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ABSTRACT Complex event processing (CEP) is a cutting-edge technology for analyzing and correlating
streams of information about events that happen in a system, and deriving conclusions from them. CEP
permits defining complex events based on the events produced by the incoming sources, to identify complex
meaningful circumstances and to respond to them as quickly as possible. Such event types and patterns are
defined using event processing languages. However, as the complexity of CEP programs grows, they become
difficult to understand and to prove correct. This paper proposes a formal framework for the specification
of CEP applications, using rewriting logic and Maude, to allow developers to formally analyze and prove
properties of their CEP programs. Several case studies are presented to illustrate the approach, as well as a
discussion on the benefits of using Maude and its toolkit for modeling and analyzing CEP systems.

INDEX TERMS Formal modeling, complex event processing, event processing language, rewriting logic,

Maude.

I. INTRODUCTION
Complex Event Processing (CEP) is gaining acceptance in
real-time distributed environments as a powerful technol-
ogy for analyzing and correlating streams of information
about events that happen, and deriving conclusions from
them [1]-[4]. CEP is becoming very relevant in many dif-
ferent contexts such as the Internet of Things [5], [6],
where many applications should process and react to events
arriving from various kinds of sources including distributed
sensors, wireless sensor and RFID networks, GPS, social
media, etc. Other examples of these kinds of applications
include monitoring systems for critical infrastructures [7],
health care systems [8], inventory control and manufactur-
ing applications [9], environmental monitoring [10], [11],
stock market analysis [12], network analysis and surveil-
lance [13], or social media data aggregation [14], [15].
Unlike other stream processing systems, CEP permits defin-
ing complex events or patterns on top of the basic primi-
tive events, to identify complex meaningful circumstances
and respond to them as quickly as possible. Such event
types and event patterns are defined using Event Processing
Languages (EPLs).

The wide adoption of CEP systems has also introduced
some challenges to these kinds of approaches. In the first

place, the complexity of CEP programs is significantly grow-
ing, and hence they are becoming more difficult to under-
stand, maintain and prove correct. There is the need to check
for the occurrence of semantic errors in the event patterns
definitions, and to validate that CEP programs behave as
expected—e.g., they properly identify the events of interest
to the system developer and no others, or that they do not
miss any relevant event. The design of CEP programs still
remains a challenging and error-prone task, since it requires
developers to consider complex pattern dependencies and
interactions [16]. The composition of CEP programs repre-
sents another challenge: what is the expected behavior of a
CEP application when two or more programs are integrated
to form a bigger one, or when new patterns are added to
an existing CEP system? Finally, we also need to conduct
some behavioral analysis on a CEP application prior to its
deployment, such as simulation, to detect design errors and
any other semantic anomalies so frequent in systems that
exhibit stochastic behaviors.

In this paper, we investigate the use of rewriting logic [17],
and its implementation in Maude [18], for giving seman-
tics to CEP programs. Using Maude as a target semantic
domain brings remarkable benefits, since Maude spec-
ifications are executable and permit multiple analyses,
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including simulation. In particular, we propose a formal
encoding of CEP concepts and mechanisms in Maude, which
allows developers to formally analyze and prove properties of
their CEP systems using the Maude toolkit. Several kinds of
analyses are presented, both covering the static properties of
the CEP patterns (acyclicity and confluence) and the statisti-
cal simulation of such systems.

Our approach is illustrated with a running example from
the automotive industry, which process events coming from
sensors of a motorbike (tire pressure, speed, location, etc.).
We also discuss other systems that we have used to validate
our proposal.

The structure of the paper is as follows. After this intro-
duction, Sections II and III introduce CEP systems and
Maude, respectively. Section IV describes our encoding of
CEP concepts and mechanisms in Maude, and how to specify
CEP applications using this representation. Section V shows
the kinds of analyses that our proposal enables, and how
to conduct them. This section also describes the validation
experiments we have performed to assess the expressiveness,
strengths and limitations of our proposal. Finally, Section VI
relates our work to other similar approaches and Section VII
concludes and outlines some future lines of work.

Il. COMPLEX EVENT PROCESSING

CEP [2], [3] is a form of Information Processing [1] whose
goal is the definition and detection of situations of interest,
from the analysis of low-level event notifications (also called
raw events) [16]. Following the Event Processing Technical
Society [19], we use the simple events term to refer to the
low level primitive event occurrences, and complex events
to those that summarize, represent, or denote a set of other
events. Derived events are a particular kind of complex
events, which are generated as a consequence of applying
a process or method to one or more other events. In sum-
mary, CEP systems analyze streams of simple events to detect
occurrences of complex events, which represent the high-
level situations of interest to the CEP modeler, using declar-
ative patterns that define the complex (derived) events from
other simple or complex events, their content, and temporal
relations.

Although several CEP systems and languages exist, they
all share the same basic concepts, mechanisms and struc-
ture. These will be briefly introduced below, using a running
example. The description of CEP concepts and mechanisms
is made in general, but for clarity we will write the rules
in one particular EPL, called Esper EPL [20], which is a
representative example of the EPLs that extend SQL to define
CEP events and patterns. This section is not intended to serve
as an Esper tutorial; the interested reader can consult the
language documentation for particular details.

A. RUNNING EXAMPLE

Let us assume a fleet of motorbikes equipped with sensors
that produce real-time information about their state, including
the pressure of their two tires, their location and speed, and
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whether the driver is on the seat or not. We are interested in
monitoring them, being able to detect in real time flat tires,
vehicle crashes or accidents. In particular, we are interested
in the following complex events:

o BlowOutTire: The pressure of one of the tires of a
moving motorbike goes down from more than 2.0 BAR
to less than 1.2 BAR in less than 5 seconds.

o Crash: The speed of a motorbike goes from more than
50 km/h to 0 km/h in less than 3 seconds.

o DriverLeftSeat: The seat sensor detects that the motor-
bike driver has left the seat.

« Accident: A moving motorbike suffers a blow out of one
of its tires, then a Crash event is detected, and the driver
is thrown out, everything within less than 3 seconds.

o AccidentsReport: A complex event with the number of
Accidents per day and location.

« DangerousLocation: This event is raised every time
100 events of type Crash are detected in a given
location.

B. EVENTS

In CEP, every event (simple or complex) has a rype and a set of
attributes. Events happen instantaneously, and they all have
an attribute timestamp with information about the moment in
time at which they occur.

For example, simple events of type Mot orbike with the
information received from the sensors are represented by
tuples with the information about the timestamp, the motor-
bike id, the name of the current location, the speed in Km/h,
the pressure of the two tires measured in BARs, and whether
the driver is on the seat or not. Listing 1 shows examples
of these simple events. Timestamps are expressed using the
POSIX time convention, which is roughly the number of sec-
onds that have elapsed since January 1, 1970 [21].

Motorbike (1488326400,1,"Cadiz" ,100,3.1,3.1,true)
Motorbike (1488326401,1,"Cadiz" ,90,3.1,3.1,true)
Motorbike (1488326402,2,"Malaga" ,62,3.01,3.01,true)
Motorbike (1488326402,1,"Cadiz" ,0,3.1,3.1,true)
Motorbike (1488326403 ,2,"Malaga" ,70,3.01,3.01,true)
Motorbike (1488326403,1,"Cadiz" ,0,3.07,3.07 ,false)

LISTING 1. Examples of Mot orbike simple events.

C. PATTERNS

A CEP pattern defines a complex event, by means of a pattern
that combines other events. Whenever the pattern is detected
in the stream (i.e., it is satisfied by the stream events),
the complex event is created. In the rest of this section, we will
identify and describe the most basic and representative types
of CEP patterns.

1) SELECTION PATTERNS

The simplest pattern permits creating complex events every
time a given simple event is detected. For example, the pattern
in Listing 2, named GhostRider, creates a GhostRider
event every time a motorbike is detected to be moving and
with no driver on top.
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@Name ( 'GhostRider')
insert into GhostRider
select e.timestamp as timestamp,
e.motorbikeId as motorbikeId
from pattern [every
e = Motorbike(e.seat=false and e.speed>0)]

LISTING 2. GhostRider pattern.

The use of the every operator ensures that a
GhostRider event is created every time a Motorbike
event satisfies the pattern. Otherwise only one complex
event will be created the first time a simple event satisfies
the pattern. In the pattern, label e is an alias that refers
to an expression (in this case, the Motorbike event that
has occurred) that can be used in other sub-expressions.
Event GhostRider defines two attributes, t imestamp
and motorbikeId, whose values are taken from those of
the Motorbike event that has triggered the creation of the
GhostRider event.

2) WINDOWS

We can assign windows to patterns, restricting their scope.
Windows could refer to specific time intervals or number
of occurrences of particular events. For example, Listing 3
shows the pattern AccidentsReport, which creates an
event with the number of accidents that have happened daily
in one location.

@Name ('AccidentsReport')
insert into AccidentsReport
select current_timestamp() as timestamp,
al.location as location,
count (%) as count
from pattern [every al = Accident].
win: time_batch (86400 seconds)
group by al.location

LISTING 3. AccidentsReport pattern.

It uses a batch time window whose starting and end-
ing points are fixed. In this case, it is triggered every day
(86400 seconds). As in SQL, the query is grouped according
to its location by means of the group by operator in the
pattern.

We can also define sliding time windows whose ending
time is the T timestamp of the event being considered, and
its starting time is T—L, being L the duration of the window.

Similarly, event windows permit referring to sets of
particular events of a given size (the window size),
e.g. every 100 accidents. Event windows can be either
batch or sliding, too. For example, in Listing 4, the pattern

@Name ( 'DangerousLocation')

insert into DangerousLocation

select current_timestamp() as timestamp,
al.location as location

from pattern [every al = Crash(al.location="Cadiz")]
.win:length_batch (100)

group by al.location

LISTING 4. DangerousLocation pattern.
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DangerousLocation uses a batch window of size 100 to
raise this kind of event, signaling a location as dangerous.

3) TEMPORAL SEQUENCING OF EVENTS
An important CEP operator is followedBy (“->""), which
introduces a temporal ordering between two events. Events
related by this operator do not need to be consecutive:
“A -> B” only implies that event A occurs some time
before B, i.e., the timestamp of A precedes that of B.

For instance, the pattern in Listing 5 creates an event of
type DriverLeftSeat every time the seat of a motorbike
is left by the driver, i.e., its state changes from true to false.

@Name ( 'DriverLeftSeat')
insert into DriverLeftSeat
select current_timestamp() as timestamp,
a2.motorbikelId as motorbikeld,
a2.location as location
from pattern [every
(al = Motorbike(al.seat = true)
—> a2 = Motorbike((a2.seat = false)
and (al.motorbikeId = a2.motorbikeId))]

LISTING 5. DriverLeftSeat pattern.

4) PATTERN COMBINATION

Event patterns can be combined in different ways by using
logical operators (OR, AND, etc.) and temporal connectors
(Until, While, etc.), among others. In addition, windows
can be combined restricting their scope. This is needed, for
instance, to specify the pattern Crash shown in Listing 6.

@Name ( 'Crash')

insert into Crash

select current_timestamp() as timestamp,
a2.motorbikeId as motorbikeld,
a2.location as location,
al.speed as initialSpeed,
a2.speed as finalSpeed

from pattern [every
al = Motorbike(al.speed >= 50)
—> a2 = Motorbike((a2.speed = 0) and
(al.motorbikeId = a2.motorbikeId))
where timer:within(3 seconds) ]

LISTING 6. Crash pattern.

The t imer :within expression permits limiting the pat-
tern lifetime, requiring the second event to follow the first one
within 3 seconds.

5) HIGHER-ORDER EVENTS

Higher-order complex events can be defined when the pattern
that specifies the event makes use of other previously defined
complex events. This is needed, for instance, to produce
events of type Accident (Listing 7), which are defined
using three complex events (BlowOutTire, Crash, and
DriverLeftSeat) that were added to the stream by pre-
vious patterns.

The pattern in Listing 7 uses the every—-distinct
operator, which behaves like every but selecting only one
unique occurrence of the events that fulfill the condition.
It also shows a sequence of followedBy operators.
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@Name ('Accident')

insert into Accident

select current_timestamp() as timestamp,
a3.motorbikeld as motorbikeld,
a3.location as location

from pattern [every—distinct
(al.motorbikeId, al.timestamp)
al=BlowOutTire
—> (a2=Crash(al.motorbikeId=a2.motorbikeId)
—> a3=DriverLeftSeat(al.motorbikeld=
a3.motorbikeId))
where timer:within(3 seconds)]

LISTING 7. Accident pattern.

lll. MAUDE

Maude [18] is a high-level language that integrates an equa-
tional style of functional programming with rewriting logic
computation. It supports membership equational logic and
rewriting logic specification of systems [22], and provides
an efficient interpreter able to execute different kinds of
specifications. This section briefly describes those features
needed for understanding the paper; the interested reader is
referred to [18] for further details.

Rewriting logic [17] is a logic very appropriate for the
specification of concurrent computations. Within this scope,
a system is axiomatized by a rewrite theory (X, E, R), where
(X, E) is an equational theory describing its set of states in
terms of an algebraic data type associated to an initial algebra
(X, E), and R is a collection of rewrite rules. Maude’s under-
lying equational logic is membership equational logic [23],
a Horn logic whose atomic sentences are equalities ¢t =
and membership assertions of the form ¢ : §, stating that a
term ¢ has sort S.

For example, Maude module NAT in Listing 8 defines
the natural numbers (with sorts Nat of natural numbers and
NzNat of nonzero natural numbers), using the Peano nota-
tion. Operations zero (0) and successor (s_) act as construc-
tors for the type (note the [ctor] attribute). The behavior
of the sum operation (_+_) is specified by two equational
axioms on the constructors. Note the use of the mixfix syn-
tax in the definition of operators s_ and _+_ (underscores
indicate placeholders for arguments).

fmod NAT is
sorts NzNat Nat .
subsort NzNat < Nat .

op 0 : —> Nat [ctor] .
op s_ : Nat —> NzNat [ctor] .
op _+_ : Nat Nat —> Nat [assoc comm] .
vars M N : Nat .
eq O + N =N
eq s M+ s N=s (M+ N)
endfm

LISTING 8. Example of a module.

If a functional specification is terminating, confluent, and
sort-decreasing, then it can be executed [24]. Maude uses
the equations as simplification rules from left to right, until
a canonical form is found. Some operator attributes can
be used to express some common properties of the opera-
tions being specified, such as associativity (assoc), com-
mutativity (comm), identity (id), and idempotence (idem).
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Maude performs simplification using the equational theories
provided by such attributes. The above specifications must
therefore be understood in the more general context of sim-
plification modulo such equational theories.

Rewrite rules are written as “crl [L] T => T’
if Cond’, where L is the rule label, T and T’ are terms,
and Cond is a condition. These rules describe the local,
concurrent transitions that are possible in the system. Then,
whenever a part of the system state fits the pattern 7', then
it can be replaced by the corresponding instantiation of 7'.
The guard Cond serves as a blocking precondition, i.e., a
conditional rule can be fired only if its condition holds.

If more than one rule can be triggered at one moment in
time, the system can nondeterministically select any of them.

Conditions are written as “EqCond /\ ... /\ EqCond,,”
where each of the EqCond; is either an ordinary equation
t = t', amatching equation t := t’, a sort constraint 7 : s, or a
term ¢ of sort Bool, abbreviating the equation ¢t = true.
In the execution of a matching equation ¢ := ¢/, the variables
of the term ¢ become instantiated by matching it against the
canonical form of term #’. These conditions are commonly
used in our approach to define the guards of the Maude rules,
which represent the corresponding CEP patterns.

A. OBJECT-ORIENTED SPECIFICATIONS: FULL MAUDE
Maude also supports the specification of object-oriented
concurrent systems. Classes are defined using the syntax
class C | a1:S81, ..., a,:S,, where C is the class name,
a; are the attribute names, and S; their types. Objects of a class
C are structures of theform< O : C | ay:vi, ..., ay:vy >,
where O is the name of the object, and v; are the values of its
attributes.

With this, the state of a system has the structure of a
bag of objects. Maude’s predefined sort Configuration
represents these bags of Maude objects, with none as empty
configuration and the empty syntax operator “___’’ as union
of configurations, as can be seen in Listing 9.

sort Configuration .

subsort Object < Configuration .

op none : —> Configuration [ctor] .

op __ : Configuration Configuration —>
Configuration [ctor assoc comm id: none] .

LISTING 9. Maude’s sort Configuration.

The state of the system evolves by the effect of the rewrit-
ing rules, which describe the permitted transitions between
configurations.

For example, Listing 10 shows a module BANK that spec-
ifies a class Account, with an attribute balance of sort
integer (Int) that represents the current balance. Another
class Withdraw models the action of a money withdrawal;
its attributes are the object identifier (of sort 0id) of the sub-
ject account, and the amount to withdraw. A conditional rule
describes the behavior of the system. Rule debit specifies
a local transition when the system has an object A of class
Account and a Withdraw object requesting to withdraw
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(omod BANK is

class Account | balance : Int .

class Withdraw | acc : 0id, amount : Int .
vars A W : 0id .

vars M Bal : Int .

crl [debit] :

< W : Withdraw | acc : A, amount : M >

< A : Account | balance : Bal >
=> < A : Account | balance : Bal — M >
if M <= Bal .
endom )

LISTING 10. Example of rewriting rules.

an amount smaller or equal than the balance of A; as a result
of the application of such a rule, the object representing
the action is consumed, and the balance of the account is
modified.

B. TIMED SPECIFICATIONS: REAL-TIME MAUDE
Real-Time Maude [25] is an extension of Maude for the
formal specification of distributed object-oriented real-time
systems. Sort Time specifies time domain, which can be
considered a commutative monoid (Time, 0, +, <). Some
predefined modules specifying useful time domains, namely
natural numbers and nonnegative rational numbers, are pro-
vided too. These modules define a supersort TimeInf that
extends the sort Time with an infinity value INF.

The state of a system is represented in Real-Time Maude by
terms of sort System. The user may specify the data type of
time values as considered most appropriated. Therefore, time
can be either discrete, which is recommended to specify real-
time systems, or dense, which is often used to model hybrid
systems.

One common way of specifying how the system evolves
with time, is in terms of operations delta and mte [25].

The delta operation determines, for each object in the
given configuration, its evolution after a period of time has
passed. The second operation, mt e (maximum time elapse),
determines the maximum amount of time within which no
timed action occurs in the system.

Given delta and mte operations, a unique [tick] rule
is enough to manage time (see Section IV-B). The user needs
to give equations for the delta and mte operators on those
objects affected by the passage of time.

IV. ENCODING CEP APPLICATIONS IN MAUDE

This section describes how CEP concepts and mechanisms
are encoded in Maude, and how to specify CEP applications
using this representation. These encodings will be explained
in the following subsections, and illustrated with the concrete
Motorbike example.

A. STRUCTURAL ASPECTS

1) EVENTS

Given the nature of CEP events, they can be naturally mod-
eled by objects instances, which also have a type (given by
the class they belong to) and a set of attributes (defined in
their classes, too). In our approach, all events (simple and
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complex) will inherit from class Event (Listing 11), which
also provides an operation ts () to get its timestamp.

class Event | ts : Time .
op ts : Object —> Time .
eq ts(< 0 : Event | ts : T >) =T .

LISTING 11. Class Event.

Example: The (simple) events produced by a motorbike
can be simply modeled by class Motorbike (Listing 12).
This class inherits from Event and defines several attributes,
which faithfully correspond to the ones defined for the CEP
event it represents. The rest of the events are defined similarly.

class Motorbike |

id : Int,

location : String,
speed : Int,

seat : Bool,
tirePressurel : Rat,
tirePressure2 : Rat .

subclass Motorbike < Event .

LISTING 12. Class Motorbike.

2) EVENT STREAMS

Class Stream (Listing 13) represents streams (an applica-
tion can deal with more than one stream), as a list of events.
Operation insert () inserts objects in that list, ordered by
their timestamps.

class Stream | events : List{Object} .
op insert : Object List{Object} —> List{0Object} .
eq insert (0B, nil) = 0B .
eq insert (0B1, (L ; 0B2)) =
if ts(0B1) > ts(0B2) then L ; 0B2 ; O0B1
else insert(0B1, L) ; 0B2
fi .

LISTING 13. Class Stream.

3) EVENT FACTORIES

One significant feature of our proposal is that all kinds of
events have an associated factory object. In case of simple
events, their factories can be used to read them from external
sources and to add them to the stream of Maude objects
that represent them; or to generate their instances in case we
want to simulate their occurrences (see Section V). In the
case of complex events, factory objects are used to specify
the metadata used in the rules that create them: window
duration or length, etc.

There are three kinds of factory objects depending on the
kind of window defined for the event: HistoryFactory,
SizeFactory and TimedFactory. The first two are
used for (resp. time and size) sliding windows. The third
one is used for batch time windows. Listing 14 shows their
specifications.

4) CEP SYSTEM
The complete system is modeled by a configuration of objects
whose behavior is dictated by the Maude rules. In that
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class HistoryFactory |

startTime : Time, ***x starting time

windowLength : Time, *** duration of the window

lastEvent : Time . **x last event detected
class SizeFactory |

startTime : Time, ***x starting time

windowLength : Int, *** # events in the window

lastEvent : Time . **x last event detected
class TimedFactory |

wakeUpAt : Time . *%* when to wake up again

LISTING 14. Factory classes.

configuration, there is always one Counter object, used to
create fresh object identifiers, and one Clock object. Their
specification is shown in Listing 15.

sort System .

op ‘{_"} : Configuration —> System .

class Counter | n : Int . *xx To create fresh ids
class Clock | time : Time . *** Global clock

LISTING 15. Sort system.

B. TIME MODEL

Time is represented using the Real-Time Maude approach.
Rule [tick] advances the clock to the next moment in
time (defined by NOW + T) when an action is scheduled
(see Listing 16 below). The value of T is calculated by the
mte operation. As we can see, mte only needs to consider
TimeFactory objects, calculating the next time one of
these factory objects has to be awakened. The rest of the
objects are not affected by time, as we shall later see, and
therefore operation de1ta is not needed.

crl [tick] : { Conf < C : Clock | time : NOW > }
=> { Conf < C : Clock | time : NOW + T > }
if T := mte(Conf, NOW) /\ T > 0 .

op mte : Configuration Time —> Time .

eq mte (< 0 : TimedFactory | wakeUpAt : T1 > Conf, T2)
= min( T1 — T2 , mte(Conf, T2) ) .
eq mte (Conf, T) = INF [owise]

LISTING 16. Rule tick.

Note that CEP modelers using our encoding do not need
to worry about the time infrastructure, only use the Clock
object in the Maude rules that represent their CEP patterns.

C. CEP PATTERNS
In our approach, every CEP pattern is mapped to one or more
Maude rules, each one in charge of identifying the events that
trigger the pattern—as specified in the left-hand side (LHS)
of the rule—and the effects of such a pattern—as described
in the right-hand side (RHS) of the Maude rule.

The concrete structure of the Maude rule will depend on
the kind of CEP pattern being represented, as discussed next.

1) CEP PATTERNS WITH BATCH WINDOWS
These are the simplest rules, which follow the general struc-
ture described in Listing 17.

The rule is triggered when the wakeup time indicated by the
event factory object coincides with the current time (NOW),
and the conditions of the event (as indicated in the i f clause)
are met. Note the use of variable assignment in the condition
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crl [Event—X] :

< C : Clock | time : NOW >
< CO : Counter | n : N >

< S : Stream | events : L >

< F : X-Factory | , wakeUpAt : NOW >
=> < C : Clock | time : NOW >
< CO : Counter | n : N + 1 >
< 8 : Stream | events :
insert( < N+ 1 : X | ..., ts : NOW >, L ) >

< F : X—Factory | NOW + T >

if T := ... /\

, wakeUpAt :

LISTING 17. Rule structure for batch window patterns generating event x.

section (i ), which also permits computing the value of state
variables. The event is inserted in the stream, and the new
wake up time is set in the factory object. Such a wakeup time
is set to the length of the window, hence acting as a timer.
Once the wakeup time indicated by the event factory object
coincides with the current time (NOW), the rule explores the
events of the stream in the time interval, and generates the
complex event (if appropriate).

Example: Listing 18 shows Maude rule [Accidents-
Report], which creates an AccidentsReport event
with the number of Accident events that have happened
in a location in the last 24 hours (i.e., 86,400 seconds).

rl [AccidentsReport] :
< C : Clock | time : NOW >
< CO : Counter | n : N >
< S8 : Stream | events : L >
< F : AccidentsReportFactory | location : S1,
wakeUpAt : NOW >
: Clock | time : NOW >
< CO : Counter | n : N + | >
< S : Stream | events : insert(
< N + 1 : AccidentsReport | location : S1,
num : getAccidents(L, S1, NOW — 86400, NOW),
ts : NOW >, L ) >
< F : AccidentsReportFactory | location : S1,
wakeUpAt : NOW + 86400 > .

LISTING 18. AccidentsReport rule.

It uses the Clock object to check that the sys-
tem time (NOW) coincides with the time at which
AccidentsReportFactory object—a subclass of
TimedFactory—was supposed to wake up. If so,
it looks for Accident events in the stream using the
getAccidents () operation and inserts an Accidents—
Report event in the stream with that number. Moreover,
the Accident sReportFactory object is reprogrammed
to wake up 24 hours later. There will be one factory per
location, hence the presence of attribute 1ocation in the
factory. All factories will be created in the initial model of
the system (see next subsection).

Let us show here the definition of operation
getAccidents (), whose parameters are a stream, a loca-
tion, and an interval of time defined by two time moments.
It returns the number of Accident objects that exist in the
stream for that location within that time interval. The Maude
code is shown in Listing 19.

2) CEP PATTERNS WITH NO WINDOW
Some CEP patterns are aimed to detect circumstances that
happen in the event stream, but with no time restriction.
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op getAccidents : List{Object} String Time Time —> Int .
eq getAccidents ( nil, S1, T1, T2 ) =0 .
eq getAccidents ( (< 0 : Accident |

ts : T, location : S1 > ; L), S1, T1, T2 ) =

if (T >= T1) and (T < T2) then

1 + getAccidents ( L , S1, T1, T2 )

else getAccidents ( L , S1, T1, T2 )

fi
eq getAccidents ((0B ; L), S1, T1, T2) =

getAccidents ( L , S1, T1, T2 ) [owise]

LISTING 19. Operation getAccidents ().

For example, the occurrence of a particular event, or a
state change. For representing them, we make use of
HistoryFactory objects, using the general structure
shown in Listing 20.

crl [Event—Z]
< CO : Counter | n : N >
< S : Stream | events : L >

< F : Z-Factory | ., startTime : TO, lastEvent : TLE >
=> < CO : Counter | n : N + 1 >
< 8 : Stream | events :
insert( < N+ 1 : Z | ..., ts : T1 >, L ) >

< F : Z-Factory | startTime : T1 + 1, lastEvent : T1 >

if
0B1 ; L1 := checkForZ( L, M, TO ) /\
T1 := ts(0B1)

LISTING 20. Structure of a rule representing a CEP pattern with no
window.

Note that they do need the Clock object, because they
traverse the stream independently of time. When the expected
situation is found, the complex event is generated and inserted
in the stream, and the pointer to the stream that indicates
the position from where to start next time (startTime)
is updated. In order to coordinate with the rest of the rules,
which are also exploring the stream, attribute lastEvent
serves as a pointer to the last event that the rule has analyzed
(see Section IV-C.4).

Example: An example of a CEP pattern that involves a fol-
lowedBy operator but with no time restriction corresponds to
event DriverLeftSeat, that happens every time a driver
leaves the seat (Listing 21).

crl [DriverLeftSeat]
< CO : Counter | n : N >
< S : Stream | events : L >
< F : DriverLeftSeatFactory | motorbikeId : M,
startTime : TO, lastEvent : TLE >
=> < CO : Counter | n : N + 1 >
< S : Stream | events : insert(
< N + 1 : DriverLeftSeat | motorbikeId : M,
location : S2, ts : T2 >, L ) >
< F : DriverLeftSeatFactory | motorbikelId : M,

startTime : T1 + 1, lastEvent : T1 >
if
0B1 ; L1 := filterSeated( L, M, TO ) /\
T1 := ts(0B1) /\
0B2 ; L2 := filterUnseated( L1, M, T1 ) /\
T2 ts(0B2) /\

S2 := loc(0B2)

LISTING 21. DriverLeftSeat rule.

This Maude rule checks for events where the driver was
seated, followed by events where the driver was not seated.
This is done in the guard of the action (i ), using operations
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filterSeated() and filterUnseated (). The first
one traverses the stream looking for the first event in which
motorbike M has its driver seated, and whose timestamp (T1)
is greater than TO (the starting time indicated in the factory
event). Then, the second operation looks for the first event
where the driver of motorbike M is unseated, and whose times-
tamp (T2) is greater than T1. If both events exist, a complex
event DriverLeftSeat is added to the stream, and the
rule is reprogrammed with the new starting time T1 + 1.
As above, there should be a DriverLeftSeatFactory
object per motorbike.

Operation filterSeated() is  shown in
Listing 22 for illustration purposes. The specification of
filterUnseated () operation is similar.

op filterSeated : List{Object} Int Time —> List{0Object} .
eq filterSeated ( nil, M, T ) = nil .
eq filterSeated ( (< 0 : Motorbike |
ts : T1l, seat : true, id : M > ; L), M, T ) =
if (T1 >= T) then
< 0 : Motorbike | ts : T1, seat : true, id : M > ; L
else filterSeated (L, M, T)
fi .
eq filterSeated ( (OB ; L) , M, T ) =
filterSeated ( L, M, T ) [owise]

LISTING 22. Operation filterSeated.

3) CEP PATTERNS WITH SLIDING WINDOWS

These kinds of patterns are also represented by Maude rules
that use HistoryFactory objects. Listing 23 shows the
common structure of these kinds of rules.

crl [Event—Y]

< CO : Counter | n : N >

< S : Stream | events : L >

< F : Y-Factory | , startTime : TO,
windowTimeLength : T, lastEvent : TLE >

=> < CO : Counter | n : N + 1 >
< S : Stream | events : if (...) then
insert( < N+ 1 : Y | ..., ts : T2 >, L )
else L fi >
< F : Y-Factory | ..., startTime : T1 + 1,

windowTimeLength : T, lastEvent : T1 >
if

LISTING 23. Sliding window rule structure.

Whenever triggered, they explore the stream starting from
the moment indicated by st art T ime attribute of the factory
object, looking for the first event that satisfies the pattern.
Once found, the rule checks for the rest of the conditions
until the end of the window (whose length is indicated by
the windowLength attribute). After exploring that window,
the rule updates the values of the next window to explore, and
inserts the event in the stream, if appropriate.

Note that these rules are not affected by time. We could
have modeled them using timers, but we realized that this
might require the clock to stop in almost every time unit.
In this way, we always explore the stream starting from the
first event that could satisfy the pattern. As in the previous
rules, attribute 1astEvent points to the last event that the
rule has analyzed.
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Example: One interesting example of a pattern that requires
the use of a sliding window is the one that detects Crash
events. Here, the Maude rule has to detect a motorbike driving
ata speed above 50 km/h, followed by another event where the
speed of that motorbike is 0, in a window of 3 seconds.

Unlike in previous cases, we use two Maude rules to
encode that CEP rule. The first one (presented in Listing 24)
is the obvious one that finds the event.

crl [Crashl] :

< C : Clock | time : NOW >

< CO : Counter | n : N >

< S : Stream | events : L >

< F : CrashFactory | startTime : TO,

motorbikeId : M, windowTimeLength : T,

lastEvent : TLE >

: Clock | time : NOW >

< CO : Counter | n : N + 1 >

< S : Stream | events : insert(
< N+ 1 : Crash | motorbikeId : M,

initialSpeed : X1, ts : T2 >, L ) >

< F : CrashFactory | startTime : T1 + 1,
windowTimeLength : T, motorbikeId : M,
lastEvent : T1 >

0B1 ; L1 := filterSpeedGE(L, 50, M, TO) /\
T1 := ts(0B1) /\
0B2 ; L2 := filterSpeedLE(L1, 0, M, Ti, T1 + T) /\
T2 := ts(0B2) /\
= speed(0B1) .

*#%% Auxiliary operation filerSpeedGE
op filterSpeedGE : List{Object} Rat Int Time —>
List{Object} .
eq filterSpeedGE ( nil, X, M, T ) = nil .
eq filterSpeedGE ( (< 0O : Motorbike | ts : T1, speed : Y,
id : M> ;L) , X, M, T ) =
if (T1 >= T) and (Y >= X) then
< 0 : Motorbike | ts : T1, speed : Y, id : M > ; L
else filterSpeedGE (L, X, M, T) fi
eq filterSpeedGE ( (OB ; L) , X, M, T ) =
filterSpeedGE ( L , X, M, T ) [owise]
**%* Auxiliary operation filerSpeedLE
op filterSpeedLE : List{0Object} Rat Int Time Time
—> List{Object} .
eq filterSpeedLE ( nil, X, M, Ti1, T2) = nil
eq filterSpeedLE ( (< 0O : Motorbike | ts : T, speed : Y,
id : M > ;L) , X, M, T1, T2 ) =
if (T >= T1) and (T < T2) and (Y <= X) then
< 0 : Motorbike | ts : T, speed : Y, id : M >
else filterSpeedLE (L, X, M, T1, T2) fi .
eq filterSpeedLE ( (OB ; L), X, M, Ti, T2 ) =
filterSpeedLE ( L , X, M, T1, T2 ) [owise] .

LISTING 24. Crash1 rule.

Note how operation filterSpeedGE looks for the first
appearance of the event that starts triggering the rule, being
not upper bounded. In turn, operation filterSpeedLE
searches for the second event within the bounds of the win-
dow.

However, this rule is not enough because we also need to
cover the case whereby the first event is found, but the second
one (speed = 0) is not found in the time window. In this
case, we need to re-program the start time of the factory to
the end of the sliding window as shown in Listing 25.

An interesting feature of our proposal is that it allows to
easily implement adaptive sliding windows, whose size can
be dynamically adapted depending on the incoming events,
a particular kind of frames [26]. The static size of the win-
dow is a limitation of many applications, specially those
that require cleaning the received events because they come
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crl [Crash2] :
< CO : Counter | n : N >
< 8 : Stream | events : L >
< F : CrashFactory | startTime : TO,
windowLength : T, motorbikeId : M >
=> < CO : Counter | n : N >
< 8 : Stream | events : L >
< F : CrashFactory | startTime : T1 + 1,
windowLength : T, motorbikeId : M >

0B1 ; L1 := filterSpeedGE( L, 50, M, TO ) /\
T1 := ts(0B1) /\

L2 := filterSpeedLE(L1, 0, M, T1, T1 + T) /\
L2 == nil .

LISTING 25. Crash2 rule.

from unreliable sources and may have both duplicate readings
and false positives [27]. In these contexts, a large window
may induce false positive readings, and a small window
cannot fill false negative readings. Cleaning methods such
as SMUREF [28] or any of its derivatives [29] can be used to
dynamically adapt the window size for unreliable RFID data
streams.

4) HIGHER-ORDER COMPLEX EVENTS

Let us describe how to deal with complex events created from
other complex events (i.e., by CEP patterns), because they
need special treatment when being represented in Maude.
Whilst the occurrence of simple events is determined by
external sources and we can assume that they are in the
stream if they have indeed happened, this may not be true
for higher-order complex events. For them, we need to wait
until all the Maude rules that create the corresponding lower-
order complex events upon which they depend have finished,
before exploring the stream looking for their occurrence. For
this, we need to include the factories of the corresponding
events and make sure they have already explored the segment
of the stream that we are about to explore. This is achieved
by using attribute lastEvent of the factories of the lower-
order objects upon which the higher-order event depends.

Example: This is illustrated in the case of the rule that
creates Accident events. They require that the tire of a
moving motorbike blows out (BlowOutTire), followed a
Crash event, followed by a DriverLeftSeat event, all
in less than 3 seconds. This is specified by the following
Maude rules.

Note that, given that this CEP pattern depends on the occur-
rence of three events in a given interval, we need 3 Maude
rules: one to cover the case when these three events happen
(the [Accident1] ruleinListing 26); one for when the first
two are found but the last one is not; and to specify the case
when the first one happens but the other two do not. We do
not need one for which the first one does not happen: this
will simply not trigger any of them. The first of these rules is
shown below. The other two are similar.

5) CEP PATTERNS WITH EVENT WINDOWS
So far we have considered the case of batch and sliding time
windows. Representing CEP patterns with batch or sliding
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crl [Accidentl]

< CO : Counter | n : N >

< S8 : Stream | events : L >

< F : AccidentFactory | startTime : TO,
windowTimeLength : T, motorbikeId : M >

< F1 : BlowOutTireFactory | lastEvent : TF1,
motorbikeId : M >

< F2 : CrashFactory | lastEvent : TF2,
motorbikeId : M >

< F3 : DriverLeftSeatFactory | lastEvent : TF3,
motorbikeId : M >

=> < CO : Counter | n : N + 1 >
< S : Stream | events : insert(
< N + 1 : Accident | motorbikeId : M,
location : S1, ts : T3 >, L ) >

< F : AccidentFactory | motorbikeld : M,
startTime : T3 + 1, windowTimeLength : T,
lastEvent : T3 >

< F1 : BlowOutTireFactory | lastEvent : TF1,

motorbikeId : M >

< F2 : CrashFactory | lastEvent : TF2,

motorbikelId : M >

< F3 : DriverLeftSeatFactory | lastEvent : TF3,

motorbikelId : M >
if *** complex events have been created:
(TO + T) < min(min(TF1,TF2),TF3) /\

0B1 ; L1 := filterBlowOutTire( L, M, TO ) /\
T1 := ts(0B1) /\

0B2 ; L2 := filterCrash(L1, M, Ti, T1 + T) /\
T2 := ts(0B2) /\

0B3 ; L3 := filterDriverLeftSeat(L2, M, T2) /\
T3 := ts(0B3) /\

S1 := loc(0B3)

LISTING 26. Accident]1 rule.

event windows is similar to representing CEP patterns with
sliding time windows. We just need to specify a rule that tra-
verses the stream looking for events in that range (of number
of events). Attribute windowLength of SizeFactory
objects is precisely defined for that.

Example: The rule that generates a DangerousLocation
event every time we reach 100 Crash events for a given
location is an example of this kind of CEP patterns. The
Maude rule is not shown here for brevity, it is similar to rule
AccidentsReport, butusing a SizeFactory object.

D. EXECUTING THE SYSTEM

Once the system specifications are written using this model-
ing approach, what we get is a rewriting logic specification of
the system. Since the rewriting logic specifications produced
are executable, this specification can be used as a prototype
of the system, which allows us to simulate it.

For executing the specifications we need an initial model
of the system, which is just a configuration of objects that
contains the basic system objects (Clock and Counter),
the stream with the initial simple events, and the factory
objects for the complex events. In the motorbike example,
it can be specified as in Listing 27.

Initially the stream of events can be empty, and a sepa-
rate dedicated rule can be in charge of producing them. For
instance, the rule presented in Listing 28. In the simplest case,
we take the set of input simple events from the ones we have in
afile, spreadsheet or database, and include them in the stream.

Note that the MotorbikeFactory object does not
appear in the right-hand side of that Maude rule, which
implies that the rule will be executed only once, and it will
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op InitialModel : —> System .
eq InitialModel = {
< 'c : Clock | time : 0 >
< 'x : Counter | n : 1000 >
< 's : Stream | events : nil >
< 'f : MotorBikeFactory | >
*** And now the Factory objects for the complex events
< 101 : BlowOutTireFactory | motorbikeId : 1,
tire : 1, startTime : 0O, windowLength : 5 >
< 102 : BlowOutTireFactory | motorbikeId : 1,
tire : 2, startTime : 0, windowLength : 5 >
< ... rest of Factory objects ... >

}
LISTING 27. Initial model of the system.

rl [Motorbike]

< CO : Counter | n : N >

< C : Clock | time : NOW >
< 0 : MotorbikeFactory | >
< S : Stream | events : L >

=> < CO : Counter | n : N >
< C : Clock | time : NOW >
< 8 : Stream | events :
< 1 : Motorbike | ts : 1488326400, id : 1,
location : "Cadiz", speed : 100, seat : true,
tirePressurel : 310, tirePressure2 : 310 > ;
< 2 : Motorbike | ts : 1488326401, id : 1,
location : "Cadiz", speed : 90, seat : true,
tirePressurel : 310, tirePressure2 : 310 > ;
< ... rest of Motorbike events... >

> .

LISTING 28. Rule for defining the set of initial Motorbike events.

populate the stream that the rest of the rules will explore.
Instead of providing all simple events in this way, we will
later discuss in Section V-B.1 how it is also possible to
continuously generate them using different strategies.

Starting from the initial model, the Maude toolkit allows
the execution of our timed specifications using a set of com-
mands for performing rewriting. In this way, an execution
simulates one of the possible behaviors of the system from the
initial configuration of objects (the initial state of the system).

For example, we may use the rew command (as shown
below) to execute a fair rewrite of the system starting from an
initial model configuration.

$ ./runCEP.sh accidents 256

Parameter [10000000] establishes the upper bound on
the number of rewrite steps to perform,and InitialModel
is the configuration with the initial model described above.
Since our specification contains a large number of ele-
ments, it is recommended to limit the time bound—otherwise
the execution may never finish because in general our
specifications can be non-terminating. This limit can be
achieved either by setting a bound on the number of rewrite
steps, as done above, or by adding a constraint on the
[tick] rule that limits the value of variable NOW, e.g.,
“/\ (NOW < 5000000)”.

As a result of a rewrite command, what we get is the last
state of the simulated behavior. In this last state of the system,
the stream will contain all the events that have been produced.

V. ANALYSIS AND EXPERIMENTATION

Although the goal of EPLs is to provide mechanisms to make
easier the CEP applications development, writing the pat-
terns that specify the application logic is normally a complex
and cumbersome task: it not only implies checking the cor-
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rectness of the patterns regarding the desired behavior of
the application, but also considering the dependencies and
mutual interactions among them, and the possible assump-
tions on the environment in which the system works [16].
This is why some kind of formal support to the analysis and
verification of CEP patterns is needed.

Some of the existing proposals to achieve formal anal-
ysis of CEP patterns use Linear Temporal Logic (LTL)
model checking techniques to verify the properties of interest,
e.g., [30], [31]. Although interesting from a theoretical point
of view, the fact that CEP applications have to manage huge
data sets and a significant number of patterns (usually one
per complex event), makes this kind of (exhaustive) approach
normally impractical: it suffers from memory problems due
to rapid state-space explosions and hence prohibitive compu-
tational costs.

Similarly, approaches translating patterns and properties
into logical formulas that can be analyzed by SAT/SMT
solvers provide similar feasibility problems—although recent
advances in this field are showing outstanding performance
improvements (see, e.g., [16]).

Other approaches that make use of formalisms such as
Petri Nets (e.g., [11]) also face the complexity issues inherent
to CEP applications, leading to networks which are hard to
produce and analyze.

In this section, we will report about the use of some analy-
sis techniques available for Maude specifications in the realm
of CEP patterns, beyond the simple execution described in the
previous section. The fact that we have mapped CEP patterns
directly into Maude rules and CEP events into Maude objects,
opens the possibility of using the Maude mechanisms and
tools for analyzing these kinds of applications.

More precisely, we discuss some static and dynamic analy-
sis we can perform on the Maude specifications that represent
the CEP application, in order to understand its behavior and
to check that it is correct. Static analysis include checking
for pattern acyclicity and race conditions. Both are needed
because in general, the application of patterns can be nei-
ther deterministic nor confluent, as we shall later discuss,
and therefore it is important to uncover as soon as possible
potential errors in the CEP application. Dynamic analysis are
useful to understand the behavior of the CEP applications,
which is often probabilistic due to the stochastic nature of
the environment in which they operate. We are interested in
performing statistical analysis of CEP applications in order to
estimate the probabilities of events satisfying a given logical
formula, such as the occurrence of a certain circumstance
of interest to the modeler. We also discuss some important
aspects of these analyzes, such as their performance costs and
the estimation of their confidence levels. Finally, we present
other case studies we have used to validate our proposal.

A. STATIC ANALYSIS

There are some properties that can be statically checked in
the Maude specification, which permit detecting interesting
properties of the CEP pattern set, e.g., Pattern Acyclicity
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FIGURE 1. Directed graph of events for the Motorbike case example.

and Pattern Race Conditions. They both have to deal with
the non-deterministic nature of rule-based systems (in case
two or more patterns can be applied simultaneously), and
confluence (the order of application of the patterns at a given
moment in time may produce different results).

1) PATTERNS ACYCLICITY

When the number of CEP patterns is large and they have
been independently defined by separate people at different
times (as it happens, e.g., when the CEP application evolves
over time and new patterns and events are added), there may
be complex events that produce others, which in turn pro-
duce events of the former types—either directly or indirectly.
These kinds of cycles can result in non-terminating and ill-
defined pattern sets, with potential infinite loops. Of course,
the presence of cycles does not necessarily imply errors in the
patterns, but permits warning about potential errors.

To analyze this property we derive a directed graph (the
pattern dependency graph) whose vertices represent the CEP
patterns that produce the events and the edges represent
dependencies among them: an edge between vertex P and
O means that pattern Q requires the events produced by
pattern P to happen. We will say that pattern Q is dependent
onP.

Example: Figure 1 shows the pattern dependency graph
corresponding to the motorbike case study. Such a directed
graph is built directly from the Maude rules, parsing the right
hand side of the rules for the target events, and the left hand
side and guards for their corresponding source events. In this
case, no cycles occur in the graph.

2) PATTERN RACE CONDITIONS AND NON-CONFLUENT
PATTERN SETS

Another potential source of errors in the application of
the CEP patterns is due to the presence of dependent pat-
terns that are evaluated in the wrong order. For example,
event AccidentsReport depends on event Accident.
Suppose that the system evaluates the stream of objects
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at one moment in time, and it first evaluates pattern
AccidentsReport before pattern Accident. The for-
mer pattern may miss the accidents that are produced by the
latter.

In general, if pattern P; produces events of type a out of
events of type b, and pattern P, produces events of type b
from events of type c, the order of applications of patterns P
and P, is relevant: if an event ¢ has happened, and pattern P,
is applied before P, the CEP application will produce two
events: b and a. However, if pattern P is applied before P,
only one event b will be produced since when P is applied,
P> has not produced event b that pattern P requires. This
leads to the need to identify critical pairs of patterns that can
cause these kinds of problems.

To tackle this problem, some CEP engines, such as Esper,
permit assigning priorities to patterns, which are in charge of
deciding the precedence of application of patterns. However,
a common mistake is forgetting the assignment of priorities,
specially when the modeler is not conscious of the non-
confluent behavior of the system he/she is specifying. This is
precisely where our static analysis can play a relevant role,
identifying such kinds of potential issues, and the need to
address them in one way or another.

In Maude there are at least two ways of solving these
kinds of problems. The first one is by using strategies at the
metalevel [32], [33] that permit deciding the order in which
the rules are triggered. Again, the pattern dependency graph
permits determining the order of execution of the Maude
rules, it is a matter of defining a topological order between
the rules, based on the dependency graph.

The second approach to dealing with the pattern race
problem is by explicitly tackling it at the rule level, as we
did for instance in the specification of rule Accident.
We showed how it is possible to check, using attribute
lastEvent of the factory objects, that the initial rules have
been executed on the stream, before triggering the dependent
rule.

B. DYNAMIC ANALYSIS: STOCHASTIC SIMULATION

CEP systems are often probabilistic, due to the stochastic
and uncertain nature of the environments with which they
interact [34]. This is why probabilistic modeling and analysis
is necessary to understand the behavior of CEP applica-
tions [34]-[36].

The typical methods used to analyze quantitative prop-
erties of stochastic systems rely on analytical meth-
ods that permit computing the probability of the events
satisfying given logical formulae, with tools such as
PRISM [37] or UPPAAL [38]. However, analytically con-
structing the corresponding closed-form probabilistic model
is infeasible in many cases [39].

Alternative methods use Monte Carlo simulations, execut-
ing the specifications with different sample suites of input
events. These events are generated according to the proba-
bility distributions the inputs of the system are expected to
follow.
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Example: Let us suppose that the sensors of the control sys-
tem of a motorbike are expected to send events following an
exponential distribution with mean x = 60 seconds. Starting
from some initial values for the speed (sg) and the pressure of
the two tires (p; and p;), suppose every measurement follows
a normal distribution whose mean is the initial value and the
standard deviation is half of it. Furthermore, suppose that
in average seat sensors produce a wrong measurement every
10, 000 events.

Statistical methods permit estimating the probability of the
satisfaction of a given logical formula with some confidence
level and error bound—or precision. For example, we would
like to estimate the probability of two or more accidents
happening to the same motorbike in the same day, or the
probability of a tire pressure to go above a given threshold
before it blows out.

The next sections describe the tools we use to perform
statistical analysis on CEP systems using Maude capabilities
and tools.

1) GENERATING EVENTS RANDOMLY

Using the Maude random number generator [18], we devel-
oped in [40] a library of probability distributions that can
be used to generate the random values that we need here.
As an example, Listing 29 shows the specification of the
Uniform distribution. It uses Maude random and counter
operations [18].

op randomO1 : Int —> Rat .
eq randomO1(SEED) = random(SEED) / 4294967295 .
vars LBI UBI : Int . vars LB UB : Float .
op UDistr : Int Int —> Int .
eq UDistr(LBI, UBI) = UDistr(LBI, UBI,
op UDistr : Float Float —> Float .
eq UDistr (LB, UB) = UDistr(LB, UB, counter) .
op UDistr : Int Int Int —> Int .
eq UDistr(LBI, UBI, SEED) =
LBI + random(SEED) rem (UBI — LBI) .
op UDistr : Float Float Int —> Float .
eq UDistr(LB, UB, SEED) =
LB + float(randomO1(SEED)) % (UB — LB) .

counter) .

LISTING 29. Maude specification of a Uniform distribution.

Example: The Maude rule in Listing 30, [Motorbike],
illustrates the use of this library in the case of the motorbike
case study. It generates Mot orbike events every X seconds,
where X is a random variable that follows an exponential
distribution with mean 60. This is specified in the attribute
wakeUpAt of the history factory object that creates the
events, which determines the next time this rule is triggered.
Notice that the attributes of the newly created Motorbike
event make use of normal and uniform distributions to imple-
ment the requirements described above.

This factory object also incorporates a variable, num,
which permits setting a bound on the number of Mot orbike
events to be generated. Initializing that variable to —1 means
no bound; this is useful in case we want instead to set a time
bound on the execution.

Using this approach we allow CEP system analysts
to specify two different forms of uncertainty for events:
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crl [Motorbike]

< CO : Counter | n : N >

< C : Clock | time : NOW >

< 0 : MotorbikeFactory | id : M, location : S1, speed : I1,
tirePressurel : Y1, tirePressure2 : Z1,
seat : B1l, num : I, wakeUpAt : NOW >

< S : Stream | events : L >

=> < C : Clock | time : NOW >
< 0 : MotorbikeFactory | id : M, location : S1, speed :
I1, tirePressurel : Y1, tirePressure2 : Z1,
seat : Bl1, num : I — 1,
wakeUpAt : NOW + expDistr(float(l / 60)) >
< CO : Counter | n : N + 1 >
< S : Stream | events : insert(

< N + 1 : Motorbike | id : M, location : S1,
speed : Il + normDistr (0.0, I1 / 2),
tirePressurel : Y1 + normDistr (0.0, Y1 / 2),
tirePressure2 : Z1 + normDistr (0.0, Y2 / 2),
seat : if UDistr (0.0, 1.0) <= 0.0001
then (not B1) else B1 fi,
ts : NOW > , L ) >
if I =/=0.

LISTING 30. Creation of random Motorbike events.

the uncertainty about their contents (i.e., the values of their
attributes); and the uncertainty about their occurrence [41].

2) MONTE CARLO SIMULATIONS

Using a similar approach to VeStA [36] and PVeStA [42],
we have used a simple simulator that we developed
in [40], [43], which permits performing a number of execu-
tions of the Maude specification of a CEP system, and to
collect the outcome of these runs. All individual executions
are executed in parallel, which permits making use of the
parallel resources available in our machine.

Example: Using our application, the command shown
below performs the parallel execution of 256 processes, each
one in charge of executing the Maude specifications stored in
the file accidents.maude, which simulates the behav-
ior of the system for one day (86400 seconds). The input
Motorbike events for the simulation are randomly gener-
ated as shown in Listing 30.

$ ./runCEP.sh accidents 256

An associated file accidents.events lists the names
of the (simple and complex) events of interest. The results
of the executions are stored in the file accidents.csv.
Such a file contains the basic statistics about the executions
including the number of generated simple events, the number
of complex events produced during the simulation, etc. The
duration of the runs (in seconds) are also included, in the
Duration row.

An example of the contents on file accidents.csv
after the concurrent executions is shown in Listing 31.

Event ,Min,Max,Median,Mean, Std.Dev
Motorbike ,2834,4570,4320,4207.64,301.152
DriverLeftSeat ,0,2,0,0.269531,0.516911
GhostRider,0,3,0,0.371094,0.648755
BlowOutTire,0,2,0,0.246094,0.498028
Crash,0,3,0,0.292969,0.621953
Accident,0,3,2,1.62305,1.42127
AccidentsReport,3,3,3,3,0
Duration,178,225,217,213.492,8.85737

LISTING 31. Output file after the simulation.
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The overall simulation time, for the 256 processes is 225 sec-
onds, using a machine whose operating system is Ubuntu
14.04 LTS with 64 GB of RAM memory and a processor with
24 cores of 2.67 GHz each.

3) PERFORMANCE EVALUATION

As mentioned in the introduction of this section, the scalabil-
ity and acceptable performance of the analysis of any formal
tool are essential to ensure its applicability. The analysis
of the Maude specifications that represent a CEP system
should be efficient enough to be used in practice and provide
simulation and analysis results in reasonable time.

In this respect, the Maude encoding of CEP event patterns
described in Section IV works from a conceptual point of
view, but some optimizations are required in order to improve
the execution performance when dealing with large sets of
events.

First, the use of only one list of objects in the stream of
events is not efficient because the complete list needs to be
traversed every time a rule is evaluated to match the CEP
pattern. One way to address this issue is to periodically prune
the list by removing those events (both simple and complex)
that will no longer be needed. This can be specified in Maude
by using aclass EventPruningFactory (Listing 32) that
contains the pruned events and a rule that periodically moves
the “old” events to the backup list.

class EventPruningFactory |
period : Time, savedEvents : List{0Object}
subclass EventPruningFactory < TimedFactory .
rl [PruneEvents] *xx pruning of old events
< C : Clock | time : NOW >
S : Stream | events : L >
F : EventPruningFactory | period : T,
savedEvents : BL, wakeUpAt : NOW >

<
<

=> < C : Clock | time : NOW >
< S : Stream | events : removeOldEvents(L, NOW — T)>
< F : EventPruningFactory | period : T,
savedEvents (add01dEvents (L, NOW — T) ; BL),
wakeUpAt : NOW + T > .

LISTING 32. EventPruningFactory class.

Then we only need to include the factory object (see
Listing 33) in the initial model, whose pruning period is
defined by means of a constant, PRUNINGPERIOD:

< 'p : EventPruningFactory | savedEvents : nil,
period : PRUNINGPERIOD, wakeUpAt : PRUNINGPERIOD >

LISTING 33. Object for pruning events.

The period is set to one day because there is a rule
that needs to take into consideration the events that have
been produced in the last 24 hours: the one that generates
AccidentsReport complex events.

This takes us to our second optimization. We are now
forced to combine events whose window is a few seconds
(e.g., Crash or Accident) with others with a window of
one day (AccidentsReport). This implies that the list
of events, even after the pruning process, has to store too
many elements to be efficiently explored. To address this
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TABLE 1. Simulation times (in seconds) for the accidents.maude specifications for different durations (from 1 to 16 days) and different number of

parallel executions for each case.

Num. Executions || 1 | 2 | 4 | 8 | 12|16 | 24 | 32 | 48 | 64 | 96 | 128 | 192 | 256 | 384 |

Lday|| 14 | 15 [ 15| 14 | 14 | 17 | 22| 28 | 42 | 56 | 84 | 115 | 166 | 225 | 318
2days|[ 22 |23 |23 |24 | 25|29 (38|50 | 73 |97 | 145 | 204 | 305 | 401 | 622
4days || 45 | 46 | 48 | 49 | 51| 56 | 74 | 99 | 144 [192| 285 | 382 | 583 | 777 | 1164
8 days || 95 | 95 | 95 100|100 | 116 | 150 | 195|289 | 387 | 567 | 756 | 1164 | 1541 | 2317
16 days || 204 | 189 | 192 | 194 | 203 | 228 | 301 | 383 | 564 | 757 | 1139 | 1515 | 2303 | 3063 | 4616
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FIGURE 2. Graphical representation of the simulation times for the accidents.maude specification.
issue we have defined two streams of events: one for those rl [AccidentsReport] :
. . . . < C : Clock | time : NOW >
events with a short lifetime (such as Motorbike) and that < CO : Counter | m : N >
can be pruned shortly (every 5 seconds in this case, which € 8 & Bimom | ovonés 3 kb >
. . . . . < CGS : CGStream | eventscg : LO >
is the duration of the longest window for most fine-grained < F : AccidentsReportFactory |
. _ . location : S1, wakeUpAt : NOW >
events); and one stream for.cc?arse gramed. events such as L 2@ b Gl [ e 5 o
AccidentsReport (see Listing 34). In this second stream < CO : Counter | n : N + 1 >
1 . hich h ded < S : Stream | events : insert(
we only store Accident events, which are the ones neede SN+ 1 : AccidentsReport | location : S1,
to generate AccidentsReport events. This list can be i :Nﬁat‘\cciie?ts(wy Sl MO = QNEDAY, WE)
. . . ts >, >
pruned every 24 hours. The advantage of this solution is that < CGS : CGStream | eventscg : LO >

the [AccidentsReport] rule has to traverse only the
list with the coarse-grained events, which contains just the
Accident events of the last day. In this way we are able to
maintain the sizes of the two lists under control, pruning them
at different times.

Finally, a third improvement is achieved by not storing the
list of pruned events but just the number of their occurrences.
We do this by adding a new attribute (npe) to each Factory
object that represents a counter with the number of produced
events of this type.

Table 1 shows the execution times of different simulations
of the accidents.maude specification, depending on the
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F : AccidentsReportFactory |

location : S1, wakeUpAt : NOW + ONEDAY > .

LISTING 34. Coarse-grained and fine-grained pruning of events.

number of days that every execution simulates (from 1 to 16)
and the number of parallel executions of each specifica-
tion. The one mentioned above corresponds to 1 day and
256 executions. Interestingly, we can see how times grow
linearly with respect to the number of days and the number
iterations, as Figure 2 shows (linear expressions correspond
to the adjusted functions that explain such relationships with
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a coefficient of determination R> > 0.99 in all cases).
Moreover, we can also observe a linear relationship among
the number of days being simulated.

We have also made tests using a machine with MacOS
operating system, 2.3 GHz dual-core Intel Core i5 proces-
sors and 8 GB memory; and other with Ubuntu and twelve
2.67 GHz cores, obtaining comparable results. In particular,
when the number of iterations is above the number of pro-
cessors, there is a linear relation between the performance
figures obtained for the three machines that exactly respects
the ratio between the number of cores: the 12-cores machine
is 6 times faster than the 2-cores machine, and the 24-cores
machines is 2 times faster than the 12-cores one.

Maude executions are also memory-demanding, and when
the RAM is used-up by the running processes and disk access
is needed, the overall performance degrades. But the linear
nature of the executions permits overcoming this issue rather
easily. If memory limits are reached when running in parallel
256 processes, instead of launching 256 processes at once,
the application can be launched 2 times with 128 parallel
processes, or 4 times with 64, and then gather all the results.
Since every execution uses a different seed for the random
number generator, the results of the Montecarlo simulations
are still valid. In this way we can overcome the problem
of having a limited number of processors and/or memory.
It is enough to identify the number E of maximum paral-
lel executions that the target machine can support without
requiring the use of memory swaps, and launch n/E times
the application, with # the total number of executions we are
interested in running (Section V-D describes how to calculate
that number).

C. CHECKING PROPERTIES OF THE CEP APPLICATION

In our proposal we are interested in checking whether a
given condition will ever happen (occurrence), and whether a
certain condition will always hold (invariant).

The first kinds of checks correspond to safety or liveness
properties, i.e., that a certain condition will never happen
(e.g., no Accident is detected if the driver is still sitting
on the motorbike seat) or another will end up happening
(e.g., a specific pattern will indeed be triggered—which is
equivalent to the fact that a particular event will happen).
The second kind of property corresponds to invariants, which
in turn can be on the CEP application itself (e.g., the values
of the attributes of one or more events stay below a certain
threshold) or on its environment, which is not necessarily
modeled in the pattern set (e.g., that the values of the tires
pressure never exceed 4.0 BAR). To check that an invariant
holds we will simply use its negation, checking if the negation
may happen in the execution of the CEP pattern set [16].

In this proposal, the properties to check are modeled in
terms of CEP patterns, which specify the (complex) events
that would happen if the property held. Then, we encode each
property as a complex event and add it to the CEP pattern set.
This also permits the use of one single language to specify
both the system and the properties to analyze.
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For example, to check the aforementioned property of a
motorbike having two or more accidents within the same day
we just define a CEP pattern that generates a complex event
(TwoAccidentsTheSameDay) which searches for two
accidents of the same motorbike in a time window of one day.
Similarly, for an invariant that checks the tire pressure sensors
never reach 4.0 BAR, we simple create a CEP pattern that
creates a complex event TooHighTirePressure every
time such a situation is detected. Using the statistical model
checking techniques we have described above, what we will
get is the probability that these events happen.

For illustration purposes, Table 2 shows for the Motorbike
case study the ratios of occurrence of complex events with
respect to the number of simple events, for different simu-
lations: 1 day and 16 days; 128, 256 and 384 executions.
We can see how the invariant about the valid input values
produced by the motorbike tire sensors is not violated in
any of the executions. However, there is a small probability
that a motorbike suffers two accidents the same day, which
is detected when the number of executions is large enough,
as shown in the table. This bring us to the next question: which
is the minimum number of executions required to provide
meaningful results, with certain error bounds?

D. DETERMINING THE REQUIRED NUMBER

OF EXECUTIONS

Once the properties are defined in terms of CEP patterns,
we can proceed to check whether they happen or not. As men-
tioned above, instead of conducting exhaustive static analy-
ses, we will perform Monte Carlo simulations as explained in
Section V-B.2. The goal is to calculate the probability of the
property under analysis to happen, based on the (stochastic)
values assigned to the event attributes and the probabilities
defined for the simple events to happen.

There are two main approaches to statistical model check-
ing: sequential [44] and black-box [35] testing. In the former,
executions are performed until the results can be considered
correct within the required error bounds (as, e.g., VeStA [36]
and PVeStA [42] do). In black-box testing, error bounds and
a confidence level are calculated based on the results of the
set of performed executions.

In our approach we use sampling methods [45] to deter-
mine the required number of executions to provide meaning-
ful results, based on several parameters, which include the
required confidence level (1 — «) and the precision (d) of the
results. For example, one may wish to have the 95% confi-
dence interval be less than 0.06 units wide (i.e., a required
precision of d = 0.03).

Confidence levels are given by their corresponding criti-
cal values (Z,-values) [46]. Besides, in this context we are
concerned with the estimation of proportions, since we can
formulate the problem as the estimation of the ratio of exe-
cutions that fail the test, e.g., that find a counterexample
about the property we want to check. If the ratio of positive
observations is unknown, the recommended practice is to
assume it to be p = 0.5. This implies the maximum variance
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TABLE 2. Ratios of occurrence of the events defined for the Motorbike case study (vs. number of simple Motorbike events).

1 day - 384

| 16 days - 128 | 16 days - 256 | 16 day - 384 |

\ | 1day-128 | 1day-256 |
Accident 5.360854 x 107> | 5.848742 x 107>
BlowOutTire
Crash 5.545723 x 1073 | 6.962787 x 107>
DriverLeftSeat 5.730592 x 1073 | 6.405752 x 107>
GhostRider
TooHighTirePressure 0 0
TwoAccidentsTheSameDay 0 0

4.92492 x 1075
5.360854 x 1075 | 5.848742 x 1075 | 4.986502 x 107> | 4.951304 x 107 | 4.931584 x 1077
5.29429 x 1072
5.540544 x 1073
1.146116 x 10~* | 8.819528 x 107> | 1.0342349 x 10~% | 9.96087 x 1075 | 9.723445 x 1075 | 1.0330723 x 10~*

5.159531 x 1075
5.213967 x 1073
5.645544 % 107
5.664984 x 1075

4.939658 x 107 | 4.896661 x 102

5.41731 x107° | 5.327516 x 107
5.405663 x 1075 | 5.368268 x 1075

0 0 0 0
0 0 5.822x 1078 7.776 x 1078

TABLE 3. Confidence levels, corresponding Z, values and required
number of executions.

Confidence level 80% | 85% | 90% | 95% | 98% | 99%
Zy values 1.28 [ 1.44 | 1.64 ] 1.96 | 2.33 | 2.58
No. executions (p =0.5,d =0.03) | 455 | 576 | 747 | 1067 | 1508 | 1849
No. executions (p =0.05,d =0.03) | 86 | 109 | 142 | 203 | 287 | 351

of this distribution (0.25/n) and hence the more conservative
case. But sometimes we may have some a-priori estimation
of the upper bound of the probability of the error to occur.
With all this, the formula to determine the required number
of executions n is: n = Z‘f -p - q/d?, where Z, is the critical
value for the corresponding confidence level; d is the required
precision; p is the proportion of positive observations, and g
is the proportion of negative observations (g = 1 — p). The
result of the formula is always rounded to the next integer
value. Table 3 shows some common confidence levels, their
corresponding Z, values [46], and the number executions
calculated using the formula when the required precision is
3% (d = 0.03) for the cases in which we do not have
information about the proportions (p = 0.5) and when we
expect to fail only in at most 5% of the cases (p = 0.95).

E. TIME-BOUNDED REACHABILITY ANALYSIS
We can also take advantage of Maude’s search capabilities
to provide timed search commands for analyzing all possible
behaviors starting from an initial configuration. In particular,
the timed search obtains states which are reachable in a
certain time interval from the initial state. An upper bound
to the time interval to explore must be given in order to
restrict the number of states of the search space. Thus, we can
search for executions leading to undesirable states which we
want to avoid in the system, or for situations violating any
of the properties which we want to prove on the system. It is
important to note that to conduct the search process random
numbers need to be abstracted away, replacing them by actual
values in the Maude specifications. Both kinds of analyses,
search and stochastic simulations, need to be separated.

Note as well that if the system is confluent, given an initial
state there will be only one possible execution path. In this
case, the search command will explore just this behavior,
looking for the occurrence of the specified situation.

For example, suppose we want to search for those exe-
cutions in which certain event is detected (for instance,
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TooHighTirePressure), starting from the initial con-
figuration InitialModel, and having an execution bound
of 15,000 time units. The search command that can be used
for such a search is presented in Listing 35.

(omod RUN is
inc MOTORBIKE .
eq TIMELIMIT = 15000 .
endom )
(search InitialModel =>=
{ < 8:0id : Stream | events :
( Li:List {Object '} ;
< 0:0id : TooHighTirePressure:Cid |
ATTS1:AttributeSet > ; L2:List {Object '} ) >
CONF:Configuration }
=)

LISTING 35. Example of Maude search command.

The result will be a collection of states (solutions) fulfilling
the given search pattern within the specified time frame.
In this example the result is the empty set, because no solution
is found.

F. VALIDATION OF OUR PROPOSAL USING

FURTHER CASE STUDIES

In addition to the case study presented in the paper to illustrate
our approach, we have validated our proposal with different
examples to check its expressiveness, fitness for purpose and
applicability. Here we will mention two of them, a simple
one commonly used in some CEP tutorials, and another of
an existing real application of environmental monitoring cur-
rently used in Andalusia, Spain. Their complete implementa-
tions in Esper and in Maude are available from [47].

1) TEMPERATURE MONITORING CASE STUDY

The first application we used to validate our approach simu-
lates a simplistic temperature monitoring system at a nuclear
power plant [48]. Using the temperature measurements pro-
duced every second by the Plant sensors as the simple events,
the CEP application defines and processes three types of
events: Monitor just tells us the average temperature every
10 seconds; Warning warns us if we have 2 consecu-
tive temperatures above a certain threshold (400°C); finally,
Critical alerts us of any sudden, rising escalating tem-
perature spike whereby we have 4 consecutive events, with
the first one above 100°C, each subsequent one greater than
the previous, and the last one being 1.5 times greater than the
first.
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The CEP application is defined by three patterns written
in Esper, one per complex event. The corresponding Maude
specifications have also three rules, in addition to the one
that generates the simple Temperature events. The static
analyses show in this case that the complex events are inde-
pendent among themselves, being only dependent on the
simple events—i.e., the pattern graph is a tree. No cycles and
no race conditions are therefore detected. The simulations
permit calculating the probability of the complex events.
Actually, in this example the complex events correspond to
properties that we want to check about the input stream
of Temperature events. What we get for free with our
approach is a tool that, given the probability distributions
of the input temperatures, computes the probabilities of the
occurrences of such properties.

2) AIR QUALITY MONITORING CASE STUDY

This is an example of real CEP application that automatically
controls air quality in real time across the Andalusian region
(33,694 sq. miles, 8.4 million people). It uses the existing
Andalusian Regional Government’s sensor network com-
posed of 61 sensor stations spread all over the region. Each
station measures every 10 minutes six air pollutants includ-
ing, e.g., carbon monoxide, ozone, nitrogen dioxide and sul-
fur dioxide. Air quality is measured using the index proposed
by the U.S. Environmental Protection Agency (EPA), which
defines windows of 1, 8 or 24 hours to analyze the simple
events, depending on the specific air pollutant, and expresses
the results in a 6-grade scale, from Good to Hazardous [49].

The CEP application is defined in terms of 43 patterns. The
information about each pollutant measurement is aggregated
by one pattern, and other six patterns determine the air quality
grade for this pollutant. This makes seven patterns for every
pollutant, and therefore 42 patterns are used to analyze the six
pollutants. A final pattern, AirQualityLevel, calculates
the global air quality level by computing the maximum of the
grades obtained for each pollutant.

The static analyses for the application did not detect cycles
in the pattern dependency graph but, interestingly, detected
possible race conditions and non-confluence conditions in
the original patterns. This is due to the fact that the pattern
dependency graph has 4 levels: the final derived pattern
AirQualityLevel depends on derived six patterns (the
ones that calculate the level of each pollutant) which in turn
rely on the derived patterns that aggregate the simple sensor
air measurements for each pollutant. These dependencies
may cause thatthe AirQualityLevel pattern is triggered
before all the dependent patterns are executed, and therefore
its results may not have into account all correct values.

There are two ways to deal with these issues in the appli-
cation. The first one schedules the patterns of the complex
events so that they always occur affer the patterns they
depend upon. The second approach assigns priorities to the
patterns. This is the safer method in case the EPL used to
develop the application supports this feature. Then a different
priority should be assigned to all patterns at the same level in
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the graph, ensuring no pattern races occur. The real applica-
tion was fixed accordingly, using this approach.

Our Maude specifications were also validated by compar-
ing their behavior and results with the ones obtained by the
Esper-based application, using the real sensing data collected
from December 2016 to April 2017 in Andalusia. The results
confirmed that the behavior of both systems was equivalent,
i.e., they produced the same complex events, in the same
order.

In addition, we were also able to simulate the system with
randomly generated sets of 1000, 10000 and 100000 events,
to understand the effects of changes in the probability dis-
tributions of the input simple events (the air measurements
for the six pollutants) into the overall air quality of the area
controlled by each sensor station. This showed to be very
useful too—especially because we did not need any other
tool or language to run these simulations.

In order to compare the correctness, expressiveness and
efficiency of our proposal with other formal approaches,
we conducted some experiments using a subset of this case
study (focusing on just 2 quality factors) which was also used
in [50] to formalize CEP systems using Petri Nets (PN). First,
we executed the system with a set of controlled input events,
observing that both systems produced the same complex
events. Then, we executed both systems with a randomly gen-
erated set of 1000 input events. Maude was able to generate
the events and simulate the system in 8 seconds, while the
PN solution took 32 minutes (using a 2.3 GHz dual-core Intel
Core i5 processors machine). Furthermore, the PN encoding
of the same system was far more complex than the Maude
one, as we discuss in the next section.

G. AUTOMATIC MAPPING FROM ESPER EPL TO MAUDE
Writing the Maude specifications that correspond to a CEP
patterns set is not a simple task, and requires specialized
knowledge. To facilitate the production of the Maude patterns
we have developed a Esper parser and Maude code generator
with Xtext [51] that assists the system analyst to generate the
Maude specifications of CEP applications written in Esper.
This has also served to validate the feasibility and applicabil-
ity of our proposal.

Although the current version of the tool does not cover all
features of the Esper language, it now implements the map-
pings for the most commonly used CEP patterns, including
those that we have needed to analyze the systems studied so
far. For those mappings, the application is able to generate
all the basic Maude infrastructure and the skeleton of the
corresponding Maude rules, with the user only expected to
specify how the values of the attributes of the corresponding
complex event need to be computed. The rest of the Maude
specifications and apparatus is automatically generated.

VI. RELATED WORK

Rabinovich et al. [52] analyze the behavior of CEP applica-
tions using static and dynamic techniques for finding possible
termination problems, event consequences and provenance,
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tracing event impact, application artifacts evaluation, and
coverage. As an example, they can detect the set of patterns
that a specific sequence of events triggers. Nevertheless, they
do not automatically generate input events to stress a partic-
ular property, as we do in our proposal.

CAVE [16] transforms CEP patterns into basic constraints
and uses constraint solvers to analyze the satisfiability of CEP
programs in a very efficient manner. This work is comple-
mentary to ours. In fact, CAVE allows CEP system developers
to verify application-specific properties, but it does not sup-
port simulation. However, CAVE can generate sequences of
events satisfying or violating a given property, which consti-
tute significant inputs to validate a concrete implementation.

REX [30] uses model checking for the formal analysis
of CEP patterns. REX enables developers to write and ver-
ify application-specific properties. Patterns are encoded in
temporal automata while properties are encoded as computa-
tional tree logic (CTL) formulas. In order to verify properties,
the UPPAAL model checker [53] is used. The problem of
model checking techniques for analyzing CEP applications
is the rapid explosion of states. Another formalization of
CEP systems that makes use of timed automata can be found
in [54] and [55], which is similar to the TESLA language.
TESLA [56] is a highly expressive language that provides
timers, temporal and content filters, negations, aggregations,
as well as customizable policies for event selection and con-
sumption.

Hinze and Voisard [57] propose a formal approach that
defines a parametrized event algebra (EVA) in order to sup-
port adaptable event composition, including temporal restric-
tion. In the context of Active DBMSs [58] there is a group
of works related to the analysis of rule-based reactive sys-
tems, including confluence [59], [60], termination [61], and
correctness [62], [63]. Our work is similar to those, applied
to the context of CEP systems.

There are other works modeling CEP systems using Petri
Nets. An an example, Ahmad et al. [64] model CEP applica-
tions using Timed Net Condition Event Systems (TNCES),
a formalism based on Timed Petri Nets that provides a
modular modeling formalism for discrete event dynamic
systems. According to the authors, TNCES allows us to
prevent machine breakdown and deadlocks involved in event-
driven systems. Moreover, this approach makes the vali-
dation of events possible, checking if the system satisfy
certain properties. However, a simple EPL pattern such as
every (A —-> B), is transformed into a vast and hardly
readable TNCES model that is difficult to understand and
debug. Our Maude notation for EPL patterns is more concise
and manageable.

Weidlich er al. [65] present an analysis and simulation
tool that maps Event Processing Networks (EPNs) into Col-
ored Petri Nets with Priorities and Time (PTCPNs). They
enable the verification of some internal properties, such as
the presence of unused transitions in the EPN graph. In turn,
Macia et al. [11] have proposed the use of Prioritized Col-
ored Petri Nets (PCPNs) to formalize event patterns in a
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compositional way and to perform stepwise simulation and
debugging of the CEP programs. Unlike [65], Macia et al.
annotate the event timestamp as a field in the place color
set, instead of using the timed capabilities of PTCPNs (timed
color sets). This is because the use of timed tokens entan-
gles the translations unnecessarily—timed tokens only can
be used when they are available—and the composition of
patterns requires more than one processing of the input event
sequence. The problem, again, is the different abstraction
level of PNs and CEP patterns, which produces very large
encodings in PNs, rather cumbersome to understand and
analyze.

To detect hazards in the aerospace application domain,
Carle et al. [66] also use untimed colored Petri nets.
They define chronicles, a situation description language that
enables the detection of simple events, disjunction conjunc-
tion, sequence and absence of chronicle operators. However,
timed events and data windows are not considered in this par-
ticular language, being a limitation for modeling CEP-based
systems.

As mentioned in Section V-F, the analysis of event patterns
formalized in Maude is more efficient than in Petri Nets.
This is consistent with previous comparison studies, such
as [67], which also support our conclusion, when they use
Maude’s rewriting semantics as a logical and operational
representation of PN models for both formal verification and
execution.

Our work is also similar to those proposals that enable
static analysis of probabilistic CEP applications, which use
analysis tools, such as PRISM, to predict their behavior. As
part of these works, Debbi [34] uses probabilistic model
checking and PRISM to verify probabilistic CEP systems and
for estimating the probability of the occurrence of relevant
events. One advantage of a simulation approach like ours
is that it does not impose any constraint on the distribution
models of the input events and on the values of their attributes.

There is also a plethora of works dealing with the
probabilistic nature of CEP applications. As an example,
PROXIMA project [68] provides cost-effective software tim-
ing analysis using probabilistic analysis for multi/many-
core critical real-time embedded systems. Although we do
not currently perform analyses on these types of systems,
Bijo et al. [69] have demonstrated that Maude can be effec-
tively used for formalizing programs executing on cache
coherent multicore architectures.

There is recent work that also proposes Maude to formalize
CEP events [31] although their mapping is different to ours
(they do not use Full Maude) and they just propose LTL model
checking to analyze the CEP patterns. Being an initial pro-
posal the authors do not show any performance or scalability
figures.

There are several tools to perform simulation of CEP
applications, e.g., AMIT [70], BiCEP [71], FINCoS [72],
CEPBen [73] and CEPSim [74], as we do with our pro-
posal. However, we also provide further analyses within the
same framework. In general, comprehensive analysis of CEP
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application for correctness, integrity and predictable behavior
is still an active area of research.

VII. CONCLUSIONS AND FUTURE WORK
This paper has presented a translation from CEP patterns to
Maude specifications for the static and dynamic analyses of
CEP applications. A set of initial validation experiments have
shown appropriate results about the usability, effectiveness
and performance of our approach. The analyses also per-
mit detecting potential errors in the CEP pattern set, as it
happened in one real application we used to validate our
approach. Additionally, the analyses allow us to compute the
probabilities of certain properties of the CEP application to
occur: safety and liveness properties, as well as invariants.
Our work can be continued in various directions. First,
we support the basic features of CEP languages, but there are
some concepts and mechanisms not currently implemented.
For example, we now support batch and sliding windows, but
not other more complex window types such as frames [26].
We plan to start adding these kinds of features to our mapping.
Likewise, the tool that automatically generates the Maude
specifications from the CEP patterns expressed in Esper EPL
now covers the set of features we have currently required.
However, it may need to be extended to cover more CEP con-
structs and mechanisms as we conduct more validation exper-
iments, widening the number and the scope of applications
that we can cover. Currently, we do not deal with distributed
stream processing (DSP), either. Providing semantics for DSP
is a difficult issue because of all the complexity introduced by
the distribution aspects. This is something we would like to
explore next, using our current proposal as a basis. Finally,
in this paper we have focused on some properties of CEP
applications. We do not deal, however, with other impor-
tant aspects such as performance estimation (response time,
throughput, or memory requirements, for example); robust-
ness, reliance, and so forth. These can also be interesting
extensions to our work.
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