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ABSTRACT How to measure the centrality of nodes is a significant problem in mobile social networks
(MSNs). Current studies inMSNsmainly focus onmeasuring the centrality of nodes in a certain time interval
based on the static graph that do not change over time. However, the network topology of MSNs is changing
very rapidly, which is the main characteristic of MSNs. Therefore, it will not be accurate to measure the
centrality of nodes in a certain time interval by using the static graph. To solve this problem, this paper
first introduces a new centrality metric named cumulative neighboring relationship (CNR) for MSNs. Then,
a time-ordered aggregation model is proposed to reduce a dynamic network to a series of time-ordered
networks. Based on the time-ordered aggregation model, this paper proposes three particular time-ordered
aggregation methods and combines with the proposed centrality metric CNR to measure the importance
of nodes in a certain time interval. Finally, extensive trace-driven simulations are conducted to evaluate
the performance of our proposed time-ordered aggregation model-based centrality metric time-ordered
cumulative neighboring relationship (TCNR). The results show that the exponential time-ordered aggregation
method can measure TCNR centrality in a certain time interval more accurately than other aggregation
methods, and our proposed time-ordered aggregationmodel-based centrality metric TCNR outperforms other
existing temporal centrality metrics.

INDEX TERMS Centrality, mobile social networks, dynamic network, time-ordered aggregation model,
trace-driven simulation.

I. INTRODUCTION
Recently, with the rapid popularity of mobile devices (such
as i-pad, PDAs, and smart-phones), Mobile Social Networks
(MSNs) have began to emerge, which combine opportunistic
mobile networks and social network analysis technologies
together [1]–[3]. Specifically, social network analysis tech-
nologies (e.g., node centrality, community, similarity and so
on) are utilized in MSNs to exploit mobile nodes’ social
relationships [4], [5]. The motivation is that the social fea-
tures of mobile nodes stand for stable and long relationships
among them, which can be used for designing efficient data
forwarding strategies for MSNs. MSNs are promising to deal
with data sharing and dissemination among mobile nodes in
delay-tolerant scenarios by using mobile devices equipped
with wireless interfaces (e.g., Bluetooth, Wi-Fi) when they
are within the communication range of each other. Under this

situation, an end-to-end transmission path between mobile
nodes might not exist due to the lack of infrastructure and the
time-varying network topology. Therefore, mobile nodes in
MSNs employ a store-carry-and-forward scheme to forward
messages [6]–[8].

To improve the performance of data forwarding in MSNs,
a significant problem in the research of MSNs is to measure
the centrality (importance) of nodes in the network [9]–[11].
For example, if we want to disseminate messages to more
nodes in the network in a certain time interval, an intuitive
way is to choose nodes which have higher centrality values
as the source nodes. Considering the application, previous
studies have proposed diverse centrality metrics to measure
the relative importance of nodes in the network. However,
the current studies in MSNs focused on measuring these
centrality metrics in a certain time interval based on the static
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graph that do not change over a long period of time. Actually,
network topology in MSNs is changing very rapidly, which is
driven by natural social behavior of people [12]. Therefore,
it will not be accurate to measure the centrality of nodes in a
certain time interval by using the static graph.

The initial attempts had tried to address this problem
by introducing the time-ordered graph, but did not provide
effective methods for MSNs [13]. In this paper, we first
propose a new centrality metric named Cumulative Neigh-
boring Relationship (CNR) based on the neighboring rela-
tionship of pair-wise nodes for MSNs. Then, we introduce
a time-ordered aggregation model, which reduces a dynamic
network to a series of time-ordered networks [14]. Specif-
ically, there can be many different methods to aggregate
time-ordered network graph and each has its advantages
and disadvantages. Without loss of generation, we con-
sider three particular time-ordered aggregation methods:
the Average Time-ordered Aggregation Method, the Linear
Time-ordered Aggregation Method, and the Exponential
Time-ordered Aggregation Method, and combine with our
proposed centrality metric CNR to measure the importance
of nodes in a certain time interval. The Average Time-
ordered Aggregation Method aggregates temporal network
graph by assigning equal weights to each time window. The
Linear Time-ordered Aggregation Method assigns linearly
decreased (or increased) weights to each time window, and
the Exponential Time-ordered Aggregation Method assigns
exponentially decreased (or increased) weights to each time
window.

It is worth noticing that compared with nodes which are
active at the end of a time interval, nodes active at the start
time of the time interval can disseminate messages to other
nodes in the network more quickly. Therefore, the centrality
values at time windows which are closer to the start time
of the time interval should be assigned with larger weights.
Finally, the contributions of this paper are summarized as
follows:

1) To measure the importance of nodes in the network
more accurately, we propose a new centrality metric
named Cumulative Neighboring Relationship (CNR)
based on the neighboring relationship of pair-wise
nodes for MSNs.

2) We introduce a time-ordered aggregation model to
reduce a dynamic network to a series of time-ordered
networks. Based on the time-ordered aggregation
model, we propose three particular time-ordered aggre-
gation methods: the Average Time-ordered Aggrega-
tion Method, the Linear Time-ordered Aggregation
Method, the Exponential Time-ordered Aggregation
Method, and combine with our proposed centrality
metric CNR to measure the importance of nodes in a
certain time interval.

3) Extensive real trace-driven simulations are conducted
to evaluate the performance of our proposed time-
ordered aggregation model-based centrality metric
TCNR.

The remainder of this paper is organized as follows.
Section II introduces the related work. Section III introduces
the network model related to this paper and the motivation
of this paper. Section V introduces the time-ordered aggre-
gation model, and three particular time-ordered aggregation
methods. Through extensive real trace-driven simulations,
Section VI evaluates the performance of our proposed time-
ordered aggregation methods under our proposed centrality
metric CNR, and then compares our proposed time-ordered
aggregationmodel-based centrality metric with other existing
temporal centrality metric. Section VII concludes the paper.

II. RELATED WORK
Previous studies have proposed diverse centrality metrics to
measure the relative importance of nodes in the network,
such as Betweeness Centrality, Degree Centrality, Closeness
Centrality, and so on [15]–[18]. These centrality metrics have
been widely used to design efficient routing protocols for
MSNs. For example, SimBet proposed in [19] combines the
Betweenness centrality in the Ego network and similarity to
select relays nodes, so as to increase the data forwarding
performance in MSNs. Similarly, BUBBLE Rap proposed
in [20] combines the Betweenness centrality in the Ego net-
work with social communities to increase the data forwarding
performance in MSNs. Gao et al. [22] proposed the Cumu-
lative Contact Probability (CCP) as the centrality metric to
select relay nodes for multicasting in MSNs. Fan et al. [23]
proposed a centrality metric geocentrality to measure the user
density of each geocommunity inMSNs. Based on theDegree
centrality, Socievole and Rango [24] proposed a novel an
Energy-aware Centrality- based Forwarding strategy (ECF)
for MSNs. The proposed ECF protocol modulates Degree
centrality with nodes’ energy level so as to prolong the
network lifetime. To improve the opportunistic forwarding
efficiency, Yuan et al. [25] exploit the relative importance
(called partial centrality) of a node with respect to a group of
nodes, and design a new opportunistic forwarding strategy,
Opportunistic Forwarding with Partial Centrality (OFPC).
Furthermore, they also theoretically quantify the impact of
the partial centrality on the data forwarding performance
using graph spectrum. However, the current studies in MSNs
focused on measuring these centrality metrics in a certain
time interval based on the static graph that do not change
over a long period of time, they do not consider the dynamic
change of network topology. Therefore, it is not accurate to
measure the centrality of nodes in a certain time interval by
using the static network graph.

The initial attempts had tried to address this problem by
introducing the time-ordered graph. Kim and Anderson [13]
proposed temporal node centrality metrics (degree, closeness,
betweenness) that captured the temporal characteristics of
dynamic networks based on the time-ordered graph. How-
ever, social natures, movements and activity patterns which
are strongly impacted by their social relationships are not
considered in this paper. Similarly, Gao et al. [26] proposed a
temporal evolution graph model to more accurately capture

VOLUME 6, 2018 25589



H. Zhou et al.: Time-Ordered Aggregation Model-Based Centrality Metric for MSNs

FIGURE 1. Illustration of time windows in time interval [ts, te].

the topology dynamics of the mobile social network over
time. Based on the proposed model, they explore human
social relations and mobility patterns to redefine three com-
mon centrality metrics: degree centrality, closeness centrality
and betweenness centrality. Zhou et al. [27] proposed a data
forwarding strategy called TCCB based on the predicted
temporal social contact patterns, e.g., temporal closeness and
temporal centrality. Different from previous studies, in this
paper we propose a new centrality metric by exploiting the
social relationship between node pairs, and propose a more
general time-ordered aggregation model based on the time-
ordered graph for MSNs.

III. PRELIMINARIES
In this section, we will first introduce the network model
related to this paper, and then introduce the motivation of this
paper.

A. NETWORK MODEL
In this part, we introduce the network model related to this
paper. We assume that the time during which a network is
observed is finite, from ts to te. The dynamic network graph
G(ts, te) = (V ,Ets,te ) in the time interval [ts, te] consists of
a set of vertices V and a set of temporal edges Ets,te , where
stochastic contact process between a node pair i, j ∈ V on a
time interval [ta, tb] (ts ≤ ta ≤ tb ≤ te) is modeled as an
temporal edge eijta,tb ∈ Ets,te [27], [28].
In this paper, we also focus onmeasuring centrality metrics

based on the time-ordered graph. As shown in Fig. 1, the time
interval T = te−ts is divided into fixed discrete timewindows
{1, 2, . . . , n}. Here, w = T

n =
te−ts
n is used to denote the size

of each time window, expressed in some time unites (e.g.,
minutes or hours). In other words, a series of time-ordered
graph, G1,G2, . . . ,Gn can be used to represent the dynamic
network graph G(ts, te), and Gk (1 ≤ k ≤ n) represents the
k-th temporal snapshot of the dynamic network graph
G(ts, te) during the k-th time window.

B. MOTIVATION
In this part, we introduce the motivation of this paper.
To make the motivation of this paper clearly, we use a simple
example to show the difference between calculating centrality
metric based on the static graph and the time-ordered graph.
Fig. 2 shows the static graph and the time-ordered graph in
G(1, 3), and w = 1, respectively. The left side in Fig. 2 shows
the static graph in G(1, 3), and the right side in Fig. 2 shows
the time-ordered graph in G(1, 3). Unlike the static graph,

FIGURE 2. Illustration of the static graph and the time-ordered graph.

FIGURE 3. Comparison between calculating Betweeness centrality based
on the static graph and the time-ordered graph.

a series of time-ordered graphs, G1, G2 and G3 represent
temporal edge relationships among nodes A, B, C , and D.
Taking node D in Fig. 2 and Betweeness centrality as an

example, as shown in Fig. 3, it can be found that it is totally
different to calculate the Betweeness centrality based on the
static graph and the time-ordered graph. As if we calculate
using the time-ordered graph, the Betweeness centrality value
of nodeD inG1 is 1, then the aggregate Betweeness centrality
value of node D in G(1, 3) is 1, but if we calculate using
the static graph, the Betweeness centrality value of node D
in G(1, 3) is 0. Therefore, how to accurately measure the
importance of of nodes in a certain time interval is a signif-
icant problem for MSNs. In the next sections, we will first
propose a new centrality metric, and then combine it with the
proposed time-ordered aggregation model to design a time-
ordered aggregationmodel-based centralitymetric forMSNs.

IV. A NEIGHBORING RELATIONSHIP-BASED
CENTRALITY METRIC
In this section, to measure the importance of nodes in the
network more accurately, we propose a new centrality metric
named Cumulative Neighboring Relationship (CNR) based
on the neighboring relationship of pair-wise nodes for MSNs.
Centrality refers to a group of metrics that aim to quantify the
‘‘importance’’ or ‘‘influence’’ of a particular node (or group)
within a network.

InMSNs, nodes in the network usually have the knowledge
of their past contact information with other nodes, also called
contact history, e.g., inter-contact time, contact duration, sep-
arating time, and so on [29]–[31]. Since the separating time
contains both the frequency and duration of the pair-wise
contact, it will be more accurate to depict the neighboring
relationship by using the separating time, than only by using
the inter-contact time or contact duration. It is easy to find
that a shorter average separating time reflects a closer rela-
tionship. At the same time, the variance of the separating time
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FIGURE 4. Illustration of the separating time.

is also recorded to reflect the irregularity of the relationship.
Therefore, we deduce a single metric called Neighboring
Relationship (NR) based on the average separating time and
the variance of the separating time, which depicts the social
relationship between each pair of nodes in MSNs.

We use αij and βij to represent the average separating
time and the variance of the separating time between two
nodes i and j in a certain time window, respectively. A simple
example is given in Fig. 4 to show the separating time S(ij)
between two nodes i and j. Then, it is easy to obtain that
βij = [S1(ij) + S2(ij) + S3(ij)]/3, and βij = [|αij − S1(ij)| +
|αij−S2(ij)|+ |αij−S3(ij)|]/3, where S1(ij), S2(ij), and S3(ij)
are separating times between nodes i and j in the timewindow.
An exponential function is used to normalize the average

separating time in the time window, and the resulting metric
is denoted as ASep, which is expressed as:

ASepij = e1−
αij
w , (1)

An exponential function is also used to normalize the
variance of the separating time in the time window, and the
resulting metric is denoted as VSep, which is expressed as
follows:

VSepij = e
βij
w , (2)

Taking both the average separating time ASepij and the
variance of the separating time VSepij into consideration,
the Neighboring Relationship NR between two nodes i and
j is expressed as follows:

NR(ij) = ASepij − gVSepij, (3)

where g is a penalty parameter in the range of [0, 1], which
decides the penalty of the irregularity metric and should be
sufficiently small.

The above definition only considers the direct neighboring
relationship. Actually, some nodes may never encounter each
other before, so they do not have a direct neighboring rela-
tionship. However, there may exist a multi-hop path between
them, via which a data can be delivered easily. Therefore,
the definition of the neighboring relationship should not
exclude such indirect neighboring relationships. Consider-
ing the k-hop neighbors, the neighboring relationship NR
between two nodes i and j can be expressed as follows:

NR(ij) = maxp∈P{
∏

(u,v)∈p

NR(uv)}, (4)

where P is the set of k-hop paths from node i to node j, and p
is one of the paths from i to j.

The centrality value of a node measures the structural
importance of the node in the network. Nodes with higher
centrality values have stronger capability of connecting other
nodes in the network. Taking all nodes in the network into
account, a new centrality metric named Cumulative Neigh-
boring Relationship (CNR) based on the neighboring rela-
tionship of pair-wise nodes is proposed for MSNs, shown as
follows:

CNR(i) =
1

N − 1

∑
j∈V ,j 6=i

NR(ij) (5)

V. TIME-ORDERED AGGREGATION MODEL-BASED
CENTRALITY METRIC
In this section, we introduce the proposed time-ordered
aggregation model-based centrality metric TCNR, which
combines the time-ordered aggregation model with the
proposed centrality metric CNR. The time-ordered aggre-
gation model takes a variable vector CNR(i) as input
and returns a single numeric evaluation of the temporal
information contained in CNR(i). The centrality vector
CNR(i) of a node i in G(ts, te) is denoted as CNR(i) =
(CNR1(i),CNR2(i), . . . ,CNRn(i)). Then, for an input vector
CNR(i) with weight vector θ , we use TCNRG(ts,te)(i) to
represent the time-ordered aggregation model-based CNR in
G(ts, te), which is expressed as:

TCNRG(ts,te)(i)= θ1CNR1(i)+θ2CNR2(i)+ . . .+ θnCNRn(i)

= θ · CNR(i) (6)

with regularization condition
∑n

k=1 θk = n.
Based on the above equation, it can be found that the

weight vector θ is used to tune the centrality vector CNR(i)
so that centrality values in the time interval are counted
toward the value of the time-ordered aggregation method.
The sum of the weight vector over the time interval must be
equal to n. This is referred to as the regularization condition
of the weight vector. As introduced in Section I, to further
accurately evaluate the importance of nodes in a certain time
interval, a good time-ordered aggregation method will assign
larger θk to centrality values in timewindowswhich are closer
to the start time of the time interval, and assign smaller θk
to centrality values in time windows which are distant to
the start time of the time interval. Therefore, according to
the time-ordered aggregation model, three particular time-
ordered aggregation methods are proposed below to generate
weight vector θ , so as to tune the centrality vector CNR(i) in
a certain time interval.

A. AVERAGE TIME-ORDERED AGGREGATION METHOD
The main idea of the Average Time-ordered Aggregation
Method is to aggregate centrality values in each time window
by simply averaging over it. As there are n time windows in
G(ts, te), and each time window is assigned with the equal
weight, according to Eq. (6), then the expression of the Aver-
age Time-ordered Aggregation Method-based CNR is shown
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as:

TCNRG(ts,te)(i)

= CNR1(i)+ CNR2(i)+ CNR3(i)+ . . .+ CNRn(i)

=

n∑
k=1

CNRk (i) (7)

B. LINEAR TIME-ORDERED AGGREGATION METHOD
According to the definition above, the Average Time-ordered
Aggregation Method lacks the relative differences of central-
ity values in different time windows. Therefore, in this part,
the Linear Time-ordered Aggregation Method assigns differ-
ent weights to centrality values in different time windows
based on how close it is to the start time of the time interval.
It is worth noticing that centrality values in more recent time
windows should be assigned with larger weights, compared
with centrality values in more distant time windows. As a
result, the weights decrease linearly from the recent time
windows to the distant time windows in the Linear Time-
ordered Aggregation Method. For the Linear Time-ordered
Aggregation Method with n time windows, the weight vector
can be obtained as θ = (nu, (n − 1)u, . . . , 2u, u). Using
the regularization method, we can solve u = 2

1+n . Sub-
stituting it back to the weight vector, we can obtain that
θ = (n, n−1, . . . , 2, 1) 2

1+n . Based on the regularized weight
vector and Eq. (6), the expression of the Linear Time-ordered
Aggregation Method-based CNR is shown as:

TCNRG(ts,te)(i) =
2

1+ n

n∑
k=1

(n− i+ 1)CNRk (i) (8)

C. EXPONENTIAL TIME-ORDERED AGGREGATION
METHOD
The Exponential Time-ordered Aggregation Method assigns
exponentially decreased weights to centrality values in differ-
ent time windows. Similar to the Linear Time-ordered Aggre-
gation Method, centrality values in time windows which are
closer to the start time of the time interval will be assigned
with larger weights in the weight vector. Different from the
Linear Time-ordered Aggregation Method, the Exponential
Time-ordered AggregationMethod decreases the weight vec-
tor exponentially. As a result, the importance of temporal
centrality values in the Exponential Time-ordered Aggrega-
tion Method decreased more rapidly overtime than that in the
Linear Time-ordered Aggregation Method. Then, according
to Eq. (6), the definition of the Exponential Time-ordered
Aggregation Method-based CNR is shown as:

TCNRG(ts,te)(i)

= nγ n−1CNRn(i)+
n−1∑
k=1

n(1− γ )γ k−1CNRk (i) (9)

It is worth noticing that the parameter γ is in the range
of (0, 1), which controls the main exponential compo-
nent of the weight vector. It is easy to find that the sum
of the weight vector is also equal to n, which meets the

TABLE 1. Trace characteristics.

regularization condition. The weight of the first time window
is slightly different from the consequent ones. However, all
the values in the weight vector are dominated by γ k−1, which
is very large at recent time windows but decays exponentially
when γ ranges from 0 to 1.

VI. PERFORMANCE EVALUATION
In this section, we focus on evaluating the performance of the
proposed time-ordered aggregation model-based centrality
metric using different real mobility traces.

A. SIMULATION SETUP
Two real mobility traces, Infocom 06 [32] and MIT Real-
ity [33] collected from realistic environments are used to
evaluate the performance of the proposed time-ordered aggre-
gation model-based centrality metric. The Infocom 06 trace
includes 78 participants that all carry iMote nodes with Blue-
tooth interface to attend the IEEE INFOCOM 2006 confer-
ence, while the MIT Reality trace include 97 participants that
all carry Nokia 6600 in the MIT university. The traces cover
various types of corporate environments and have various
experiment periods. Some characteristics of the traces are
summarized in Table 1.

In the simulation, flooding is chosen as the routing
protocol to disseminate messages [34]. For the Exponen-
tial Time-ordered Aggregation Method, we set γ as 0.8.
To evaluate the performance of the proposed centrality, two
performance metrics are defined in this paper: the aver-
age propagation delay D(i) and the propagation ratio P(i).
D(i) is used to quantify how quickly node i can dissemi-
nate messages to all other nodes on the time interval, and
P(i) is used to quantify how many nodes node i can dis-
seminate to in the time interval, which are introduced as
follows.

1) The average propagation delayD(i): The average prop-
agation delay from node i to all the other nodes in the
choosing mobility traces, which can be computed as
follows:

D(i) =
1

| V | −1

∑
j∈V ,6=i

1
D(i, j)

(10)

2) The propagation ratio P(i): the ratio of nodes in the
network being successfully propagated by node i.

Furthermore, we compare our proposed centrality metric
with the following two temporal centrality metrics:
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FIGURE 5. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s TCNR values under different aggregation methods when the
window size is different in the MIT Reality trace. (T = 120 hours).
(a) P(i )-i ’s TCNR Values. (b) D(i )-i ’s TCNR Values.

1) The temporal degree TDegG(ts,te)(i) for a node i ∈ V on
a time interval [ts, te] is expressed as:

TDegG(ts,te)(i) =

∑n
k=1 2Dk (i)

2(| V | −1)m
(11)

where Dk (i) is the degree of node i in Gk .
2) The temporal betweeness TBetG(ts,te)(i) for a node

i ∈ V on a time interval [ts, te] is expressed as:

TBetG(ts,te)(i) =
∑

1≤k<n

∑ σk,n(s, d, i)
σk,n(s, d)

(12)

where σk,n(s, d, i) =| Pk,n(s, d, i) |, σk,n(s, d) =|
Pk,n(s, d) |. Here, Pk,n(s, d) denotes the set of tem-
poral shortest paths from source s to destination d on
the time interval [G1,Gn] and P1,n(s, d, i) denotes the
subset of Pk,n(s, d) consisting of paths that have i in
their interior.

Pearson correlation coefficient is used to test whether
D(i) (or P(i)) increases with node i’s centrality value under

FIGURE 6. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s TCNR values under different aggregation methods when the
window size is different in the Infocom 06 trace. (T = 15 hours).
(a) P(i )-i ’s TCNR Values. (b) D(i )-i ’s TCNR Values.

different situations [35], which can be expressed as:

ρX ,Y = Cor(X ,Y ) =
Cov(X ,Y )
1X1Y

(13)

where Cov is the covariance, 1X is the standard deviation
of X , and 1Y is the standard deviation of Y . It is worth
noticing that larger correlation coefficient value means the
corresponding method can better measure node’s centrality
metrics in the time interval, and vice-versa.

B. PERFORMANCE COMPARISON
In this part, we will first evaluate the performance of different
time-ordered aggregation methods-based centrality metrics,
and then compare our proposed time-ordered aggregation
model-based centrality metric TCNRwith other existing tem-
poral centrality metrics in the MIT Reality and Infocom
06 traces, respectively.
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FIGURE 7. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s TCNR values under different aggregation methods when the
simulation time is different in the MIT Reality trace.(w = 1 hour).
(a) P(i )-i ’s TCNR Values. (b) D(i )-i ’s TCNR Values.

1) DIFFERENT TIME-ORDERED AGGREGATION METHODS
In this part, we evaluate the performance of different time-
ordered aggregation methods in theMIT Reality and Infocom
06 traces, respectively.

Figs. 5 and 6 represent the average Pearson correlation
coefficients between D(i) (P(i)) and the corresponding cen-
trality values under different aggregation methods when
the window size is different in the MIT Reality and Info-
com 06 traces, respectively. Here, we use Sta. to denote
the Static Aggregation Method, Ave. to denote the Average
Time-ordered Aggregation Method, Lin. to denote the Linear
Time-ordered Aggregation Method, and Exp. to denote the
Exponential Time-ordered Aggregation Method. It is easy
to find that with the increase of the window size, correla-
tion coefficients of the Exponential Time-ordered Aggrega-
tion Method are the largest among all aggregation methods,
not only in the MIT Reality trace, but also in the Infocom
06 trace, which means that the Exponential Time-ordered
Aggregation Method can measure TCNR centrality of nodes

FIGURE 8. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s TCNR values under different aggregation methods when the
simulation time is different in the Infocom 06 trace.(w = 0.5 hour).
(a) P(i )-i ’s TCNR Values. (b) D(i )-i ’s TCNR Values.

in the time interval more accurately than other aggregation
methods. Furthermore, Sta. performs worst not only in the
MIT Reality trace, but also in the Infocom 06 trace, which
demonstrates that the time-ordered aggregation methods can
measure TCNR centrality of nodes in the time interval more
accurately than the Static Aggregation Method. It is worth
noticing that correlation coefficients of the time-ordered
aggregation methods decrease with the increase of the win-
dow size, especially Exp.. This is reasonable because if the
window size is large, the number of time windows will be
small, then the calculation of TCNR centrality in the time
interval will not be accurate. Under the extreme situation,
if the the window size is equal to the measured time interval,
then the performance of time-ordered aggregation methods is
the same as the Static Aggregation Method.

Figs. 7 and 8 represent the average Pearson correlation
coefficients betweenD(i) (P(i)) and the corresponding TCNR
centrality values under different aggregation methods when
the simulation time is different in the MIT Reality and
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FIGURE 9. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s different centrality values when the window size is different
in the MIT Reality trace.(T = 120 hours). (a) P(i )-Different Centrality
Metrics. (b) D(i )-Different Centrality Metrics.

Infocom 06 traces, respectively. Similar to the results
in Figs. 5 and 6, it can be found that with the increase of
the simulation time, the Exponential Time-ordered Aggre-
gation Method also performs best not only in MIT Reality
trace, but also in the Infocom 06 trace, which means the
Exponential Time-ordered Aggregation Method can measure
TCNR centrality of nodes in the time interval more accurately
than other aggregation methods. Moreover, correlation coef-
ficients of the time-ordered aggregation methods are much
larger than that of the Static Aggregation Method not only in
theMIT Reality trace, but also in the Infocom 06 trace, which
demonstrates that the time-ordered aggregation methods can
measure TCNR centrality of nodes in the time interval more
accurately than the Static Aggregation Method. It is worth
noticing that with the increase of the simulation time, corre-
lation coefficients of the time-ordered aggregation methods
are more stable than that of Sta., especially Exp.. The main
reason is that the Time-ordered Aggregation Model assigns
different weights to CNR values in different time windows,

FIGURE 10. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s different centrality values when the window size is different
in the Infocom trace. (T = 15 hours). (a) P(i )-i ’s different Centrality
Values. (b) D(i )-i ’s different Centrality Values.

and CNR values in time windows which are closer to the start
time of the time interval are assigned with larger weights.
Therefore, our proposed time-ordered aggregation methods
still performs well when the simulation time increases.

To summarize, the Exponential Time-ordered Aggregation
Method can measure TCNR centrality in the time interval
more accurately than other aggregation methods, not only
in the MIT Reality trace, but also in the Infocom 06 trace.
Therefore, we recommend to use the Exponential Time-
ordered Aggregation Method to measure TCNR centrality in
the time interval. Furthermore, the time-ordered aggregation
methods can measure TCNR centrality in the time interval
more accurately than the Static Aggregation Method, which
demonstrates the effectiveness of our proposed time-ordered
aggregation model.

2) DIFFERENT CENTRALITY METRICS
After evaluating the performance of different time-ordered
aggregation methods, in this part, we compare our proposed
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FIGURE 11. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s different centrality values when the simulation time is
different in the MIT Reality trace. (w = 1 hour). (a) P(i )-i ’s different
Centrality Values. (b) D(i )-i ’s different Centrality Values.

time-ordered aggregation model-based centrality metric
TCNR with other existing temporal centrality metrics in
the MIT Reality and Infocom 06 traces, respectively. Since
the Exponential Time-orderedAggregationMethodmeasures
TCNR centrality in the time interval more accurately than
other time-ordered aggregationmethods, we choose to use the
Exponential Time-ordered Aggregation Method-based CNR
to represent our proposed time-ordered aggregation model-
based centrality metric TCNR.
Figs. 9 and 10 show the average Pearson correlation coef-

ficients between D(i) (P(i)) and the corresponding values
of different centrality metrics when the the window size is
different in the MIT Reality and Infocom 06 traces, respec-
tively. It can be found that with the increase of the window
size, TCNR performs much better than the temporal degree
centrality and the temporal betweeness centrality, and the
temporal degree centrality performs worst in the MIT Reality
trace. The main reason is that our proposed TCNR centrality
takes both the neighbouring relationship of pair-wise nodes

FIGURE 12. The average Pearson correlation coefficients between P(i )
(D(i )) and i ’s different centrality values when the simulation time is
different in the Infocom 06 trace. (w = 0.5 hour). (a) P(i )-i ’s different
Centrality Values. (b) D(i )-i ’s different Centrality Values.

and the time-ordered aggregation model into consideration.
It is worth noticing that TCNR in the Infocom 06 trace does
not perform as well as that in the MIT Reality trace. Corre-
lation coefficients of TCNR is larger than that of TBet and
TDeg only when the window size is small (w = 0.5 hour),
and the performance of TCNR decreases rapidly when the
window size increases in the Infocom 06 trace. The main
reason is that TCNR is based on the neighbouring relationship
of pair-wise nodes, but neighbouring relationship of pair-
wise nodes is not obvious in Infocom 06 trace. As introduced
above, the Infocom 06 trace is collected by volunteers who
attending the IEEE INFOCOM2006 conference, and theMIT
Reality trace is collected by teachers and students in the MIT
campus. Volunteers who attending the conference are more
likely to seek out new colleagues to talk to at the breaks
between sessions, rather than socializing with the same peo-
ple. However, teachers and students in the MIT campus are
more likely to meet the same people when they are taking
classes or walking in the campus. Therefore, it is harder to
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depict the neighbouring relationship of pair-wise nodes in the
Infocom 06 trace than in the MIT Reality trace.

Figs. 11 and 12 show the average Pearson correlation coef-
ficients between D(i) (P(i)) and the corresponding centrality
values under different centrality metrics when the simulation
time is different in the MIT Reality and Infocom 06 traces,
respectively. Similar to the results in Figs. 9 and 10, with
the increase of the simulation time, TCNR also performs
much better than the temporal degree centrality and the tem-
poral betweeness centrality in the MIT Reality trace, and
correlation coefficients of the TCNR are more stable than
that of TBet and TDeg. Furthermore, TCNR and the tem-
poral betweeness centrality both perform well in the Info-
com 06 trace. Although the temporal betweeness centrality
outperforms TCNR under some situations in the Infocom
06 trace, correlation coefficients of TCNR is very close to
that of TBet in the Infocom 06 trace. As shown in Fig. 12,
with the increase of the simulation time, the average Pearson
correlation coefficients of TCNR are larger than 0.9.

To summarize, although under some situations, the tem-
poral betweeness centrality outperforms our proposed cen-
trality metric TCNR in the Infocom 06 trace, but correlation
coefficients of TCNR is very close to that of TBet in the
Infocom 06 trace, and TCNR performs much better than the
temporal degree centrality and the temporal betweeness cen-
trality in theMITReality trace. Therefore, our proposed time-
ordered aggregation model-based centrality metric TCNR
outperforms the temporal degree centrality and the temporal
betweeness centrality, which demonstrates the effectiveness
of our proposed centrality metric.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we first introduced a new centrality metric
named Cumulative Neighboring Relationship (CNR) based
on the neighboring relationship of pair-wise nodes for MSNs.
Then, we introduced a time-ordered aggregation model,
which reduces a dynamic network to a series of time-ordered
networks. Based on the time-ordered aggregation model,
we proposed three particular time-ordered aggregation meth-
ods: the Average Time-ordered AggregationMethod, the Lin-
ear Time-ordered Aggregation Method, the Exponential
Time-ordered Aggregation Method, and combined with our
proposed centrality metric CNR to measure importance of
nodes in a certain time interval. Extensive trace-driven sim-
ulations are conducted to evaluate the performance of our
proposed time-ordered aggregation model-based centrality
metric TCNR. The results show that the Exponential Time-
ordered Aggregation Method can measure TCNR centrality
in the time interval more accurately than other aggregation
methods, not only in the MIT Reality trace, but also in
the Infocom 06 trace. Therefore, we recommend to use the
Exponential Time-ordered Aggregation Method to measure
TCNR centrality metrics in the time interval. Furthermore,
the proposed time-ordered aggregation model-based central-
ity metric TCNR outperforms other existing temporal cen-
trality metrics, which demonstrates the effectiveness of our

proposed time-ordered aggregation model-based centrality
metric TCNR. In the future, we plan to combine our pro-
posed time-ordered aggregation model-based centrality met-
ric TCNR with other social network analysis technologies to
design efficient routing protocols for MSNs.
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