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ABSTRACT The atom-bond connectivity (ABC) index is one of the most actively studied degree-based
graph invariants, which are found in a vast variety of chemical applications. For a simple graph G, it is
defined as ABC(G) =

∑
uv∈E(G)((d(u)+ d(v)− 2)/(d(u)d(v)))1/2, where d(v) denotes the degree of a vertex

v of G. Recently in [17] graphs with n vertices, 2n − 4 and 2n − 3 edges, and maximum ABC index were
characterized. Here, we consider the next, more complex case, and characterize the graphs with n vertices,
2n− 2 edges, and maximum ABC index.

INDEX TERMS Atom–bond connectivity index, ABC index, extremal graph.

I. INTRODUCTION
Here only graphs without multiple edges or loops will be
considered. For a graph G, the set of vertices of G is denoted
by V (G), and the set of edges of G by E(G). For a subset S of
V (G), we denote byG[S] the subgraph induced by S. A graph
G is called an (n,m)-graph if G has n vertices and m edges.
A complete graph of order n is denoted by Kn. The degree
of a vertex v in G is denoted by dG(v) (or simply d(G)). An
edge uv is an (s, t)-edge if d(u) = s and d(v) = t . An edge
uv is an (s+, t+)-edge if d(u) ≥ s and d(v) ≥ t . A vertex
u is said to be a neighbor of v if u is adjacent to v in G. We
denote by N (v) the set of neighbors of a vertex v. A vertex
v is a leaf if d(v) = 1. Two distinct edges are adjacent if
they have a common end-vertex. We denote by L(v) and δ(G)
the set of leaf neighbors of v and the minimum degree of G,
respectively. We denote by Ks,t the complete bipartite graph
with two part sizes s and t .
For a graph G, a positive integer s, and a, b ∈ V (G),

we define a graph T (G, a, b, s) by V (T (G, a, b, s)) =
V (G) ∪ {q1, q2, . . . , qs}, and E(T (G, a, b, s)) = E(G) ∪
{q1a, q2a, . . . , qsa} ∪ {q1b, q2b, . . . , qsb}. That is to say,
T (G, a, b, s) is obtained from G by adding s vertices of
degree two adjacent to both a and b. For an example, see
Figure 5 in [17].

The atom-bond connectivity (ABC) index of a graph G is
defined as

ABC(G) =
∑

uv∈E(G)

√
d(u)+ d(v)− 2

d(u)d(v)
.

Estrada et al. [10] proposed this vertex-degree-based graph
topological index. They showed that the ABC index can be
a valuable predictive tool in the study of the heat formation
in alkanes. Ten years later, Estrada elaborated in [11] an
innovative quantum-theory-like explanation of this topolog-
ical index. Incontestably, this topic has triggered tremen-
dous interest in both mathematical and chemical research
communities, leading to a number of results that incorporate
the structural properties and the computational aspects of
the graphs with extremal properties [1], [3]–[9], [12], [16],
[18], [19], [21]. On the other hand, the physico-chemical
applicability of the ABC index has also been confirmed and
extended in several other studies [2], [13]–[15], [20].

It has been proven that deleting/adding an edge in a graph
strictly decreases/increases its ABC index [1], [4]. Conse-
quently, among all connected graphs, a tree/the complete
graph has minimal/maximal ABC index.

It has been shown that among the trees of a given
order, the star is the one with a maximal ABC index [12].
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FIGURE 1. (a) The graph Xn
1 ; (b) the graph Xn

2 .

Notwithstanding, a thoroughgoing characterization of trees
with minimal ABC index, also referred to as minimal-ABC
trees, still remains an open problem.

Another very difficult extremal problem is to determine
which graphs with no pendent vertices have a maximal ABC
index. In [17] two special instances of the above problem
were considered: characterizing the maximal-ABC graphs
with 2n − 4 and 2n − 3 edges, where n is the number of
the vertices. The first problem is significantly easier, and by
the second one it can be seen how the complexity of the
problem increases even by adding only one edge more as
in the first case. Here, we go a step further, as we take into
consideration the case when the graph has 2n − 2 edges, the
case, which is more difficult to analyze than the above two
cases.

II. MAIN RESULTS
We then define graph Xn1 with n+4 vertices and 2n+6 edges
(n ≥ 1) as follows: V (Xn1 ) = {u1, u2, u3, u4, v1, v2, · · · , vn}
and E(Xn1 ) = {u1vi, u2vi : 1 ≤ i ≤ n} ∪
{u1u2, u1u3, u1u4, u2u3, u2u4, u3u4}. Similarly, we define
graph Xn2 with n + 5 vertices and 2n + 8 edges (n ≥
2) as follows: V (Xn2 ) = {u1, u2, u3, u4, u5, v1, v2, · · · , vn}
and E(Xn2 ) = {u1vi, u2vi : 1 ≤ i ≤ n} ∪
{u1u3, u1u4, u1u5, u2u3, u2u4, u2u5, u3u4, u4u5}. The graphs
Xn1 and Xn2 are shown in Figure 1.

The following lemma is easy to verify:
Lemma 1: If n ≥ 5, we have
i) ABC(Xn−41 ) =

√
2n−4
n−1 + 4

√
n

3(n−1) + (n− 4)
√
2+ 2

3 ;

ii) ABC(Xn−52 ) = 4
√

n−1
3(n−2) + 2

√
n

4(n−2) + (n − 5)
√
2 +

2
√

5
12 ;

iii) If n ≤ 34, then ABC(Xn−41 ) > ABC(Xn−52 ), else
ABC(Xn−41 ) < ABC(Xn−52 ).

Now we will define a family of graphs G as follows. For
any graph G, G ∈ G if and only if G satisfies the conditions:
C1) G is a graph with minimum degree at least two on n ≥

10 vertices and m = 2n− 2 edges.
C2) G 6∼= Xn−41 and G 6∼= Xn−52 .
C3) G is a graph with the maximum ABC index, i.e.,

ABC(G) = max{ABC(H )|δ(H ) ≥ 2, |V (H )| = n}.

C4) G satisfies the conditions C1, C2 and C3 with the
minimum number of vertices, i.e., |V (G)| is as small
as possible.

For a graph G = (V ,E), we use the following notations to
prove the theorems.
N ′(e) : the set of edges adjacent to the edge e,
Ev : the set of edges incident to the vertex v,
Vi = {v|d(v) = i} for i ≥ 2,
V3+ = {v|d(v) ≥ 3}, k = |V3+ | and V3+ =

{u1, u2, · · · , uk},
n2 = |V2|,
V ′3 = {v|dG[V3+ ](v) = 3},
Es,t = {uv|d(u) = s, d(v) = t},
Es,t+ = {uv|d(u) = s, d(v) ≥ t},
Es+,t+ = {uv|d(u) ≥ s, d(v) ≥ t},
`1 = |E2,2|, `2 = |E2,3+ |, `3 = |E3+,3+ |,
E ′3,3 = {uv|dG[V3+ ](u) = 3, dG[V3+ ](v) = 3}.
That is to say, V ′3 is the set of vertices with degree three

in G[V3+ ] and E ′3,3 the set of edges whose end vertices have
degree three in G[V3+ ].
Lemma 2: For any (n,m)-graph G with n ≥ 10 and m =

2n− 2 and δ(G) ≥ 2, we have
a) `3 = 2k − 2+ `1;
b) `3 ≥ 6 and k ≥ 4.
Proof: a) Via the summation of the degrees of all the

vertices, we have∑
v∈V2

d(v)+
∑
v∈V3+

d(v) = 2n2 +
k∑
i=1

d(ui) = 2m = 4n− 4, 5

(1)

n = n2 + k, (2)

and

2n− 2 = `1 + `2 + `3. (3)

By Eq. (1)-(3), we have

−2k +
k∑
i=1

d(ui) = 2n− 4. (4)

Since
∑k

i=1 d(ui) = `2 + 2`3, we have

`3 = 2k − 2+ `1. (5)

b) If k = 0, then G is the union of cycles, contradicting
with m = 2n− 2. Hence we have k ≥ 1.
Now, we claim that `3 ≥ 3. Otherwise, suppose on the

contrary that `3 ≤ 2, then we have `3 = 2k − 2 + `1 ≤ 2.
Hence we have `1 ≤ 4− 2k ≤ 2.
Case 1 (`3 = 0): In this case, we have k = 1 and `1 = 0.

This means that there is exactly one vertex with degree at least
three and the other vertices with degree two. It is clear that
such a graph does not exist.
Case 2 (`3 = 1): In this case, we have k = 1. This means

that there is exactly one vertex with degree at least three.
Therefore, there is no edge e ∈ E3+,3+ , a contradiction.
Case 3 (`3 = 2): In this case, we have k ≤ 2. This means

that there are at most two vertices with degree at least three.
Therefore, there is at most one edge e ∈ E3+,3+ , which is a
contradiction.
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From above, we have `3 ≥ 3. Hence, k ≥ 3. Now we will
show that k 6= 3. Otherwise, there are at most three edges
e1, e2, e3 ∈ E3+,3+ , i.e., `3 ≤ 3. By Eq. (5), we have `3 =
2k − 2+ `1 ≥ 2k − 2 ≥ 4, a contradiction.

Now from above, we have k ≥ 4, and thus `3 = 2k − 2+
`1 ≥ 2k − 2 ≥ 6. This assertion completes the proof. �
Lemma 3: IfG is an (n,m)-graphwith n ≥ 10,m = 2n−2,

δ(G) ≥ 2 and G has the maximum ABC index, then |E2,2| =
0.

Proof: We first prove the following claim:
Claim 1: there is an edge e ∈ E3+,3+ such that e /∈ Ev for

any v ∈ V3+ .
Proof: Otherwise, `3 ≤ k − 1. By Eq. (5), we have

`3 = 2k − 2+ `1. So we have 2k − 2+ `1 ≤ k − 1 and thus
k−1+ `1 ≤ 0. By Lemma 2, we have k ≥ 4, a contradiction
with k − 1+ `1 ≤ 0. �

Now, suppose on the contrary that |E2,2| ≥ 1, this way
there is an edge w1v1 ∈ E2,2. By Lemma 2, we have `3 ≥ 6,
and thus, there is an edge w2v2 ∈ E3+,3+ such that w1v1 and
w2v2 are disjoint. Since d(w1) = 2, without loss of generality
wemay assume thatw1w2 /∈ E(G).We consider the following
cases.
Case 1 (v1v2 /∈ E(G)): We now consider a graph G′ such

that G′ = G − w1v1 − w2v2 + w1w2 + v1v2. It can be seen
that ABC(G′) > ABC(G), a contradiction.
Case 2 (v1v2 ∈ E(G) and w1v2 /∈ E(G)): Since d(v1) = 2,

we have v1w2 /∈ E(G). We now consider a graph G′ such that
G′ = G − w1v1 − w2v2 + w1v2 + w2v1. It can be seen that
ABC(G′) > ABC(G), a contradiction.
Case 3 (v1v2 ∈ E(G) and w1v2 ∈ E(G)): By Claim 1,

we have that there is an edge w3v3 ∈ E3+3+ such that v2 is
not incident tow3v3. Sincew1v1 ∈ E2,2, we can conclude that
w1v1 andw3v3 are disjoint. Now, applying the proof of Case 1
for w3v3 and w2v2 we obtain a contradiction. �
Lemma 4: If G ∈ G, then |E2,3| = 0.
Proof: Suppose on the contrary that there is an edge

w1v1 ∈ E2,3, we have w1 has another neighbor v3 ∈ V3+ by
Lemma 3.
Case 1: there is a vertex v2 ∈ N (v1) with v2 ∈ V3+ .
Let G′ = G−{w1}, then we have ABC(e|G) ≤ ABC(e|G′)

for any e ∈ E(G′), and x = d(v2). Then we have

ABC(w1v1|G) = ABC(w1v3|G) = ABC(v1v2|G′) =

√
2
2
,

and

ABC(v1v2|G) =

√
x + 1
3x

.

Therefore, we have

ABC(G) ≤ ABC(G′)+ ABC(w1v1|G)

+ABC(w1v3|G)+ ABC(v1v2|G)

−ABC(v1v2|G′)

≤ ABC(G′)+
√
2−

(√
2
2
−

√
x + 1
3x

)

≤ ABC(G′)+
√
2−

(√
2
2
−

2
3

)
.

Subcase 1.1 (ABC(G′) ≤ ABC(Xn−51 )): In this case,
we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−51 )+
√
2−

(√
2
2
−

2
3

)
= ABC(Xn−41 )

−4

(√
n

3(n− 1)
−

√
n− 1

3(n− 2)

)

−

(√
2n− 4
n− 1

−

√
2n− 6
n− 2

)
−

(√
2
2
−

2
3

)
< ABC(Xn−41 ),

a contradiction.
Subcase 1.2 (ABC(G′) ≤ ABC(Xn−62 )):
In this case, we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−62 )+
√
2−

(√
2
2
−

2
3

)
= ABC(Xn−52 )

− 4

(√
n− 1

3(n− 2)
−

√
n− 2

3(n− 3)

)

− 2

(√
n

4(n− 2)
−

√
n− 1

4(n− 3)

)

−

(√
2
2
−

2
3

)
< ABC(Xn−52 ),

a contradiction.
Case 2 (d(w) = 2 for Each Vertex w ∈ N (v1)):LetN (v1) =
{w1,w2,w3}. Since m = 2n− 2, by Lemma 2 we can deduce
that there is another edge x1x2 ∈ E3+,3+ . With the result of
Case 1, we can conclude that there is no neighbor of x1 with
degree two. If one assumes that G′ = G − x1x2 − v1w3 +

v1x2 + w3x1, it can be verified that ABC(G) ≤ ABC(G′). As
v1 has a neighbor w1 with d(w1) = 2 and another neighbor x2
with degree at least three. Applying further Case 1, we again
obtain a contradiction. This assertion completes the proof. �
Lemma 5: If G ∈ G, then |E2,4| = 0.
Proof: Suppose on the contrary that there is an edge

w1v1 ∈ E2,4, we have w1 has another neighbor v3 ∈ V4+ by
Lemmas 3 and 4.
Case 1: there are two vertices v2, v4 ∈ N (v1) with
{v2, v4} ⊆ V3+ .
Let G′ = G−{w1}, then we have ABC(e|G) ≤ ABC(e|G′)

for any e ∈ E(G′), x1 = d(v2) and x2 = d(v4) Then we have

ABC(w1v1|G) = ABC(w1v3|G) =

√
2
2
,
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ABC(v1v2|G′) =

√
x1 + 1
3x1

,

ABC(v1v4|G′) =

√
x2 + 1
3x2

,

ABC(v1v2|G) =

√
x1 + 2
4x1

,

and

ABC(v1v4|G) =

√
x2 + 2
4x2

.

Therefore, we have

ABC(G) ≤ ABC(G′)+ ABC(w1v1|G)

+ABC(w1v3|G)+ ABC(v1v2|G)

+ABC(v1v4|G)− ABC(v1v2|G′)

−ABC(v1v4|G′)

≤ ABC(G′)+
√
2

+

2∑
i=1

(√
xi + 2
4xi
−

√
xi + 1
3xi

)
≤ ABC(G′)+

√
2

+

2∑
i=1

(√
xi + 2
4xi
−

√
xi + 1
3xi

) ∣∣∣
xi=3

≤ ABC(G′)+
√
2− 2

(
2
3
−

√
5
12

)
.

Subcase 1.1 (ABC(G′) ≤ ABC(Xn−51 )): In this case,
we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−51 )+
√
2− 2

(
2
3
−

√
5
12

)
= ABC(Xn−41 )

− 4

(√
n

3(n− 1)
−

√
n− 1

3(n− 2)

)

−

(√
2n− 4
n− 1

−

√
2n− 6
n− 2

)

−2

(
2
3
−

√
5
12

)
< ABC(Xn−41 ),

a contradiction.
Subcase 1.2 (ABC(G′) ≤ ABC(Xn−62 )): In this case,

we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−62 )+
√
2− 2

(
2
3
−

√
5
12

)
= ABC(Xn−52 )

− 4

(√
n− 1

3(n− 2)
−

√
n− 2

3(n− 3)

)

− 2

(√
n

4(n− 2)
−

√
n− 1

4(n− 3)

)

− 2

(
2
3
−

√
5
12

)
≤ ABC(Xn−52 ),

a contradiction.
Case 2: there is exactly one vertex v2 ∈ N (v1) with

v2 ∈ V3+ .
Let G′ = G−{w1}, then we have ABC(e|G) ≤ ABC(e|G′)

for any e ∈ E(G′), x = d(v2) and so x ≥ 3. Then consider
the following cases.
Subase 2.1 (x ≥ 4):

ABC(w1v1|G) = ABC(w1v3|G) =

√
2
2
,

ABC(v1v2|G′) ≥

√
x + 1
3x

,

and

ABC(v1v2|G) =

√
x + 2
4x

.

Therefore, we have
ABC(G) ≤ ABC(G′)+ ABC(w1v1|G)

+ABC(w1v3|G)+ ABC(v1v2|G)

−ABC(v1v2|G′)

≤ ABC(G′)+
√
2

+

(√
x + 2
4x
−

√
x + 1
3x

)
≤ ABC(G′)+

√
2

+

(√
x + 2
4x
−

√
x + 1
3x

) ∣∣∣
x=4

≤ ABC(G′)+
√
2−

(√
5
12
−

√
6
16

)
.

Subcase 2.1.1 (ABC(G′) ≤ ABC(Xn−51 )): In this case,
we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−51 )+
√
2

−

(√
5
12
−

√
6
16

)
= ABC(Xn−41 )

−4

(√
n

3(n− 1)
−

√
n− 1

3(n− 2)

)

−

(√
2n− 4
n− 1

−

√
2n− 6
n− 2

)

−

(√
5
12
−

√
6
16

)
< ABC(Xn−41 ),

a contradiction.
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Subcase 2.1.2: ABC(G′) ≤ ABC(Xn−62 ).
In this case, we have if n ≥ 10, then

ABC(G) ≤ ABC(Xn−62 )+
√
2−

(√
5
12
−

√
6
16

)
= ABC(Xn−52 )

−4

(√
n− 1

3(n− 2)
−

√
n− 2

3(n− 3)

)

−2

(√
n

4(n− 2)
−

√
n− 1

4(n− 3)

)

−

(√
5
12
−

√
6
16

)
≤ ABC(Xn−52 ),

a contradiction.
Subcase 2.2 (x = 3): Since d(v4), d(v5) ≥ 3, together

with Lemma 4, we have v4v1 /∈ E(G). Now, let N (v2) =
{v1, v4, v5} andG′ = G−{w1}−v2v4+v1v4. Since for x ≥ 3,

2×

√
2
2
+

√
x + 3
5x
≥

√
x + 1
3x
+

√
5
12
+

2
3
,

we have ABC(G′) ≥ ABC(G).
Now we can obtain a contradiction by similar argument to

the proof of Case 1.
Case 3 (d(w) = 2 for Each Vertex w ∈ N (v1)): Let

N (v1) = {w1,w2,w3,w4}. Since m = 2n − 2, by Lemma 2
we can deduce that there is another edge x1x2 ∈ E3+,3+ . It is
sufficient to consider the following cases.
Subcase 3.1 (x1x2 ∈ E3,3):By Lemma 4, we have d(u) ≥ 3

for any u ∈ N (xi)(i = 1, 2). Let s1 and s2 be two of the
neighbors of x1, y1 = d(s1), and y2 = d(s2), we have y1 ≥
3, y2 ≥ 3. Let G′ = G− x1x2 + v1x2, now we have

ABC(G) ≤ ABC(G′)−

√
6
15
+

2
3
−
√
2

+

√
y1 + 1
3y1

+

√
y2 + 1
3y2

≤ ABC(G′)−

√
6
15
+

2
3
−
√
2+

4
3

< ABC(G′),

a contradiction.
Subcase 3.2 (x1x2 ∈ E3+,4+ ): Assume G′ = G − x1x2 −

v1w4 + v1x1 + w4x2 and it can be verified that ABC(G) ≤
ABC(G′). But v1 has a neighbor w1 with d(w1) = 2 and
another neighbor x1 with degree at least three. Applying now
Case 1, we obtain a contradiction. This assertion completes
the proof. �
By similar argument to the proof of Lemma 5, we can

obtain Lemma 6.
Lemma 6: Let G ∈ G and G be an (n,m)-graph with m =

2n− 2, δ(G) ≥ 2 and G has the maximum ABC index.
i) If k = 6 and |V3| ≥ 1 or k ≤ 5, then |E2,5| = 0;

ii) If n ≥ 13, k = 5 and N (v) contains at least two vertices
with degree at least three for each v ∈ V6, then |E2,6| = 0.
Lemma 7: If G ∈ G, then G contains no induced P3 =

w1w2w3 such that d(w1) = d(w2) = 3 and d(w3) ≥ 3.
Proof: Suppose on the contrary that G contains an

induced P3 = w1w2w3 such that d(w1) = d(w2) = 3 and
d(w3) ≥ 3. Let G′ = G − {w2} + w1w3, then G′ is an
(n− 1, 2n− 4)-graph.
Case 1 (ABC(G′) ≤ ABC(Xn−51 )): Since n ≥ 10, we have

ABC(G) ≤ ABC(G′)+
4
3

≤ ABC(Xn−51 )+
4
3

≤ ABC(Xn−41 )−
√
2

− 4

(√
n

3(n− 1)
−

√
n− 1

3(n− 2)

)

−

(√
2n− 4
n− 1

−

√
2n− 6
n− 2

)
+

4
3

< ABC(Xn−41 ),

a contradiction.
Case 2 (ABC(G′) ≤ ABC(Xn−62 )): Since n ≥ 10, we have

ABC(G) ≤ ABC(Xn−62 )+
4
3

= ABC(Xn−52 )−
√
2

− 4

(√
n− 1

3(n− 2)
−

√
n− 2

3(n− 3)

)

− 2

(√
n

4(n− 2)
−

√
n− 1

4(n− 3)

)
+

4
3

≤ ABC(Xn−52 ),

a contradiction. This assertion completes the proof. �
By similar argument to the proof of Lemma 7, we have the

following result and omit the proof.
Lemma 8: If G ∈ G, then G contains no induced P3 =

w1w2w3 such that d(w1) = 4, d(w2) = 3 and d(w3) = 4.
Lemma 9: Let G ∈ G and k ≥ 6. If w1w2w3 is a triangle

in G[V3], then there is no vertex s ∈ V3+ \ {w1,w2,w3} such
that |N (s) ∩ {w1,w2,w3}| ≥ 2.

Proof: Otherwise, we may assume that there is a vertex
s ∈ V3+ \ {w1,w2,w3} such that |N (s) ∩ {w1,w2,w3}| ≥ 2
and sw1, sw3 ∈ E(G).
Now we claim that there is an edge t1t2 ∈ E3+,3+ \

(Es ∪ {w1w2,w1w3,w2w3}). Otherwise, |E3+,3+ | ≤ |Es ∪
{w1w2,w1w3,w2w3}| ≤ 3 + k − 1 = k + 2. By Lemma 2,
we have `3 = 2k − 2 = |E3+,3+ | ≤ k + 2. Hence k ≤ 4,
a contradiction.
Now it is sufficient to consider the following two cases.
Case 1 (w1t1 /∈ E(G) and w1t2 /∈ E(G)): In this case,

t1, t2 /∈ {s,w1,w2,w3}, and we can deduce that w3t1 /∈ E(G)
and w3t2 /∈ E(G). Let G′ = G− w1w3 − t1t2 + w1t1 + w3t2,
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f (x, y) =
√

x+y−2
xy and we have

ABC(G) ≤ ABC(G′)+ ABC(w1w3|G)+ ABC(t1t2|G)

−ABC(w1t1|G′)− ABC(w3t2|G′)

≤ ABC(G′)+ f (3, 3)+ f (d(t1), d(t2))

−f (3, d(t1))− f (3, d(t2))

< ABC(G′),

a contradiction.
Case 2 (w1t1 /∈ E(G) and w1t2 ∈ E(G)): Since d(w1) = 3,

we have t2 ∈ N (w1) = {s,w2,w3}. In this case, we have
that t2 cannot be any vertex in {s,w3}. Hence, t2 is exactly
the vertex w2. Now we claim that there is an edge q1q2 ∈
E3+,3+ \ (Es∪Ew1 ∪Ew2 ∪Ew3 ). Otherwise, |E3+,3+ | = |Es∪
{w1w2,w1w3,w2w3,w2t1}| ≤ 4+k−1 = k+3. By Lemma 2,
we have `3 = 2k − 2 = |E3+,3+ | ≤ k + 3. Hence k ≤
5, a contradiction. Now, since d(w1) = d(w3) = 3, we can
deduce that N (wi) ∩ {q1, q2} = ∅ for any i ∈ {1, 3}. Let
G′ = G − w1w3 − q1q2 + w1q1 + w3q2, f (x, y) =

√
x+y−2
xy

and we have

ABC(G) ≤ ABC(G′)+ ABC(w1w3|G)

+ABC(q1q2|G)− ABC(w1q1|G′)

−ABC(w3q2|G′)

≤ ABC(G′)+ f (3, 3)+ f (d(q1), d(q2))

−f (3, d(q1))− f (3, d(q2))

< ABC(G′),

a contradiction. This assertion completes the proof. �
Lemma 10: Let G ∈ G and k ≥ 6. Then G[V3] contains

no triangle.
Proof: Suppose on the contrary that G[V3] contains a

trianglew1w2w3. Then, there is an edge t1t2 ∈ E3+,3+ \(Ew1∪

Ew2 ∪ Ew3 ) and we have |N (wi) ∩ {t1, t2}| ≤ 1 for any i ∈
{1, 2, 3}. Now it is sufficient to consider the following cases.
Case 1 (w1t2 /∈ E(G) and w3t1 /∈ E(G)): Let G′ = G −

w1w3 − t1t2 + w1t2 + w3t1, and ABC(G) ≤ ABC(G′). Since
t1t2 ∈ E3+,3+ \ (Ew1 ∪ Ew2 ∪ Ew3 ), we have w1 6= t2 and
w3 6= t1. As G′[V3] has an induced P3 = w1w2w3, we can
obtain a contradiction by Lemma 7.
Case 2 (w1t2 /∈ E(G) and w3t1 ∈ E(G)): In this case,

we have w1t1 /∈ E(G) and w3t2 /∈ E(G) by Lemma 9. Let
G′ = G−w1w3− t1t2+w1t1+w3t2, and we have ABC(G) ≤
ABC(G′). As G′[V3] has an induced P3 = w1w2w3, we can
obtain a contradiction by Lemma 7. This assertion completes
the proof. �
Lemma 11: Let G ∈ G and k ≥ 6. If w1w2w3 is a triangle

such that d(w1) = d(w2) = 3, d(w3) = 4 and another edge
t1t2 ∈ E3+,3+ \{w1w2,w1w3,w2w3}, then it is impossible that
w1t2 /∈ E(G) and w3t1 /∈ E(G) with w1 6= t2 and w3 6= t1.

Proof: Suppose on the contrary that G contains a trian-
gle P3 = w1w2w3 such that d(w1) = d(w2) = 3 and d(w3) =
4. Then there is an edge t1t2 ∈ E3+,3+ \ {w1w2,w1w3,w2w3}.
If d(t2) ≥ 4, then let G′ = G − w1w3 − t1t2 + w1t2 + w3t1,

and we have ABC(G) ≤ ABC(G′). Then we can process G′

applying Lemma 7, and obtain a contradiction.
If d(t2) = 3, then let G′ = G− {w2} − t1t2 +w1t2 +w3t1.

Then G′ is an (n − 1, 2n − 2)-graph. we have ABC(G) ≤

ABC(G′)+ 4
3 −

2
3 −

√
d(t1)+2
4d(t1)

−

√
d(t1)+1
3d(t1)

+

√
5
12 . By similar

argument to the proof of Lemma 7, we can obtain a contra-
diction. This assertion completes the proof. �

By similar argument to the proof of Lemma 9, we have
obtained the following lemma and omit the proof.
Lemma 12: Let G ∈ G and k ≥ 6. If w1w2w3 is a triangle

such that d(w1) = d(w2) = 3 and d(w3) = 4, then there is no
vertex s ∈ V3+ \{w1,w2,w3} such that |N (s)∩{w1,w3}| ≥ 2.
Lemma 13: LetG ∈ G and k ≥ 6. Then there is no triangle

w1w2w3 such that d(w1) = d(w2) = 3 and d(w3) = 4.
Proof: Suppose on the contrary that there is a triangle

w1w2w3 such that d(w1) = d(w2) = 3 and d(w3) = 4.
Consequently, there is an edge t1t2 ∈ E3+,3+ \ (Ew1 ∪ Ew2 ∪

Ew3 ). Then, we can conclude that |N (wi) ∩ {t1, t2}| ≤ 1 for
any i ∈ {1, 3}. Otherwise, we can obtain a contradiction. Now
it is sufficient to consider the following cases.
Case 1 (w1t2 /∈ E(G) and w3t1 /∈ E(G)): Let G′ = G −

w1w3− t1t2+w1t2+w3t1, and we have ABC(G) ≤ ABC(G′).
Since t1t2 ∈ E3+,3+ \ (Ew1 ∪ Ew2 ∪ Ew3 ), we have w1 6=

t2 and w3 6= t1. As G′ has an induced P3 = w1w2w3 with
d(w1) = d(w2) = 2 and d(w3) = 4, we obtain a contradiction
by Lemma 11.
Case 2 (w1t2 /∈ E(G) and w3t1 ∈ E(G)): In this case,

by Lemma 12, we have w1t1 /∈ E(G). Then we have w3t2 ∈
E(G). Otherwise, w1t1 /∈ E(G), w3t2 /∈ E(G), w1 /∈ t1 and
w3 /∈ t2, contradicting with Lemma 11.
Now we claim that there is an edge q1q2 ∈ E3+,3+ \ (Ew1 ∪

Ew2 ∪ Ew3 ∪ {t1t2}). Then, |N (w1) ∩ {q1, q2}| ≤ 1 since
d(w1) = 3. We may assume w.l.o.g. that w1q2 /∈ E(G), then
by Lemma 11 we have w3q1 ∈ E(G). Hence w3q2 /∈ E(G).
Otherwise, we have q1q2 = t1t2, a contradiction. Now by
Lemma 11 with q1q2 playing the role of t1t2, we obtain a
contradiction. This assertion completes the proof. �
Lemma 14: Let G ∈ G and k ≥ 6. Then k ≤ 9.
Proof: Let

M1 =
⋃
e∈E3,3

N ′(e),

M2 = E3+,3+ \ (E3,3 ∪M1)

then we have∑
e∈E3,3

ABC(e) =
2|E3,3|

3
,

∑
e∈M1

ABC(e) ≤ 4

√
6
15
|E3,3|,

∑
e∈M2

ABC(e) ≤ (2k − 2− 5|E3,3|)

√
5
12
,
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FIGURE 2. The graphs used in the proof of Lemma 15.

∑
e∈E2,3+

ABC(e) = (n− k)
√
2,

and

ABC(G) =
∑
e∈E3,3

ABC(e)+
∑
e∈M1

ABC(e)

+

∑
e∈M2

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤
2|E3,3|

3
+ 4

√
6
15
|E3,3|

+(2k − 2− 5|E3,3|)

√
5
12
+ (n− k)

√
2

≤ (2k − 2)

√
5
12
+ (n− k)

√
2.

ByLemma 1, we haveABC(Xn−52 ) = 4
√

n−1
3(n−2)+2

√
n

4(n−2)+

(n−5)
√
2+2

√
5
12 . It can be verified that if k ≥ 10,ABC(G) <

ABC(Xn−52 ), a contradiction. �
In order to prove Lemma 15, we give the following defini-

tions.
For a graph G, a ∈ N and S ⊆ N, we define a function

d ′ : V (G)→ N with

d ′(v) =

{
a, d(v) ∈ S,
d(v), d(v) /∈ S,

and

ABC ′S→a(G) =
∑

uv∈E(G)

√
d ′(u)+ d ′(v)− 2

d ′(u)d ′(v)
.

Lemma 15: Let G ∈ G and k ≥ 6. Then k 6= 9.
Proof: Suppose on the contrary that k =

|V3+ | = 9, then since |E2,3| = 0 and |E2,4| =
0 we have

∑
e∈E3+,3+

ABC(e) ≤ ABC ′
{1,2}→5(G[V3+ ]).

By an exhaustive search in the set of (9, 16)-graphs,
we obtain that ABC ′

{1,2}→5(G[V3+ ]) ≤ ABC ′
{1,2}→5(H ) ≈

10.2398775511417, where H is one of the graphs depicted
in Figure 2.

Since n ≥ 10, we have

ABC(G)− ABC(Xn−52 )

≤

∑
e∈E3+,3+

ABC(e)+
∑

e∈E2,3+

ABC(e)− ABC(Xn−52 )

≤ ABC ′
{1,2}→5(G[V3+ ])+ (2n− 2− 16)

√
1
2

−4

√
n− 1

3(n− 2)
− 2

√
n

4(n− 2)

− (n− 5)
√
2− 2

√
5
12

< 10.24+ (2n− 2− 16)

√
1
2

− 4

√
n− 1

3(n− 2)
− 2

√
n

4(n− 2)

− (n− 5)
√
2− 2

√
5
12

< 0,

which is a contradiction to the initial assumption. �
Lemma 16: Let G ∈ G and k ≥ 6. Then k 6= 8.
Proof: Let

M1 =
⋃
e∈E3,3

N ′(e),

M2 = E3+,3+ \ (E3,3 ∪M1).

Suppose on the contrary that k = |V3+ | = 8, we have
Claim 2: |V3| ≥ 4.
Proof: Suppose on the contrary that |V3| ≤ 3, we con-

sider the following two cases.
Case 1: there is an edge w1v1 ∈ E3,3.
In this case, by Lemmas 7,10 and 13,we have∑

e∈N ′(w1v1)

ABC(e) ≤ 4

√
3+ 5− 2
3× 5

.

Since |V3| ≤ 3, we have |E3,4+ | ≤ 3. Since |E3+,3+ | = 2 ×
8−2 = 14, we have |E3,4+ \N ′(w1v1)|+|E4+,4+ | = 9. Since
d(w1) = d(v1) = 3, together with Lemmas 7,10 and 13, we
have∑

e∈J

ABC(e)+
∑

e∈E4+,4+

ABC(e) ≤ 3

√
5
12
+ 6

√
6
16
,

where J = E3,4+ \ N ′(w1v1), and∑
e∈E2,3+

ABC(e) ≤ (n− 8)
√
2,

and thus

ABC(G) ≤ ABC(w1v1)+
∑

e∈N ′(w1v1)

ABC(e)

+

∑
e∈E3,4\N ′(w1v1)

ABC(e)

+

∑
e∈E4+,4+

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤
2
3
+ 4

√
6
15
+ 3

√
5
12
+ 6

√
6
16
+ (n− 8)

√
2.
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Since n ≥ 10, we have

ABC(G)− ABC(Xn−52 ) < 0,

a contradiction.
Case 2 (|E3,3| = 0):We first prove the following claim:

|V3| + |V4| ≤ 6. (6)

Otherwise, since k = 8 and |E2,2| = |E2,3| = |E2,4| = 0,
there is at most one vertex u ∈ V4+ . Since any vertex with
degree two is only adjacent to u, we conclude that such a
graph does not exist, which is a contradiction.

Then we claim that |E3,4| ≤ 6. Otherwise, we assume that
|E3,4| ≥ 7, and consequently, there are at least three vertices
with degree three. Since |V3| ≤ 3, we have |V3| = 3. From
|E3,4| ≥ 7 and |V3| + |V4| ≤ 6, we have |V4| ≤ 3. Further,
we also have a vertex v ∈ V3 where each vertex in N (v) has
degree four whereby |V4| = 3. By Lemma 8, we conclude
that the vertices in N (v) are pairwise adjacent. Now it can be
checked that |E3,4| ≤ 6, contradicting with the assumption
|E3,4| ≥ 7.
Then we have |E3,5+ | + |E3,4| ≤ 9, and so

ABC(G) ≤
∑

e∈E3,4+

ABC(e)+
∑

e∈E4+,4+

ABC(e)

+

∑
e∈E2,3+

ABC(e)

≤ |E3,4|

√
5
12
+ |E3,5+ |

√
6
15

+ (14− |E3,5+ | − |E3,4|)

√
6
16

+ (n− 8)
√
2

≤ 6

√
5
12
+ 3

√
6
15
+ 5

√
6
16
+ (n− 8)

√
2.

Since n ≥ 10, we have
ABC(G)− ABC(Xn−52 ) < 0,

a contradiction. �
Claim 3: |V3| 6= 4.
Proof: Suppose on the contrary that |V3| = 4, we then

have |E3,3| ≤ 2.
If |E3,3| = 2, then G[V3] is a matching of four vertices by

Lemma 8. By Lemma 7 and Lemma 13, we have e′ /∈ E3,4
for each e′ ∈ N ′(e) for any e ∈ E3,3. Hence |E3,4| = 0, and
thus

ABC(G) ≤
∑
e∈E3,3

ABC(e)+
∑
e∈M1

ABC(e)

+

∑
e∈E4+,4+

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤
4
3
+ 8

√
6
15
+ 4

√
6
16
+ (n− 8)

√
2.

Since n ≥ 10, we have
ABC(G)− ABC(Xn−52 ) < 0,

a contradiction.

If |E3,3| = 1, we can deduce that |V3|+|V4| ≤ 6 by similar
argument to the proof of Case 2 (see Eq. (6)). Since |V3| = 4,
we have |V4| ≤ 2. Hence |E3,4| ≤ 4 and |E4,4| ≤ 1. Then we
have ∑

e∈(E3,4+\M1

ABC(e) ≤ 4

√
5
12
+ 2

√
6
15
,

∑
e∈E4+,4+

ABC(e) ≤

√
6
16
+ 2

√
7
20
,

and thus

ABC(G) ≤
∑
e∈E3,3

ABC(e)

+

∑
e∈M1

ABC(e)+
∑

e∈(E3,4+\M1

ABC(e)

+

∑
e∈E4+,4+

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤
2
3
+ 4

√
6
15
+ 4

√
5
12
+ 2

√
6
15
+

√
6
16

+ 2

√
7
20
+ (n− 8)

√
2.

Since n ≥ 10, we have

ABC(G)− ABC(Xn−52 ) < 0,

a contradiction.
If |E3,3| = 0, we can deduce that |V3| + |V4| ≤ 6 by

similar argument to the proof of Case 2 (see Eq. (6)) and thus
|V4| ≤ 2.

Now we claim that |V4| = 2. (Otherwise, we have
|V4| ≤ 1). Now we have

ABC(G) ≤
∑

e∈E3,4+

ABC(e)+
∑

e∈E4+,4+

ABC(e)

+

∑
e∈E2,3+

ABC(e)

≤ 4

√
5
12
+ 8

√
6
15
+ 2

√
7
20
+ (n− 8)

√
2.

Since n ≥ 10, we have ABC(G) − ABC(Xn−52 ) < 0,
a contradiction.

Now we have bothG[V3+ ] andG contains at least four ver-
tices t1, t2, t3, t4 with degree three and two vertices s1, s2 with
degree four. Further, G[V3+ ] contains another two vertices
w1,w2 and each vertex with degree two is adjacent to w1 and
w2. By computer search, we obtain that if |V ′3| = 4 there is a
total of four graphs forG and eight possibilities with different
w1 and w2, which are presented in Figure 3; and if |V ′3| = 5
there is a total of seven graphs for G and seven possibilities
with different w1 and w2, which are presented in Figure 4.
We can verify that ABC(G) < ABC(Xn−52 ) for each

graph G = T (Gi8,w1,w2, n − 8) (i ∈ {1, 2, · · · , 15}),
a contradiction. �
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FIGURE 3. The graphs used in the proof of Claim 2 if |E3,3| = 0 and
|V ′3| = 4.

FIGURE 4. The graphs used in the proof of Claim 2 if |E3,3| = 0 and
|V ′3| = 5.

Claim 4: |V3| 6= 5.
Proof: Suppose on the contrary that |V3| = 5, similar to

the proof of Claim 2 we have |E3,3| ≤ 2.
If |E3,3| = 0, then G[V3] is an independent set. If G[V3+ ]

has exactly five vertices with degree three, then G[V3+ ] has
8 vertices, 14 edges, 5 vertices with degree three and contains
no edge in E3,3. However, such a graph does not exist. We can
also deduce that it is impossible for G[V3+ ] to have exactly
p vertices with degree three for each p ∈ {6, 7, 8}. Hence,
we obtain a contradiction.

If |E3,3| = 1, we consider the following two cases.
Case 1 (|V ′3| = 5): In this case, we have |E ′3,3| = 1. By

computer search, we find only one (8,14)-graph (depicted
as G16

8 in Figure 5) satisfying the condition |V ′3| = 5 and
|E ′3,3| = 1. For the unique edge u3u4 ∈ E ′3,3, it can be seen
that N (u3) 6= N (u4). On the other hand, we have xz ∈ E(G)
for any P3 = xyz with d(x) = d(y) = 3 and d(z) ≥ 3 By
Lemma 7. By applying {x, y} = {u3, u4}, we have N (u3) =
N (u4), a contradiction.
Case 2 (|V ′3| = 6): In this case, we have |E ′3,3| ≤ 4.

By computer search, we find four (8,14)-graphs satisfying
the condition |V ′3| = 6 and |E ′3,3| ≤ 4. By observing these
graphs, we find each of them has |E ′3,3| = 4. It follows that
there is a vertex x ∈ V ′3 adjacent to other three vertices in V ′3
with degree three. In the set of above four graphs, there is
only one graph satisfying this condition which is depicted

FIGURE 5. The graphs used in the proof of Claim 2 if |E3,3| = 1.

as G17
8 in Figure 5. By observing the graph G17

8 , it can be
seen that V ′3 = {u1, u3, u4, u6, u7, u8} and V

′

5 = {u2, u5}.
Since |V3| = 5 and |V3+ | = 8, we have |V4+ | = 3. Now
we may assume w.l.o.g. that |V+4 | = {t1, t2, t3}, d(t1) = x,
d(t2) = y, and d(t3) = z with x ≤ y ≤ z. Note that
V4+ ⊇ {u2, u5}, |E2,3| = 0, |E2,4| = 0 and V ′5 = {u2, u5},
we have 5 ≤ x ≤ y ≤ z and x+y+ z = 2n−3. That is to say,
G is a graph obtained by adding n − 8 vertices with degree
two to G17

8 such that each vertex with degree two is adjacent
to vertices in {t1, t2, t3}.

Let c = 2n− 3,

f (x, y) =
2
3
+ 5

√
x + 1
3x
+ 5

√
y+ 1
3y

+ 3

√
2n− 3− x − y+ 1
3(2n− 3− x − y)

+ (n− 8)
√
2,

then we have

∂f (x, y)
∂x

=

√
3

2(c− x − y)2
√

c−x−y+1
c−x−y

−
5

2
√
3x2

√
x+1
x

<

√
3
2

 1

z2
√

z+1
z

−
1

x2
√

x+1
x


≤ 0.

Similarly, we have ∂f (x,y)
∂y < 0. Since n ≥ 10, we have

ABC(G) ≤ f (x, y) ≤ f (5, 5)

≤
2
3
+ 10

√
6
15
+ 3

√
2n− 12

3(2n− 13)
+ (n− 8)

√
2

< ABC(Xn−52 ),

which is a contradiction to the initial assumption.
If |E3,3| = 2, then G[V3] is a matching of four vertices by

Lemmas 7 and 10. We may assume without loss of generality
that V3+ = {u1, u2, · · · , u8} such that E3,3 = {u1u2, u3u4},
d(u5) = 3 and {d(u6), d(u7), d(u8)} = {x, y, z} with x ≤ y ≤
z. Then we have x + y+ z = 2n− 3.
Let c = 2n− 3 and

f (x, y) =
4
3
+ 5

√
x + 1
x
+ 5

√
y+ 1
y
+

√
c− x − y+ 1
3(c− x − y)

+

√
x + y− 2

xy
+ (n− 8)

√
2.

27612 VOLUME 6, 2018



Z. Shao et al.: On the Maximum ABC Index of Graphs With Prescribed Size and Without Pendent Vertices

Similarly, we have ∂f (x,y)
∂x < 0 and ∂f (x,y)

∂y < 0. Since |V3| =
5, we have 4 ≤ x ≤ y ≤ z. Therefore, we have if n ≥ 10,

ABC(G) ≤ f (x, y) ≤ f (4, 4)

≤
4
3
+ 10

√
5
12
+

√
2n− 10
6n− 33

+

√
6
16
+ (n− 8)

√
2

< ABC(Xn−52 ),

a contradiction. �
Claim 5: |V3| 6= 6.
Proof: Suppose on the contrary that |V3| = 6. Then

we may assume without loss of generality that G[V3+ ] =
{w1,w2, · · · ,w6, t1, t2} where d(wi) = 3 for each i ∈
{1, 2, · · · , 6} such that N (v) = {t1, t2} each vertex v with
degree two. If |V ′3| = 6, according to Lemma 7, G[V3] must
be a matching. It can be verified that such a graph does
not exist, a contradiction. If |V ′3| = 7, then |E ′3,3| = 7
since |E(G[V3+ ])| = 14, we have dG[V3+ ](u8) = 7. Since
|E3,3| ≤ 2, we have |E ′3,3| ≤ 5, a contradiction. �
Claim 6: |V3| 6= 7.
Proof: Suppose on the contrary that |V3| = 7, then the

vertex with degree two can not connect to any other vertices
since |E2,3| = |E2,4| = 0, a contradiction. �
From the results of Claims 2–6, the claim of Lemma 16
follows. �
Lemma 17: Let G ∈ G and G be an (n,m)-graph, k ≥ 6,

m = 2n− 2, δ(G) ≥ 2 and G has the maximum ABC index.
Then k 6= 7.

Proof: Suppose on the contrary that k = 7, the proof is
similar to that of Lemma 16. So we omit the detailed proof
but give outline of the proof.

First, we need to claim that

|V3| + |V4| ≤ 5, (7)

then discuss the cases by different values of |V3|.

If |V3| = 0, we have ABC(G) ≤ 12
√

6
16 + (n− 7)

√
2, and

obtain that ABC(G) < ABC(Xn−52 ), which is a contradiction.
If |V3| = 1, then |V4| ≤ 4 by Eq. (7). Then we can

obtain that |E3,4| ≤ 3 and |E4,4| ≤
(4
2

)
= 6. Now we have

ABC(G) ≤ 3
√

5
12 + 6

√
6
16 + 3

√
7
20 + (n− 7)

√
2, and obtain

that ABC(G) < ABC(Xn−52 ), which is a contradiction.
If |V3| = 2, then |V4| ≤ 3 by Eq. (7). If |E3,3| = 1, we have
|E3,4| = 0 and |E4,4| ≤ 3. Now we have ABC(G) ≤ 2

3 +

4
√

6
15+3

√
6
16+4

√
7
20+(n−7)

√
2, and obtain thatABC(G) <

ABC(Xn−52 ), which is a contradiction. If |E3,3| = 0, we have
|V4| ≥ 3 and thus |V4| = 3. In this case, we can obtain a
contradiction by similar argument to the proof of Claim 3.

If |V3| = 3, then |V4| ≤ 1 by Eq. (7). We can process the
cases |V3| ∈ {3, 4} by using similar approach to Claim 4.
If |V3| = 5, the G is a graph such that each vertex with

degree 2 is adjacent to two common vertices. We can process

FIGURE 6. The graphs used in the proof of Lemma 19.

this case by using the approach used in the proof of Claim 3
in the case |E3,3| = 0 and |V ′3| = 4. �

In order to prove Lemma 18, we can start with
|V3| + |V4| ≤ 4 and discuss the cases |V3|. The proof is also
similar and we also omit it.
Lemma 18: Let G ∈ G and G be an (n,m)-graph, m =

2n− 2, δ(G) ≥ 2 and G has the maximum ABC index. Then
k 6= 6.
Lemma 19: Let G ∈ G and G be an (n,m)-graph, n ≥ 13,

m = 2n− 2, δ(G) ≥ 2 and G has the maximum ABC index.
If k = 5, then G ∼= Xn−52 .

Proof: We first assume on the contrary that G 6∼= Xn−52 .
Since m = 2n − 2, we have G[V3+ ] is isomorphic to one

of the graphs (G1
5 and G

2
5) depicted in Figure 6. It is clear that

G1
5 or G

2
5 has no pendent vertices and NG[V3+ ](v) contains at

least two vertices with degree at least two for each v ∈ V ′3.
By Lemma 6 (ii), we have |E2,6| = 0, and thus G contains no
vertex with degree 6.

Since |E2,5| = 0 by Lemma 6, we have G contains no
vertex with degree 5, and
Claim 7: |V3 ∪ V4| ≥ 2.
Proof: Otherwise, we have |V3| = 0 or |V4| = 0.

If |V4| = 0, we have

ABC(G) ≤
∑

e∈E3,6+

ABC(e)+
∑

e∈E6+,6+

ABC(e)

+

∑
e∈E2,3+

ABC(e)

≤ 3

√
7
18
+ 5

√
10
36
+ (n− 5)

√
2

< ABC(Xn−52 ),

a contradiction.
If |V3| = 0, we have

ABC(G) ≤
∑

e∈E4,6+

ABC(e)+
∑

e∈E6+,6+

ABC(e)

+

∑
e∈E2,3+

ABC(e)

≤ 4

√
7
18
+ 4

√
10
36
+ (n− 5)

√
2

< ABC(Xn−52 ),

a contradiction. �
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FIGURE 7. The graph G∗(x, y, z).

Now we have
Claim 8: One of the following three cases holds.

1) |V3| = 2 and |E3,3| = 0;
2) |V3| = |V4| = 1 and |E3,4| = 0;
3) |V3 ∪ V4| ≥ 3.
Proof: If |V3 ∪V4| ≤ 2, then |V3 ∪V4| = 2 by Claim 7.

If |V3| = 2 and |V4| = 0, then we have |E3,3| = 0.
Otherwise, there is at least an edge in E3,3 and we have

ABC(G) ≤
∑
e∈E3,3

ABC(e)+
∑

e∈E3,7+

ABC(e)

+

∑
e∈E7+,7+

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤
2
3
+ 4

√
8
21
+ 3

√
12
49
+ (n− 5)

√
2

< ABC(Xn−52 ),

a contradiction.
If |V3| = 1 and |V4| = 1, then we have |E3,4| = 0

by similar argument to the proof of the case |V3| = 2 and
|V4| = 0.
Similarly, we have that it is impossible if |V3| = 0 and
|V4| = 2. �
Case 1 (|V3| = 2, |V4| = 0 and |E3,3| = 0): Now,

we define some graphs as follows. Let G1
5 be the left

side graph depicted in Figure 5. For nonnegative integer
x, y, z, we define a graph G∗(x, y, z) by V (G∗(x, y, z)) =
V (G1

5) ∪ {s1, s2, . . . , sx} ∪ {t1, t2, . . . , ty} ∪ {r1, r2, . . . , rz},
and E(G∗(x, y, z)) = E(G1

5) ∪ {s1u4, s2u4, . . . , sxu4} ∪
{s1u5, s2u5, . . . , sxu5} ∪ {t1u5, t2u5, . . . , tyu5} ∪ {t1u2,
t2u2, . . . , tyu2} ∪ {r1u4, r2u4, . . . , rzu4} ∪ {r1u2, r2u2, . . . ,
rzu2}. That is to say,G∗(x, y, z) is obtained fromG1

5 by adding
x vertices of degree two adjacent to both u4 and u5, adding
y vertices of degree two adjacent to both u5 and u2 and
adding z vertices of degree two adjacent to both u4 and u2
(see Figure 7).
Let G1 = G∗(x1, y1, z1) and G2 = G∗(x2, y2, z2) with x1+

y1 + z1 = x2 + y2 + z2 = n − 5. By symmetry, we assume
x2 ≥ y2. Then we have
Claim 9: If z1 = z2 and x1 = y1, then ABC(G1) ≥

ABC(G2).

Proof: Let f (x, y) = 2
√

4+x
3(x+3)+2

√
4+y

3(y+3)+

√
1+x+t
(3+x)t +√

1+y+t
(3+y)t . For any constant c

′
≥ x, we have that f (x, c′− x) is

monotonically decreasing with x on [ c
′

2 ,+∞).
Let E ′ = {u4u5, u1u4, u3u4, u2u5, u1u2, u2u3}, t =

d(u5|G1) and c′ = n−5−z1. Note that d(u5|G2) = d(u5|G1),
we have

ABC(G1)− ABC(G2)

=

∑
e∈E ′

(ABC(e|G1)− ABC(e|G2))

= 2

√
4+ x1

3(x1 + 3)
+ 2

√
4+ y1

3(y1 + 3)
+

√
1+ x1 + t
(3+ x1)t

+

√
1+ y1 + t
(3+ y1)t

− 2

√
4+ x2

3(x2 + 3)
− 2

√
4+ y2

3(y2 + 3)

−

√
1+ x2 + t
(3+ x2)t

−

√
1+ y2 + t
(3+ y2)t

= f (x1, y1)− f (x2, y2)

= f (x1, c′ − x1)− f (x2, c− x2).

Since z1 = z2 and x1 = y1, we have x2 ≥ x1 and so
ABC(G1)− ABC(G2) ≥ 0. �
By Claim 9, we have

ABC(G∗(x, y, z)))

≤ f
(
n− 5− z

2
,
n− 5− z

2

)
+2

√
n− z

3(n− 1− z)
+ (n− 5)

√
2

It can be verified that z = n − 5 if and only if the function
f
(
n−5−z

2 , n−5−z2

)
+ 2

√
n−z

3(n−1−z) + (n − 5)
√
2 reaches the

maximum value. Therefore, if ABC(G∗(x, y, z))) reaches the
maximum value, we have G ∼= Xn−52 , contradicting with the
assumption of G.
Case 2 (|V3| = |V4| = 1 and |E3,4| = 0): By observing

two graphs G1
5 and G2

5 in Figure 6, it can be easily inferred
that the case is impossible.
Case 3 (|V3 ∪ V4| ≥ 3): In this case, G is a

graph obtained by adding n − 5 vertices with degree
two to two vertices in G1

5 or G2
5. We can obtain the

desired result by using similar argument to the proof of
Claim 3. �
Lemma 20: LetG be an (n,m)-graph, n ≥ 10,m = 2n−2,

δ(G) ≥ 2 and G has the maximum ABC index. If k = 4, then
G ∼= Xn−41 .

Proof: We first assume on the contrary that G 6∼= Xn−41 .
Since |E2,4| = |E2,5| = 0, we have |V4| = |V5| =

0 and G contains no vertex with degree 4 or 5. Then we
have
Claim 10: |V3| ≥ 1.
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Proof: Otherwise, we have

ABC(G) ≤
∑

e∈E6+,6+

ABC(e)+
∑

e∈E2,3+

ABC(e)

≤ 6

√
10
36
+ (n− 4)

√
2

< ABC(Xn−41 ),

a contradiction. �
Since m = 2n − 2, we have G[V3+ ] ∼= K4. By Claim 10,

G ∼= H (x, y, z) for some x, y, z with x + y + z = n − 4. Let
x + y + z = n − 4 and H (x, y, z) is obtained from G[V3+ ]
by adding x vertices of degree two adjacent to both u2 and
u3, adding y vertices of degree two adjacent to both u3 and u4
and adding z vertices of degree two adjacent to both u4 and
u2. Then we have H (x, y, z) ∼= Xn−41 . Now, we have

ABC(H (x, y, z))

=

√
4+ x

3(3+ x)
+

√
4+ y

3(3+ y)

+

√
4+ z

3(3+ z)
+

√
4+ x + y

(3+ x)(3+ y)

+

√
4+ x + z

(3+ x)(3+ z)
+

√
4+ z+ y

(3+ z)(3+ y)
.

By similar argument to the proof of Lemma 19, we have
ABC(H (x, y, z)) ≤ ABC(H (0, 0, x + y+ z)) = ABC(Xn−41 ).
Moreover, ABC(H (x, y, z)) < ABC(Xn−41 ) if x + y > 0. This
assertion completes the proof. �
Theorem 1: Let G be an (n,m)-graph with n ≥ 5 and m =

2n− 2. If δ(G) ≥ 2, then we have

ABC(G) ≤ max{ABC(Xn−41 ),ABC(Xn−52 )}.

Moreover, the equality holds if and only if either i)G ∼= Xn−41
and n ≤ 34, or (ii) G ∼= Xn−52 and n ≥ 35.

Proof: If n ∈ {5, 6, 7, 8, 9}, we can verify that G ∼=
Xn−41 by computer search. By Lemmas 4-20, we have G = ∅.
Therefore, ifG is a graphwith n ≥ 10 vertices andm = 2n−2
edges, minimum degree at least two and the maximum ABC
index, then G ∼= Xn−41 or G ∼= Xn−52 . Then by Lemma 1,
it follows that Theorem 1 holds. �
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