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ABSTRACT As the number of antennas goes large in the massive multiple-input multiple-output (MIMO)
scenario, the large-scale fading plays an increasingly important role in the system performance. In this paper,
we investigate the uplink sum rate of a massive distributed MIMO system over composite fading channels
portrayed by the Rayleigh–Lognormal (RLN)model, where both zero forcing (ZF) and ZF decision-feedback
receivers are considered. By exploring a novel and generalized method based on the integral and limit
theories, the sum rate is expressed as a series with regard to the negative power of the transmit antennas,
which is followed by a brief discussion on the asymptotic behavior when the number of transmit antennas
goes infinite. Numeral experiments testify our theoretical analysis and prove the effectiveness even when the
accuracy parameter is small. The influence of the number and location of the radio ports is also discussed.

INDEX TERMS Massive distributed MIMO, composite fading channel, sum rate, zero forcing

I. INTRODUCTION
Massive Multiple-Input Multiple-Output (MIMO) is first
introduced in the seminal work [1] as a promising technology
for the next generation cellular networks, since it has the
potential to improve space gains by increasing the number
of antennas at the base station (BS). The typical scenario
portrays the communication between a BS of massive anten-
nas and some users of a single antenna [2]–[6]. In Massive
MIMO systems, the influence of fast fading and thermal noise
vanishes as the amount of antennas increases [7]–[9].

On account of a more realistic deployment, Massive
Distributed MIMO (D-MIMO) systems emphasize on the
distributed structure, where the users are geographically scat-
tered over an area andmay be equippedwith several antennas,
such as radio ports (RPs) [10]–[12]. In Massive D-MIMO
systems, different RPs experience different path loss and
large-scale fading, which results in different transmission
features. Therefore, in order to evaluate the performance
of precoders directly and clearly, it is necessary to derive
the closed-form sum rate, where the composite fading (both
small-scale and large-scale) is important and indispensible to
be considered [9], [11].

In the related literatures, the Rayleigh-Lognormal (RLN)
model is widely applied to characterize the composite fading
channels [13]. Up to now, many efforts have been made to
the large-scale (i.e., log-normal) part since it is hard-tackled
mathematically.
• Simplification. Regardless of the accuracy, it is straight-
forward to take the large-scale fading factor as a con-
stant or just estimate its final effects on the performance
as in [14], [15].

• Substitution. Another way is to replace the log-normal
part with an analytically friendlier model. For instance,
the Gaussian distribution is used to imitate the log-
normal distribution in [16]; the gamma distribution is
adopted as the large-scale part of Generalized-K fading
model in studies [17]–[19]. Besides, authors in [11]
propose the upper and lower bounds instead.

• Discretization. With the help of Gauss-Hermite Quadra-
ture Integration (GHQI), the log-normal section is trans-
formed to a series in [20]–[22]. In this case, the more
items are involved, the more accurate the result is.

• Special cases. Beside the aforementioned methods,
authors in [23] focus on the average signal-to-noise
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ratio (SNR), so that only the expectation of the large-
scale factor is required. Similarly in [24], authors aim at
the symbol error probability (SEP), where two alterna-
tive formulas for Q- and Q2- functions are introduced.

In sum, simplification provides a quick solution to the
large-scale fading, but it is generally a coarse estimation.
Substitution avoids the direct analysis of the log-normal dis-
tribution, yet it is not the universal case. Compared with these
methods, discretization works out the first way to tackle with
the RLNmodel directly. However, a great many items (e.g. at
least 10 in [25]) are demanded to obtain a satisfying approxi-
mation. For some special cases, there may exist smart means
to study the composite fading channels, but unfortunately
they are only the minority situation.

In this paper, we propose a general method to analyze the
sum rate of the Massive D-MIMO systems over composite
fading channels, where the integral and limit theories are uti-
lized. The solution provides a direct and concise way to eval-
uate the performance of the transmission techniques, which
is instructive for the future studies of precoder design. In
addition, we extend the conclusions under the infinite antenna
case. It enables us to learn the asymptotic behavior of the sum
rate as the number of antennas goes infinite. Considering the
efficiency of simple signal processing techniques in Massive
D-MIMO systems, we apply zero-forcing (ZF) receivers in
our discussion and introduce zero-forcing decision-feedback
(ZF-DF) receivers to make a comparison.
Notation: The bold letters of lowercase and uppercase

represent vectors and matrices respectively (e.g., v,M) where
the corresponding elements are denoted by vi and [M]ij. Espe-
cially, the subscripts of the diagonal elements are shortened to
a single letter for the diagonal matrices, i.e., [3]ii is simplified
to [3]i for the diagonal matrix 3. Notations AH and A†

stand for the hermitian transpose and pseudo-inverse of a
complex matrix A. E[· ] implies the expectation of a random
variable or a random matrix. IM is anM ×M identity matrix.

II. PROBLEM STATEMENT
In this paper, we investigate the uplink sum rate of a Massive
D-MIMO system over composite fading channels, where M
antennas are configured at each RP. The P RPs are separately
located and concurrently served by a BS with N antennas for
N > PM >> 1, as shown in Fig.1.
Then the received signal is represented as

y = H6
1
2 4

1
2Ts+ n (1)

where the vectors y ∈ CN×1, s ∈ CPM×1 and n ∈ CN×1

denote the received signal, the transmitted signal and the
circularly-symmetric complex Gaussian noise respectively.

Suppose each RP is independent with each other, the corre-
sponding segment of signal s is uncorrelated with each other
and uncorrelated with the noise n. The original SNR for each
RP is assumed to be ρ.
Note that a composite fading model is applied in (1) to

capture the full view of the channel state. H ∈ CN×PM is an

FIGURE 1. A Massive D-MIMO System (P RPs each equipped with M
antennas, a single BS equipped with N antennas, N > PM >> 1).

uncorrelated complex Gaussian matrix whose elements are
independent identically distributed (i.i.d) with CN (0, 1). The
covariance matrix 6 ∈ CPM×PM is block diagonal, which
implies that the links are correlated among the same RP but
independent between different RPs. Hence H together with
6 characterizes the small-scale fading. 4 ∈ CPM×PM is
also block diagonal, comprising P diagonal matrices 4p =

diag{ ξpDνp } ∈ CM×M , (p = 1, 2, ...,P). T ∈ CPM×PM is a
precoder.

For the small-scale fading part, we know
(
H6

1
2
)H(H6

1
2
)

is of Wishart distribution, in other words,
(
H6

1
2
)H(H6

1
2
)
∼

WPM (N ,6). For the large-scale fading part, Dp is the dis-
tance between the pth RP and the BS, ν is the path loss factor,
and ξp is modeled by the log-normal distribution with the
probability density function (PDF)

p(ξp) =
1

√
2πσξp · ξp

e
−

(ln ξp−µξp )
2

2σ2
ξp . (2)

In order to focus on the sum rate analysis, we apply a
precoder T = 1

√
M
·V for simplicity, where M is used to

form the normalized SNR and V is from the eigenvalue
decomposition of the covariance matrix 6 = V3VH.
Therefore the transmission model (1) can be reorganized

as

y =
1
√
M

HV3
1
2 4

1
2 s+ n (3)

In the following part, we aim at the ZF receivers first, and
then focus on the ZF-DF case. For simplicity of expression,
we name the latter receivers ’DF’ for short.

For the ZF receivers, we have

z = s+ (
1
√
M

HV3
1
2 4

1
2 )†n (4)

such that the sum rate with the predefined precoder is

RZF =
P∑
p=1

pM∑
m=

(p−1)M+1

E{log2(1+
ρ[3]m[4]p

M · [(H̃HH̃)−1]mm
)} (5)

where H̃ = HV, whose covariance matrix is a PM × PM
identity matrix. By defining h̃m = 1

[(H̃HH̃)−1]mm
, we get the

VOLUME 6, 2018 25971



L. Wang et al.: Uplink Sum-Rate Analysis of Massive Distributed MIMO Systems Over Composite Fading Channels

PDF of h̃m is

p(̃hm) =


1

0(N − PM + 1)
h̃N−PMm · e−̃hm , x ≥ 0;

0, otherwise.
(6)

According to the PDFs of fading coefficients (2) and (6),
we formulate the sum rate (5) in a double integral form as
below.

RZF =
P∑
p=1

pM∑
m=

(p−1)M+1

T1
(N − PM )!

√
2πσξp

(7)

where

T1 =
∞∫
0

∞∫
0

(
log2(1+

ρ· λm· ξp

M ·Dvp
h̃m)

)
·

h̃N−PMm · e−̃hmξ−1p e
−

(ln ξp−µξp)
2

2σ2
ξp dh̃mdξp

and λm is the mth eigenvalue of channel covariance matrix 6,
thus the mth element of 3.

III. SUM RATE ANALYSIS
Prior to further study, we list two lemmas here for the con-
venience to handle the inner and outer integral in (5) respec-
tively.
Lemma 1: Define an integral

δ(x) =

∞∫
0

xa

(b−1 + x)a+c+1
· e−xdx (8)

where b ∈ R+ and a, c ∈ Z+ are constants. We have the
following inequality

δ(x) ≤

∞∫
0

1
(b−1 + x)c+2

dx =
bc+1

c+ 1
, (9)

since 0 ≤ x
ex ≤ 1 and 0 ≤ x

b−1+x
≤ 1 hold for x ∈ [0,∞).

Lemma 2: Define an integral

Jb =
∞∫
0

ξbp e
−

(ln ξp−µξp)
2

2σ2
ξp dξp (10)

which is related to the power index b, we get

Jb =
√
π

a2
· exp

[
(a3 + b+ 1)2

4a2
− a4

]
(11)

where a2 = 1
2σ 2ξp

, a3 =
µξp

σ 2ξp
and a4 =

µ2
ξp

2σ 2ξp
.

Proof: With the variable substitution of x = ln ξp,
we arrive at

Jb =
∞∫
−∞

e−a2x
2
+(a3+b+1)x−a4dx (12)

Next we complete the square on the power of e and let y =
√
a2x −

a3+b+1
2
√
a2

, thus we attain

Jb =
exp

[ (a3+b+1)2
4a2

− a4
]

√
a2

∞∫
−∞

e−y
2
dy (13)

Finally, transform the integral part to the polar coordinates
and the lemma is proved.
In the following, we first analyze the inner integral, and

thenmove on to the outer part for the sum rate of ZF receivers.
Property 1: Define

I =
1

(N − PM )!

∞∫
0

(
log2(1+ ap,m· ξp· h̃m)

)
· h̃N−PMm · e−̃hmdh̃m (14)

where ap,m =
ρ·λm
M ·Dvp

. Let bp,m = ap,m· ξ and cp,m =
ρ·λm
Dvp

,
we have

I =
1
ln 2

N−PM∑
k=0

L∑
t=1

(−cp,m· ξp)t

k!

·

[
(L + k)!(t − 1)!

L!
− (k + t − 1)!

]
M−t

+
1
ln 2

N−PM∑
k=0

(L + k)!
L! k!

∞∫
0

e−̃hm

b−1p,m + h̃m
dh̃m

+
1
ln 2

N−PM∑
k=0

fm,k
k!
·O
(
M−(L+1)

)
(15)

Proof: See Appendix A.
On the basis of Property 1, we present the theorem bellow

demonstrating the system sum rate under the ZF case, where
a critical step is to deal with the large-scale fading factor.
Theorem 1: For a Massive D-MIMO system consisting

of P RPs each equipped with M antennas and a single ZF
receiver configured with N antennas (N > PM >> 1),
the uplink sum rate over composite RLN fading channel is

RZF = −a5
P∑
p=1

pM∑
m=

(p−1)M+1

N−PM∑
k=0

L∑
t=1

×
(k + t − 1)!

k!
· (−cp,m)t · exp

[
(a3 + t)2

4a2

]
·M−t

+O
[
M−(L+1)

]
(16)

where a2 = 1
2σ 2ξp

, a3 =
µξp

σ 2ξp
, a4 =

µ2
ξp

2σ 2ξp
, a5 = e−a4

ln 2
√
2 a2σξp

and

cp,m =
ρ·λm
Dvp

.
Proof: Referring to the sum rate (7), we obtain

RZF =
1

√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

∞∫
0

I· ξ−1p e
−

(ln ξp−µξp)
2

2σ2
ξp dξp

(17)
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Substituting the outcome of Property 1 into it, the sum rate
is acquired as bellow by applying Lemma 2

RZF =
1

ln 2
√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

N−PM∑
k=0

L∑
t=1

×
(−cp,m)tJt−1

k!

[
(L+k)!(t−1)!

L!
− (k+t−1)!

]
M−t

+
1

ln 2
√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

N−PM∑
k=0

(L + k)!
L! k!

·

∞∫
0

( ∞∫
0

e−̃hm

b−1p,m + h̃m
dh̃m

)
ξ−1p e

−
(ln ξp−µξp)

2

2σ2
ξp dξp

+
1

ln 2
√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

N−PM∑
k=0

(2k − 1)(L + k)!cL+1p,m JL
(L + 1)k!

O
[
M−(L+1)

]
(18)

Note that the key of processing the sum rate is to solve the
E1-function-involved double integral, which is a challenge
when studying the composite fading channels. In this work,
we expand E1 according to [26, eq. 8.357] for |b−1p,m| → ∞
when M approaches infinite. Therefore, we achieve

∞∫
0

e
1

bp,m

( ∞∫
1

bp,m

e−x

x
dx
)
ξ−1p e

−
(ln ξp−µξp)

2

2σ2
ξp dξp

=

L∑
t=1

(−1)t−1· ctp,m· (t − 1)!·Jt−1·M−t +O
[
M−(L+1)

]
(19)

Finally by substituting (19) into (18), the theorem is
proved.

Based on the above derivation, we would like to draw some
conclusions on Theorem 1:

• The sum rate is estimated by the series sum of the former
L items, where L stands for the accuracy. That is to
say, with a given M , the larger L is selected, the more
accurate the estimation is.

• In fact, this estimation converges fast due to the largeM ,
which is also confirmed by simulation. According to the
enormous experiments in Section IV, L = 3 is enough
to get a satisfying estimation.

• Note that, in order to get a certain accuracy L, it is
required K ≥ L + k , which implies at least L + k times
of integration by parts is carried out in (31).

Originated from the traditional ZF receivers, DF receivers
introduce the feedback scheme to enhance the received SNR.
Hereafter, we analyze the sum rate of DF receivers, and then
make a comparison between them.

Corollary 1: For a Massive D-MIMO system consisting
of P RPs each equipped with M antennas and a single ZF-
DF rceiver configured with N antennas (N > PM >> 1),
the uplink sum rate over composite RLN fading channel is

RDF = −a5
P∑
p=1

pM∑
m=

(p−1)M+1

N−m∑
k=0

L∑
t=1

(k + t − 1)!
k!

· (−cp,m)t · exp
[
(a3 + t)2

4a2

]
·M−t

+O
[
M−(L+1)

]
(20)

where a2 = 1
2σ 2ξp

, a3 =
µξp

σ 2ξp
, a4 =

µ2
ξp

2σ 2ξp
, a5 = e−a4

ln 2
√
2 a2σξp

and

cp,m =
ρ·λm
Dvp

.
Proof: Applying QR decomposition toHV and premul-

tiplying QH to (3), we get

z = QHy =
1
√
M

R3
1
2 4

1
2 s+QHn (21)

so that the sum rate is expressed as

RDF =
P∑
p=1

pM∑
m=

(p−1)M+1

E{log2(1+
ρ[R]2mm[3]m[4]p

M
}. (22)

By considering the PDF of r
2
mm
dm

, we rearrange it as

RDF =
P∑
p=1

pM∑
m=

(p−1)M+1

T2
(N − m)!

√
2πσξp

(23)

where

T2 =
∞∫
0

∞∫
0

(
log2(1+

ρ· ηm· λm· ξp

M ·Dνp
)
)
·

ηN−mm e−ηmξ−1p e
−

(ln ξp−µξp)
2

2σ2
ξp dηmdξp.

With Property 1, the sum rate is modified to

RDF =
1

ln 2
√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

N−m∑
k=0

L∑
t=1

(−cp,m)tJt−1
k!

[
(L + k)!(t−1)!

L!
−(k+t−1)!

]
M−t

+
1

ln 2
√
2πσξp

P∑
p=1

pM∑
m=

(p−1)M+1

N−m∑
k=0

(L + k)!
L! k!

·

∞∫
0

e
1

bp,m

( ∞∫
1

bp,m

e−x

x
dx
)
ξ−1p e

−
(ln ξp−µξp)

2

2σ2
ξp dξp

+O
[
M−(L+1)

]
(24)
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Finally, Corollary 1 is proved by substituting (19) into (24)
and merging the first and second items with regard to the
power of M .

Recalling the sum rate (16) and (20), λm is the only random
variable. In the upcoming, we try to investigate the asymptotic
features of the sum rates for both receivers with regard to
infinite antennas.

Corollary 2: Given λ̄p,t = lim
M→∞

1
M

M∑
m=1

λtp,m (for l =

1, 2, · · · ,L), we have

RZF−S = −a5
P∑
p=1

pM∑
m=

(p−1)M+1

N−PM∑
k=0

L∑
t=1

(k + t − 1)!
k!

· (−
ρ

Dvp
)t · exp

[
(a3 + t)2

4a2

]
· λ̄p,t+1·M−t

+O
[
M−(L+1)

]
(25)

RDF−S = −a5
P∑
p=1

pM∑
m=

(p−1)M+1

N−m∑
k=0

L∑
t=1

(k + t − 1)!
k!

· (−
ρ

Dvp
)t · exp

[
(a3 + t)2

4a2

]
· λ̄p,t+1·M−t

+O
[
M−(L+1)

]
(26)

where a2 = 1
2σ 2ξp

, a3 =
µξp

σ 2ξp
, a4 =

µ2
ξp

2σ 2ξp
and a5 = e−a4

ln 2
√
2 a2σξp

.

Proof: Through [27, Th. 4.2], the corollary is directly
obtained with the definition of λ̄p,t .
In this part, the theorem and corollaries contribute to

the Massive D-MIMO system from three aspects. First,
the derivation of Theorem 1 and Corollary 1 provides an
analysis framework for the sum rate over composite RLN
channels. Second, the series sum of the former L items in
(16) and (20) gives an estimation of the system sum rate and
can be applied in future study to evaluate the performance
of precoder design. Third, the obtained sum rates have a
good structure for us to learn the asymptotic behavior in
Corollary 2. It explains the convergency of the sum rates
against anntennas from a mathematical point of view while
the simulation part testifies it in Fig.3.

In the preceding discussion, the first and second order
statistics of channel are assumed to be available at the RPs.
This is often achieved through the channel state estimation
with the help of training or pilot sequence, where the trans-
mitters send the previously known signals to the receiver
first and then feed them back. Although the estimation error
is unavoidable, it is being improved by technologies like
signal design and blind estimation. Therefore, it is our future
investigation on how to design the precoders robust to the
estimation error.

IV. SIMULATION RESULTS
In this section, we examine the sum rates of both ZF and DF
receivers over the number of transmit antennas, the number
of receive antennas and SNR respectively, where several

FIGURE 2. Sum Rate of ZF and DF Receivers against Transmit Antennas
(P = 1, N − PM = 1, SNR = 30dB, D = 10km, L = 3).

comparisons are made with regard to different parameters
such as the number and location of RPs.

Considering the sum rate expression is closely related to
the transmit antennas, we first concentrate on the sum rate
against the number of transmit antennas in Fig.2.

The curves testify Theorem 1 and Corollary 1 since both
the analytical results approach well to the Mont Carlo out-
come. It also suggests that the analytical results converge
to the experimental outcome much better as the number of
transmit antennas increases. It starts to gain a good approxi-
mation from M = 18 for DF receivers and M = 16 for ZF.
Note that in order to keep a good convergence, the number of
the transmit antennas M should not be too small especially
when PM = 1. It is not only a requirement for mathematical
analysis of this paper but also testified by simulation, where
on the one hand, the front ends of the curves are not smooth,
on the other hand, the significant gaps are present between
the analytical and the Mont Carlo results.

In Fig.3, we examine the sum rate against the number of
transmit antennas with different SNR, where Fig.3(a) is for
DF receivers and Fig.3(b) is for ZF.

It shows that our analytical result matches the Monte Carlo
well even whenM is not a huge number. Besides, each group
of curves has a slight growth. On the one hand, the sum
rate grows owing to the space gains brought by the antennas.
On the other hand, the growth is limit because the asymptotic
features gradually take effect as the number of antennas
increases. Additionally, the sum rate of DF receivers benefits
greater compared to that of ZF with the help of feedback
scheme. Therefore, we only present the rates of DF receivers
in Fig.4 and Fig.5 to explicitly discuss the effect of location
and antennas distribution.

From previous work, it is known that the location of RPs
plays a prominent role in distributed systems. Hence we
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FIGURE 3. Sum Rate of ZF and DF Receivers against Transmit Antenna
(P = 2, N − PM = 1, SNR = 10/20/30dB, D = [10 10]km, L = 3).
(a) DF Receiver. (b) ZF Receiver.

evaluate the sum rate with different locations in Fig.4, where
both the same and different distances from each RP to the
BS (symmetric location and anti-symmetric location) are
considered.

We can conclude from Fig.4 that the shorter distance of
D = [5 5] results in higher sum rate than that of D = [5 8]
because a higher SNR is achieved. Note that when the sum
distance of all the RPs is the same, for instance D = [4 6]
and D = [5 5], the anti-symmetric location has a better
performance than the symmetric case from M = 12 since
a more abundant scattering environment is acquired from the
anti-symmetric location when the number of transmit antenna
rises.

Subsequently in Fig.5, the gain of multiple RPs is studied,
where we remain a same number of total transmit antennas as
PM = 30.

FIGURE 4. DF Sum Rate against Transmit Antenna
(P = 2, N − PM = 1, SNR = 10dB, D = [4 6]/[5 5]/[5 8]km, L = 3).

FIGURE 5. DF Sum Rate against Transmit Antenna
(P = 1/2/5, M = 30/15/6, N = 31, SNR = 30dB, D = 10km, L = 3).

It shows that the case of 5 RPs each with 6 antennas has a
greater rate than that of 2 RPs each 15 and 1 RP with 30. It is
also because a more abundant scattering environment results
in more independent subchannels.

In the following part, we inspect the sum rate against
the number of receive antennas N and the original SNR ρ

respectively.
Fig.6 characterizes the influence of the receive antennas, in

which the analytical and simulation results of both receivers
increase almost linearly. The configuration of 2 RPs eachwith
59 antennas is applied. However, it is worth notice that the
transmit antennas should not be too few, so as to keep a good
convergence according to the equations (16) and (20).

In Fig.7, the sum rate against the original SNR ρ is esti-
mated. As showed in this figure, the sum rates increase
tremendously with the improving SNR, where more transmit
antennas and DF receivers also result in higher rates.
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FIGURE 6. Sum Rate of both Receivers against Receive Antenna
(P = 2, M = 59, SNR = 10dB, D = [5 5]km, L = 3).

FIGURE 7. Sum Rate of both Receivers against SNR
(P = 2, M = 2/10, N = 5/21, D = [5 5]km, L = 3).

V. CONCLUSIONS
In this paper, we investigate the sum rate of Massive
D-MIMO systems over composite RLN channels, where two
receivers ZF and ZF-DF are considered successively. An
analysis framework is proposed first to obtain the sum rates,
where the accuracy requirement of L = 3 is enough to gain a
satisfying estimation. Thus it suggests a direct and clear way
for performance evaluation of Massive D-MIMO systems.
Then the solution is extended to a steady form under the infi-
nite antenna situation, where the asymptotic behavior of the
sum rates is revealed. Our theoretical analysis is confirmed by
the simulation experiments from multiple aspects. In order to
concentrate on the sum rate, a simple precoder is assumed in
this work. It remains further study of more relaxed conditions
for precoder design.

APPENDIX
PROOF OF PROPERTY 1
Regarding the integral I as a sequence I(N−PM ), we get an
iterative expression through integration by parts.

I(N−PM ) = I(N−PM−1)

+
1
ln 2

∞∫
0

e−̃hm

b−1p,m + h̃m
·

h̃N−PMm

(N − PM )!
dh̃m (27)

Applying this operation to (14) for N − PM times, we come
to

I =
1
ln 2

∞∫
0

e−̃hm

b−1p,m + h̃m
·

(
1+ h̃m +

h̃2m
2!
+ · · · +

h̃N−PMm

(N − PM )!

)
dh̃m. (28)

Define a sequence

Ik =
∞∫
0

e−̃hm

b−1p,m + h̃m
h̃kmdh̃m, (k = 0, 1, . . . ,N − PM ),

(29)

such that

I =
1
ln 2

N−PM∑
k=0

Ik
k!
. (30)

Similarly, taking integration by parts with respect to e−̃hm and
iterating for K (K > k , illustrated later) times, we have

Ik = −
K−1∑
t=0

( h̃km
b−1p,m + h̃m

)(t)
e−̃hm

∣∣∣∣∞
0

+

∞∫
0

( h̃km
b−1p,m + h̃m

)(K )
e−̃hmdh̃m. (31)

Denote the former summation as Ik1 and the latter integral
as Ik2.

Notice that Ik1 = 0 only holds for t < k because from
t = k a constant appears in the numerator part. As a result,
with Leibniz Formula we arrive at

Ik1 = −
K−1∑
t=k

t∑
s=0

(
t
s

)
(̃hkm)

(s)
( 1

b−1p,m + h̃m

)(t−s)
e−̃hm

∣∣∣∣∞
0

= −

K−1∑
t=k

(
t
k

)
k!

(−1)t−k (t − k)!

(b−1p,m + h̃m)t−k+1
e−̃hm

∣∣∣∣∞
0

(32)

It is worth notice that the second equality is acquired for
s = k since

(̃hkm)
(s)
= 0, for s > k;
h̃k−sm

(b−1p,m + h̃m)t−s+1
e−̃hm

∣∣∣∣∞
0
= 0, for s < k.

(33)
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Accordingly, we calculate and re-arrange (32) in an
ascending order corresponding to the power of bp,m, achiev-
ing

Ik1 =
K−k∑
t=1

(−1)t−1· btp,m· (k + t − 1)!. (34)

In order to deal with Ik2, we first tackle the derivative
part inside, and then focus on the integral with regard to
h̃m. Through Leibniz Formula, this high-oder derivative is
expanded as in (35) considering (̃hkm)

l
= 0 for l > k .( h̃km

b−1p,m + h̃m

)(K )
=

k∑
l=0

(K
l

) k!·̃hk−lm
(k−l)! ·

(−1)K−l (K−l)!
(b−1p,m+̃hm)K−l+1

(35)

Considering K > k , let us suppose a parameter L ∈ Z+
satisfying K = L + k . It is always true because we can
appropriately select K , the times to do integration by parts
in the previous operation (31).

Hence in the upcoming, we substituteK by L+k , and point
out the importance of L which refers to the effectiveness of
our final result.

Substituting (35) into Ik2, we get

Ik2 = Ik21 + Ik22. (36)

where

Ik21 =
k−1∑
l=0

(−1)L+k−lk!(L + k)!
l!(k − l)!

·

∞∫
0

h̃k−lm

(b−1p,m + h̃m)L+k−l+1
· e−̃hmdh̃m (37)

and

Ik22 = (−1)L(L + k)!

∞∫
0

1

(b−1p,m + h̃m)L+1
· e−̃hmdh̃m

(38)

As a matter of fact, (36) is just a separation of all the items,
in which Ik21 involves the elements of l 6= k and Ik22 is just
for l = k .
According to Lemma 1, we arrive at

|Ik21| ≤ |fm,k |·M−(L+1) (39)

where

fm,k =
(2k − 1)(L + k)!(cp,m· ξp)L+1

L + 1
, (40)

which implies Ik21 = O
(
M−(L+1)

)
.

For Ik22, we come to

Ik22 =
L∑
t=1

(−1)t (L + k)!(t − 1)!· btp,m
L!

+
(L + k)!
L!

∞∫
0

e−̃hm

b−1p,m + h̃m
dh̃m (41)

through integration by parts for L times, sorting it by the
ascending power of bp,m. Note that an upper incomplete
gamma function is contained in the second part, which will
be solved later in Theorem 1.

By combining (34) and (41) with the consideration of L =
K − k , we get Ik through (30), and finally I in Property 1.
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