fig. 1 shows the system model. Most
UAVs operate in the frequency band 2.4 – 2.4835 GHz using
frequency hop spread spectrum for image transmission and
flight control [25]. The UAV communication signals conform
to the IEEE 802.11 standard [26]. The Phantom 4 Pro UAV
and controller manufactured by DJ-Innovations is an example
of a typical system and are employed here.

A dataset was obtained with a distance between u and Rx
of 2.5 km and a distance between c and Rx of 2.5 km. The
received power is y(f ), f = 2.4 × 109, . . . , 2.5 × 109 Hz
with a total of 5120 points was collected by the Rx with a
frequency spacing of fw = 19.53 kHz. Fig. 2(a) shows the
received signal power in dBm.

Empirical mode decomposition (EMD) is used to remove
noise from the UAV signal [27], [28]. EMD decomposes a
signal intomultiple signal-frequency intrinsicmode functions
(IMF) and a residual signal which can be expressed as

yf =
n∑
i=1

imfi(f )+ rn(f ) (1)
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FIGURE 2. EMD denoising of the UAV signal. (a) The original UAV
communication signal. (b) The UAV communication signal after EMD.

where imfi denotes ith IMF and rn is the residual wave after
the nth decomposition. The resulting sequence after discard-
ing the first three IMFs is

ẏf =
n∑
i=4

imfi(f )+ rn(f ) (2)

and is shown in Fig. 2(b). This shows that the communi-
cation signal has a bandwidth of approximately 9.8 MHz
when the UAV is transmitting images. Because of the large
distance between the Rx and u in a real outdoor environ-
ment, the channel between u and Rx is typically line of
sight (LOS) while the channel between c and Rx is usually
non line of sight (NLOS). An indoor environment is more
complex due to multipath effects and interference from other
wireless signals. This paper considers the detection of UAV
and non-UAV signals in indoor and outdoor environments.
A non-UAV signal here refers to noise (no UAV signal
present).

III. STATISTICAL FEATURES OF THE UAV
COMMUNICATION SIGNAL
In this section, the kurtosis, skewness, and slope of the UAV
signal are investigated. According to the features of the UAV
signal, a sliding window of width 9.77 MHz is used for the
kurtosis and skewness and a window of width 488.3 kHz for
the slope.

A. SLOPE OF THE UAV COMMUNICATION SIGNAL
Slope denotes the inclination of a straight line or the tangent
to a curve [19]. Here, a set of data from the test includes
5120 sample points and is distributed in the 2.4-2.5 GHz
band evenly. We choose 488.3 kHz also corresponding to Na
sample points as a sliding window to fit a straight line and
obtain the slope. The slope of the kth window is given by (3),
as shown at the top of the next page where Na = 25 and

FIGURE 3. Features of the UAV communication signal. (a) Normalized
slope of the UAV communication signal. (b) Skewness of the UAV
communication signal. (c) Kurtosis of the UAV communication signal.

fk = 2.4× 109+ (k − 1)× fw is the starting frequency of the
kth window, k = 1, 2, . . . , (2.5−2.4)×109/fw−Na+1. The
resulting slope values are shown in Fig. 3(a). This indicates
there is a large slope at the rising edge and a small slope at
the falling edge of the UAV signal.

B. SKEWNESS OF THE UAV COMMUNICATION SIGNAL
The skewness describes the asymmetry of a signal, and the
skewness of the symmetry distribution is zero [19]. Here we
choose 9.77 MHz also corresponding to Nb sample points as
a sliding window to compute the skewness. The frequency
interval of sliding is fw. Further, skewness of the kth window
can be given by

Sk =
1

σ 3 (Nb − 1)

f k+(Nb−1)×fw∑
f=f k

(
yf − ȳf

)3 (4)

where Nb equals 500, σ and ȳf are the variance and the
mean of sample points in the window respectively. When
Sk > 0, the sliding window has a large right tail and biases
to the left. When Sk < 0, the sliding window has a large
left tail and biases to the right. Along with the sliding of
the window, we can obtain all the skewness values for all
frequency positions in Fig. 3(b). As we can see that the
skewness of the square wave for the UAV RF signal is close
to 0.
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Lk =

Na ×
f k+(Na−1)×fw∑

f=f k
f ẏf −

(
f k+(Na−1)×fw∑

f=f k
f

)(
f k+(Na−1)×fw∑

f=f k
ẏf

)

Na ×

(
f k+(Na−1)×fw∑

f=f k
f 2
)
−

(
f k+(Na−1)×fw∑

f=f k
f

)2 (3)

C. KURTOSIS OF THE UAV COMMUNICATION SIGNAL
The kurtosis can measure the peakedness and the tail heavi-
ness of distribution simultaneously [20]. Just as the kurtosis
value for the normal distribution equals three. Here we also
choose 9.77 MHz corresponding to Nb sample points as a
sliding window to compute the kurtosis which can be given
by

K k
=

1
σ 4 (Nb − 1)

f k+(Nb−1)×fw∑
f=f k

(
yf − ȳf

)4 (5)

where k refers to the kth window, σ and ȳf are the variance
and themean of sample points in the kth window respectively,
the frequency interval of sliding also is fw.

When K k > 0, the sliding window meets the super-
Gaussian distribution and has a large tail. When K k

= 0,
it obeys the distribution of Gaussian. Along with the sliding
of the window, we can obtain all the kurtosis values for
all frequency positions in Fig. 3(c). As we can see that the
kurtosis of the square wave for the UAV RF signal is in the
range of 0 to 2.5.

IV. ANN BASED DETECTION OF THE UAV SIGNAL
A UAV signal recognition method does not currently exist
in the literature. Thus, a detection technique is developed
here which is based on modifications of the three features
described above. In this section, modifications of the slope
Lk , skewness Sk , and kurtosis K k are employed to develop an
algorithm to detect UAV signals. An ANN is used to establish
the relationship between the characteristic matrix and the
classification vector to determine if a UAV signal exists in
the received data.

A. IMPROVED SLOPE FOR UAV SIGNAL DETECTION
The slope indicates the presence of a UAV when it is greater
than a positive threshold in one position and less than a
negative threshold in the another position with the number of
samples between these positions is in the range 9.18× 106/fw
to 10.35× 106/fw. To improve detection, the improved slope
Ḟ is proposed which is expressed in (6). PST = 0.68 is the
positive threshold, NST = −0.68 is the negative threshold,
Lp and Lq are the slopes in the pth and qth windows, respec-
tively, Pa and Qb are the window positions, A and B is the
number of window positions meeting the condition, and Fab
is the interval between Pa and Qb. Ḟ in the range 470 to
530 indicates a UAV signal is present, otherwise the signal

is not present.

Ḟ=



max(Fab) s.t. 9.18×106/fw≤Fab≤10.35×106/fw,
Fab = Pa − Qb,
Pa ∈ P, a = 1, . . . ,A,Qb ∈ Q, b = 1, . . . ,B,(
P = p

∣∣
(∃Lp≤NST )

)
∩
(
Q = q

∣∣
(∃Lq≥PST )

)
,

1 ≤ q ≤ p ≤ (2.5− 2.4)× 109/fw − Na + 1
P− Q s.t. P = p

∣∣min(Lp),Q = q
∣∣max(Lq) ,

 9.18× 106/fw ≤ Fab ≤ 10.35× 106/fw,
Fab = Pa − Qb,
Pa∈P, a=1, . . . ,A,Qb∈Q, b = 1, . . . ,B


∩
(
P = p

∣∣
(∃Lp≤NST )

)
∩
(
Q = q

∣∣
(∃Lq≥PST)

)


∪

((
P = p

∣∣
(∃Lp≤NST )

)
∩
(
Q = q

∣∣
(∃Lq≥PST )

))
,

1 ≤ q ≤ p ≤ (2.5− 2.4)× 109/fw − Na + 1

(6)

B. IMPROVED SKEWNESS OF THE UAV SIGNAL
A UAV is assumed to exist if there is a position where the
skewness of the corresponding window is close to 0. Thus,
the improved skewness used in the detection algorithm is
expressed as

Ṡ = min(|Sk |), k = 1, . . . , (2.5− 2.4)×109/fw − Nb+1

(7)

Then Ṡ lower than 0.0025 indicates aUAV signal is present,
otherwise the signal is not present.

C. IMPROVED KURTOSIS OF THE UAV SIGNAL
A UAV is assumed to exist when a position with kurtosis
of the corresponding window is in the range 0 to 2.5. Thus,
the kurtosis feature used in the detection algorithm is given
by

K̇ = max(2.5− K k ), k = 1, . . . , (2.5− 2.4)× 109

/fw − Nb + 1 (8)

Then K̇ greater than 0 indicates a UAV signal is present,
otherwise the signal is not present.

D. THE ANN BASED UAV DETECTION ALGORITHM
It is important to choose an ANN with appropriate features
to reduce the computational complexity and increase the
recognition rate [18]. The classification value λi for the ith
set of data may equal 1 or 2 belonging to the UAV class or the
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non-UAV class respectively. The characteristic vector for the
ith set of data is described as

hi = [Ḟi, Ṡi, K̇i], i = 1, . . . ,N (9)

where Ḟi, Ṡi and K̇i are the improved slope, improved skew-
ness and improved kurtosis for the ith dataset, respectively.

In fact, back propagation neural network (BPNN) belongs
to ANN and can approximate any nonlinear continuous func-
tion with arbitrary precision using a three-layer neural net-
work, which makes it particularly suitable for solving UAV
detection problem with complex internal mechanisms [29].
Meanwhile, in order to improve the BPNN, Levenberg-
Marquardt (LM) as training method is selected to acceler-
ate convergence in this paper. Radical basis function neural
network (RBFNN) also is an ANN type, possesses all the
advantages of the ANN and is superior to BPNN in many
aspects, but the structure of BPNN is simpler than that
of RBFNN when solving UAV detection problem with the
same accuracy requirement [30]. As a model of unsupervised
learning, self-organizing mapping neural network (SOMNN)
maps high dimensional data onto smaller dimension and
keeps the topological features by the neighborhood function,
but dead neurons may happen because that the input vector
is too far to participate in learning. In addition, convolutional
neural network (CNN) has better performance compared with
BPNN but it requires higher receiver complexity.

Therefore, in order to simplify the receiver structure and
achieve high recognition rate for UAV signal, BPNN is
used to determine the relationship between the characteristic
matrix h and the classification vector λ using the N sets of
data. This network has an input layer, an output layer, and a
hidden layer. This mapping g can be expressed as

g:h→ λ (10)

where h = [h1, . . . , hN ]′ and λ = [λ1, . . . , λN ]′.
In order to reduce the computational complexity and

improve performance, the network parameters are adjusted.
The average mean squared error (MSE) was obtained after
training withN groups of data 500 times with 2 to 50 neurons.
The average MSE improves as N increases but the computa-
tional complexity also increases. By weighing the stability
and convergence from multiple results of simulation test,
we decide to make use of 18 neurons in hidden layer to train
the data with the less average MSE finally. The number of
iteration times is set to 500 in every training and the learning
rate is set to 0.01. Furthermore, the LM algorithm is chosen as
the fastest training algorithm combining the Newton method
and Gradient descent method and the transfer function among
layers is the log sigmoid function which can be given by

log sig(x) =
1

(1+ exp(−x))
(11)

Fig. 4 presents a flow chart of the UAV signal detec-
tion algorithm. As we can see that the training vectors in
training procedures includes a classification vector λ with
length of N and a feature matrix h with length 3N . After

FIGURE 4. Flow chart of the UAV signal detection.

TABLE 1. Locations and corresponding feature values.

training, a discriminant model is obtained. Then, in the test
stage, by extracting the characteristic matrix from the testing
samples to the model, their class will be evaluated. When
g(hi) > 0.5, the ith set of test data belongs to the UAV cat-
egory, otherwise it belongs to the non-UAV category.

V. PERFORMANCE RESULTS
The proposed algorithm is evaluated in real indoor and out-
door environments. The indoor environment is a university
laboratory with dimensions 10 m × 15 m × 5 m and the
outdoor environment is over a bridge in the Jimo District,
Qingdao, City Shandong Province, China with dimensions
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FIGURE 5. Training data in an indoor environment.

FIGURE 6. Recognition rate in an indoor environment for different
modeling methods and number of samples.

1000 m × 4000 m × 200 m. The receiver Rx is located at
position (0 m, 0 m, 0 m) and the UAV u and the controller c
locations are given in Table I along with the corresponding
values of Ḟ , Ṡ and K̇ .

A. INDOOR UAV TEST
Part of indoor receiving data as the training data is shown
in Fig. 5 with datasets of 1 to 500, 501 to 1000, and 1001 to
1500 correspond to the distance of 5 m, 10 m, and 15 m
between Rx and u respectively. Obviously, the data of the
front half for each distance belongs to the UAV class, while
the data of the back half for each distance belongs to the non-
UAV class. After training, a test model is formed to detect the
RF signal of the UAV indoors.

Choosing a different number of samples from 250 to
3000 from all indoor samples randomly as test data,
Fig. 6 shows the recognition rate using five nonlinear model-
ing methods in an indoor environment. The false acceptance
rate (FAR) of different number of non-UAV category data

FIGURE 7. FAR with four feature detection algorithms in the indoor
environment.

FIGURE 8. FRR of four feature detection methods in an indoor
environment for different distances and number of samples.

with four feature detection algorithm is shown in Fig. 7. The
false rejection rate (FRR) of UAV category data with the four
techniques is given in Fig. 8 for the three distance of 5 m,
10 m and 15 m with a different number of samples from
250 to 3000. While Fig. 9 shows the recognition rate using
proposed feature detection algorithm in indoor environment.
FAR is defined as the percentage of non-UAV category signal
being wrongly classified as UAV category. FRR is defined
as the percentage of UAV category signal being wrongly
classified as non-UAV category. Recognition rate is defined
as the percentage of classifying UAV and non-UAV category
signals correctly from different number of random data.

In Fig. 6, it is obvious that KNN and SOMNN have lower
performance than other ways because of lazy learningmethod
and forming dead neurons respectively. Besides, the recogni-
tion rate of SVM, RBFNN and BPNN are 0.8992, 0.9124,
and 0.9152 respectively when the indoor test sample number
is 1250. BPNN has better accuracy than SVM. Although the
performance of BPNN is very similar to RBFNN, BPNN has
a simpler structure than RBFNN. Therefore, BPNN we used
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FIGURE 9. Recognition rate of our proposed feature at indoor different
distances with different sample numbers.

as a type of ANN ismore suitable for UAV detection in indoor
environment compared with other modeling methods.

When test sample number is 1500, the FAR are
0.1683, 0.20, 0.2676, and 0.0737 with the improved slope,
skewness, kurtosis, and proposed feature based on ANN,
respectively. While the FRR are 0.1372, 0.2307, 0.1669, and
0.07934 using above four ways in the distance of 10m. So,
Figs. 7 and 8 obviously show that the proposed algorithm
based on ANN provides the lowest error rate for non-UAV
and UAV signal in the indoor environment. With the same
number of samples, the FRR of proposed feature are 0.0655,
0.0809, and 0.0967 at the indoor distance of 5 m, 10 m, and
15 m. Besides, the recognition rate of proposed feature based
on ANN are 0.9267, 0.8952, and 0.8786 at the distance of 5
m, 10 m, and 15 m respectively. So, the FRR and the recog-
nition rate will decrease along with the increase of distance.
In Fig. 6, Fig. 7, Fig. 8, and Fig. 9, the result changes a lot
from samples number 250 to 500 owing to the un-stability
of a small amount of sample. Furthermore, the FAR, FRR
and recognition rate tend to be stable with the increase of test
sample number.

B. OUTDOOR UAV TEST
Part of outdoor received data is used for training as shown
in Fig. 10with datasets of 1 to 500, 501 to 1000, 1001 to 1500,
1501 to 2000, 2001 to 2500, 2501 to 3000, 3001 to 3500,
3501 to 4000, and 4001 to 4500 corresponding to a distance
of 0.005 km, 0.01 km, 0.02 km, 0.5 km, 1 km, 1.5 km, 2 km,
2.5 km, and 3km between Rx and u. Obviously, the data of the
front half for each distance belongs to the UAV class, while
the data of the back half of signal for each distance belongs
to the non-UAV class. After training, a modal is formed to
detect the UAV signal.

Fig. 11 shows the recognition rate using five nonlinear
modeling methods in an outdoor environment with a dif-
ferent number of random samples from 250 to 9000. The
FAR of non-UAV class data using four techniques is given

FIGURE 10. Training data for the outdoor environment.

FIGURE 11. Recognition rate in an outdoor environment for different
modeling methods and number of samples.

in Fig. 12 with the same sample numbers. While with
the same sample numbers, the FRR of UAV class data is
shown in Fig. 13 using four feature detection algorithms.
Fig. 14 shows the recognizing UAV rate from different num-
ber of random data using proposed feature detection algo-
rithm in an outdoor environment.

In Fig. 11, when the outdoor test sample number
is 4250, the recognition rate of SVM, KNN, RBFNN,
SOMNN and BPNN are 0.9106, 0.8828, 0.9252, 0.8459, and
0.9368 respectively. It is obvious that KNN and SOMNN
have lower performance than other ways because of lazy
learning method and forming dead neurons respectively.
Besides, BPNN has better accuracy than SVM. Although the
performance of BPNN is very similar to RBFNN, BPNN
has a simpler structure than RBFNN. Therefore, BPNN we
used as a type of ANN is more suitable for UAV detec-
tion in outdoor environment compared with other modeling
methods.
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FIGURE 12. FAR with four feature detection algorithms in an outdoor
environment.

FIGURE 13. FRR with four feature detection methods in an outdoor
environment for different distances with 4500 samples.

FIGURE 14. Recognition rate in an outdoor environment for different
distances and number of samples.

When test sample number is 4500, the FAR are 0.0867,
0.1354, 0.2413, and 0.0522 with the improved slope,
skewness, kurtosis, and proposed feature based on ANN,

respectively. With the same number of samples, the FRR of
four features above are 0.2612, 0.1989, 0.1527, and 0.1321 at
the distance of 1000 m. Figs. 12 and 13 indicate that the
proposed algorithm provides the lowest error rate for non-
UAV and UAV signal compared with improved slope, skew-
ness, and kurtosis detection in an outdoor environment. The
recognition rate with the proposed algorithm are 0.9636,
0.9574, 0.9294, 0.8847, 0.8675, 0.8477, 0.8398, 0.8279, and
0.8257 for outdoor distances of 5 m, 10 m, 20 m, 500 m,
1000 m, 1500 m, 2000 m, 2500 m, and 3000 m, respectively.
Fig. 14 shows that the recognition rate decreases with increas-
ing distance. Further, the FAR and the recognition rate are
approximately constant with an increase in the number of
samples. The indoor UAV recognition rate is lower than the
outdoor rate for the same distance because of the complexity
of the indoor environment. The recognition rate is above 82%
within a distance of 3 km.

VI. CONCLUSION
In this paper, an ANN detection algorithm for a UAV RF
signal was proposed which employs three signal features of
improved slope, improved skewness, and improved kurtosis.
The classification of the UAV signal and the non-UAV signal
was solved effectively. The FAR, FRR and recognition rate
were analyzed for indoor and outdoor cases utilizing the
data our collected. It was shown that the proposed algorithm
based on ANN outperforms other recognition technologies
of the improved slope, skewness, and kurtosis employed in
the literature. Further, the recognition rate with the proposed
solution decreases when the distance increases or the envi-
ronment changes from outdoor to indoor. The error rate and
the recognition rate tend to be stable with the increase of test
sample number.Meanwhile, the recognition rate canmaintain
above 82% within the distance of 3 km, which is better than
other UAV detection methods such as active radar, acoustic,
and visual recognition.
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