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ABSTRACT Indoor localization and tracking have attracted growing attention because of its widely
application for indoor location-based services (LBSs). However, for indoor localization, only with single
positioning technology, the positioning accuracy, and localizability are difficult to satisfy the requirement
due to the complex and crowed indoor environment. An indoor cooperative localization and tracking
algorithm (CLTA) based on grid is developed to solve above problems. The CLTA is divided into offline
phase and online phase. In the offline phase, a cooperative localization fingerprint database is established
based on reliable nodes. In the online phase, a region overlapping mechanism is used to narrow location area
in multi-network surroundings at first. Then, we use a prediction mechanism to predict the mobile target
position in order to further narrow the location area. At last, a cross grid strategy is used to update the data in
fingerprint database if possible, aiming at improving the accuracy of localization. Simulation and experiment
results show that the proposed algorithm is better than single network localization algorithm on localization
and tracking performance.

INDEX TERMS Indoor localization, reliable, target tracking, wireless network.

I. INTRODUCTION
A. MOTIVATION
With the maturity and popularity of Internet of
Things (IoT) [1]–[3], the application deployment of mobile
environment has become a hot discussion topic in academic
and industry [4]–[7], and the requirements for localization
accuracy in various fields are also increasing. In many prac-
tical applications of IoT, it is a basic function for tracking
moving targets (As shown in Fig. 1), such as localization
and tracking firemen in a burning building, localization and
tracking patients in a hospital, localization and tracking police
dogs for some urgent tasks, etc. If the localization accuracy is
not high enough, it is hard to ensure that personnel are rescued
in the first instance in case of emergency.

At the present time, there are Global Positioning Sys-
tem (GPS) [8], Wireless Local Area Network (WLAN) [9],
[10] and Wireless Sensor Network (WSN) [11], [12],
which can provide mobile target localization. Indoor wire-
less localization has attracted increasing research interests
and many techniques have been widely applied in every
walk of life, such as WiFi [13], [14], Bluetooth [15], [16],
Ultra-Wide Band (UWB) [17], [18], radio frequency

identification (RFID) [19]–[21] tags etc. But their positioning
technologies have various advantages and disadvantages in
aspects of application scenario, positioning error, positioning
delay, energy consumption and so on. Different positioning
technology, however, has different overlapping range and
different network characteristic, wherever in indoor or out-
door environment, it is difficult to achieve a higher posi-
tioning accuracy and range requirements only relying on
a certain kind of mobile positioning technology. If several
anchor nodes (ANs) are captured because of the complex
indoor environment, the accurate positioning of unknown
nodes would be affected and the location error of the system
would also increase. It is a challenge on how to cooperate
localization and tracking based on a reliable mechanism in
an indoor environment with more than one network.

B. CONTRIBUTIONS
There is often more than one type network in an indoor
environment, such as WiFi, WSN, Bluetooth and so on,
they are common in our daily life. In the indoor hybrid-
network environment, in order to improve the utilization rate
of network signal and increasing positioning accuracy and
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FIGURE 1. Indoor scene.

localizability of positioning area, a CLTA based on indoor
wireless networks for target tracking is proposed in this paper.
The main contributions of this paper are listed as follows:

1) A cooperative target localization and tracking algo-
rithm (CLTA) in indoor wireless networks by analyzing
the characteristics of different networks in order to
improve localizability and positioning accuracy.

2) Unknown nodes are located by CLTA, which can
reduce positioning error with cooperative technology
that combines with the region overlapping mechanism,
the prediction mechanism and the cross grid strategy.

3) The strategy of reliable nodes selection that based on
RSS to get the relationship of distance between nodes
is used to further decrease the location error.

The rest of this paper is organized as follows. In section
II, we describe the relevant research of indoor localization
and tracking. An indoor cooperative localization and tracking
algorithm is proposed in section III. In section IV shows the
experiments and analyses. Finally, we conclude our algorithm
in section V.

II. RELATED WORKS
Cooperation technology, to a certain extent, eliminates the
time and space constraints. Various kinds of cooperation
technologies and platforms have developed in the computer
network, such as Habanero [22]: Java distributed cooperative
environment that developed by NCSA software development
team. It can share data and events on all participating com-
puters through the internet.

In recent years, with the increasing attention on coop-
erative technology in wireless communication, some other
cooperative technologies are emerged, such as cooperative

FIGURE 2. Traditional and cooperative localization.

positioning [23], [24], cooperative diversity technology [25].
Cooperation localization is a technique, which accompa-
nies with the development of computer network technology
and expands on wireless localization technology. A simple
comparison of conventional and cooperative localization is
depicted in Fig. 2: Traditional multilateration (a) uses only
measurements between an unknown location node and multi-
ple known location nodes. Cooperative localization (b) allows
measurements between any pairs of nodes to aid in the loca-
tion estimate to find its position.

Janapati et al. [26] investigated indoor localization of coop-
erative WSN where nodes exchange information through
UltraWide Band (UWB) signal. UWB offers wide bandwidth
and high resolution which is prefer for ranging measure-
ment. Information exchange between heterogeneous nodes
under cooperative environment brings great challenges to the
selection and rejection of information. Yang and Shao [14]
proposed mechanisms to a WiFi system where exists one
AP or more APs with multiple antennas as nearby anchors.
The paper applied a hybrid AoA/ToA system to locate the
target’s positioning. The position performance can reach
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TABLE 1. Key symbol and term description.

2.2m with one WiFi AP and 0.5m with multiple APs respec-
tively. The performance is affected by WiFi AP hardware
conditions. Adewumi et al. [27] researched the correlation
between distance and RSSI in WSNs. A RSSI model esti-
mated the distance between sensor nodes in WSNs. The
performance both in indoor and in outdoor environment
were evaluated and analyzed. But it did not verify in a real
environment.

Klingbeil and Wark [28] developed a real-time positioning
and tracking algorithm for indoor environment, which based
on Monte Carlo Location (MCL). In the algorithm, first to
process the monitoring data of moving target, then to locate
the position through the ANs. Zhong et al. [29] proposed a
robust tracking framework using node sequences, the monitor
area is divided into lots of small regions, the trace of the
mobile target can be estimated by processing a series of
detection sequences. The challenge in this system is that
node sequences are unreliable due to outside factors. Their
approaches are only applicable to a particular sensor network
for positioning and tracking.

Bargshady et al. [30] used Particle Filter (PF) to integrate
WiFi and UWB RF signaling for cooperative localization
in indoor environment. In the paper, PF, Received Signal
Strength (RSS) of WiFi and the Time Of Arrival (TOA) of
UWB RF signal are used for improving cooperative localiza-
tion precise in indoor environment. Chen et al. [31] proposed
a cooperative localization method to combine the fingerprint-
based algorithm and the physical constraint of pairwise dis-
tances to refine the localization estimates for multiple users
simultaneous. The number of peers and peers selection have
a strong impact on accuracy performance.

Most of previous work were based on WiFi because of
it’s widely deployed in indoor environment. Our approach
makes use of both WiFi and WSN technologies to achieve
a high accuracy for indoor positioning and improve the local-
izability. Besides, we also adopt the reliable nodes selection
strategy to ensure the effectiveness and reliability of nodes.
We will introduce our method in detail in the following.

III. INDOOR COOPERATIVE LOCALIZATION AND
TRACKING ALGORITHM
With the development of indoor infrastructure, the needs
for accurate tracking and positioning in various fields are
getting increasing. In the indoor multi-network environment,
this paper proposes a cooperative localization and tracking
algorithm by analyzing the characteristics of network signals
(WSN and WiFi) and predicting the dynamic trajectory of
the moving target. WSN is composed of some sensor nodes
which are in the monitoring area for building a multi-hop
Ad-hoc network system by wireless communication. The
purpose of the system is to sense cooperatively, collect and
process the information of the sensed objects in the network
coverage area and send it to the observer. WiFi is one of the
most widely usedwireless network transmission technologies
today. Its transmission speed can reach 54Mbps which can
meet personal and social information needs. The important
symbols and corresponding descriptions are listed in Table 1.

In our investigation, there are two phases for cooperative
localization and tracking technique which are widely used
for indoor positioning: Offline phase and online phase. The
system architecture and the main ideas of CLTA are shown
in Fig. 3. The main operations are as follows.

(1) In the offline phase, first to divide the grid and save
ANs location. Then to establish a complete cooperative loca-
tion fingerprint database on the basis of reliable ANs’ RSS
values, and to get the corresponding network weights in each
grid.

(2) In the online phase, the grid-based indoor cooperative
localization algorithm which contains the region overlapping
mechanism, the prediction mechanism and the cross-grid
strategy are used to track and locate the trajectory of target
node.

In cooperative localization and tracking, the co-located
fingerprint database is established in offline phase and the
cooperative localization and tracking is used between the
networks in online phase to obtain a higher precision of
localization and tracking.
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FIGURE 3. System architecture.

A. OFFLINE PHASE
In the offline phase, we need to set up a cooperative
positioning fingerprint database that includes the network
name, the grid ID, the corresponding weight and the cal-
culation sequence. It is represented in a form of an array
[Nnet ,N ,Ax ,Norder ]T . Among them, Nnet is network name,
such as GPS, GSM,WSN, WiFi, etc., it also can be expanded
according to the actual situation.

We first to determine the network name Nnet according to
the type of network, then analyze the communication range
of all networks as a basis for dividing the grid size. After that,
the network RSS signals in each grid is collected, according
to the network positioning error to determine the network x
weight Ax which in the grid, and the online phase calculation
order Norder of cooperative positioning is confirmed. Finally,
a complete cooperative positioning fingerprint database is
established.

Main methods for establishing fingerprint database are
explained below.

1) GRIDS DIVISION
In this paper, the target location area is divided into a number
of equal size regions, the location area is divided into a finite
number of disjoint rectangular areas which are called grids.

In this section, the relationship between the number of
grids and the radius of network communication in a single
network environment is acquired according to [32], then the
relationship between them in multi-network and the relation-
ship between the edge length and radius of network commu-
nication are obtained.

Theorem 1 [32]: In a certain rectangular area, if the com-
munication radius of the network node is r , there is a limit on
the number of grids Ngrid in this area.

(2Sregion/r2) ≤ Ngrid ≤ [Sregion/(10(lg(Imin)−∧)/α)]. (1)

Where Sregion is the area of rectangle, Imin is the smallest
interference loss, ∧ is a constant of lg(Pr/[PtGtGr (hthr )2])
(Pt and Pr are transmit power and receive power of nodes
respectively. Gt and Gr are antenna gains of sending and
receiving nodes respectively. ht and hr are antenna heights
of sending and receiving nodes respectively).
Theorem 2 [32]: In a rectangular area, if there are M

kinds of network signals, in this area, the network with the
smallest radius rmin of communication determines the number
of grids Ngrid .
From THEOREM 2, the network with the smallest com-

munication radius among all network signals determines the
edge length of the grid. According to simulation results,
the paper suggests half of the minimum communication
radius (the length of the grid) of all the network signals should
be used as the base for the grid partition of the localization
area.

2) GRID POSITIONING ERROR
Assume that the actual position coordinates of a point in a grid
is (x0, y0). A localization algorithm is used in a network to get
the measurement value (xk , yk ) of the node to be localized
which calls k , using the Euclidean principle to specify the
location error of the point γk as:

γk =

√
(x0 − xk )2 + (y0 − yk )2. (2)

Select reliable ten points for network i to positioning.
We select reliable ANs (WSN nodes or WiFi nodes) by using
RSS value to calculate the distance with different two RNs
in the grid. As shown in Fig. 4, we give the flow chart to
demonstrate the selection process. First to select two RNs in
the grid, the distance of them is d . Then to select the AN to get
the RSS values of these two RNs. Based on the RSS values to
calculate the distance d1, d2 with them respectively. At last
to check the relationship of d , d1 and d2 (The detail descrip-
tion shown as Fig. 5). If d > |d1− d2|, keep the two RNs
positions. According to the flow to get ten reliable positions
and filter out inaccurate or malicious data. The positioning
errors of them are γ1, γ2, . . . , γ10. So the average positioning
error γi of network i is:

γi = (γ1 + γ2 + . . .+ γ10)/10. (3)

If in most cases d < |d1− d2| (If there are more peo-
ple or obstacles between AN and RN1 than AN and RN2,
the RSS of RN1 is relatively weaker than normal situation,
the calculate distance between AN and RN1 will be less than
d1, so the case d < |d1− d2| maybe happen), we will filter
out the AN and re-select another AN for positioning.

VOLUME 6, 2018 24849



J. Luo et al.: Reliable and Cooperative Target Tracking Based on WSN and Wi-Fi

FIGURE 4. Flow chart of selecting reliable nodes.

FIGURE 5. Distance of RNs and AN.

3) WEIGHT ALLOCATION
Assume there are two kinds of network which are network x
and y, and the average positioning error of network x and y
are γx and γy in grid. In the grid, let the weight Ax of network
x is:

Ax = 1−
γx

(γx + γy)
=

γy

(γx + γy)
. (4)

So the weight of Ay of network y is:

Ay = 1−
γy

(γx + γy)
=

γx

(γx + γy)
. (5)

Based on above methods, the cooperative positioning fin-
gerprint database can be established.

B. ONLINE PHASE
In online phase, first to calculate a rough position of unknown
node based on single network. According to the rough posi-
tion to judge the grid number of it, then query fromfingerprint
database to obtain the weight and calculation order. At last
based on below three main mechanisms to improve position-
ing accuracy and get a final positioning result.

The grid-based indoor cooperative localization algorithm,
the region overlappingmechanism, the predictionmechanism
and the cross-grid strategy are used to track and locate the tra-
jectory of the moving target in the online phase. The follow-
ing is a detailed description about three main mechanisms.

1) THE REGION OVERLAPPING MECHANISM
Region overlapping mechanism is to obtain the overlapping
region by overlapping the communication area of the ANs

FIGURE 6. Single network overlay mechanism.

FIGURE 7. Multi-network overlay mechanism.

within the communication range of a node to be localized.
In multi-network environment, the region overlapping mech-
anism can obtain the overlapping region of the ANs with
different communication ranges. Assume that the node com-
munication radius in network x is rx . If node a is within the
communication range of node b, and node b is also within
the communication range of node a. So, if node a can receive
the message sent by node b, then the distance between two
nodes is less than rx . As shown in Fig. 6, if the anchor node 1,
anchor node 2, . . . , anchor node m can receive the message
from moving target, the communication area of the m ANs
must be intersecting.

There are m ANs from anchor 1 to anchor m. Accord-
ing to the region overlapping mechanism, the moving target
node must be in the overlapped shadow area of m ANs. The
overlapping shadow area defined in network x is Regionx ,
and the overlapping symbols are indicated by ∩. Then in
the network x, the communication area overlapping can be
written as Regionx = r1 ∩ r2 ∩ · · · ∩ rk , in which the
communication area of the anchor node k is represented as
rk . We assume that the communication radius of network 1,
network 2, . . . , and network n are r1, r2, . . . , rn respectively,
node a in network A is within the communication range of
node b in network B, vice verse. So, if node a can receive
the message sent by node b, then the distance between the
two nodes is less than the communication range. As shown
in Fig. 7, C1, C2, . . . ,Cn are circles of different radius, rep-
resenting network 1, network 2, . . . , network n respectively.
If the ANs in the network 1, the network 2, . . . , the network
n can receive the moving target message, then the communi-
cation area of the ANs in the n networks must be intersecting.
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In the network 1, the network 2, . . . , the network n, accord-
ing to the regional overlapping mechanism, the moving target
node must be in the overlapping shadow area of n networks.
Define the Regionx as the overlapping shadow area of the
network x, and in a multi-network environment, the over-
lapping communication area can be recorded as Region1 =
Region1 ∩ Region2 ∩ · · · ∩ Regionx ∩ · · · ∩ Regionn. Regionx
represents the shadow area of the network x.

2) THE PREDICTION MECHANISM
The prediction mechanism can predict the possible posi-
tion of node to be located at the next time point accord-
ing to the moving speed v and the minimum unit time of
movement t .
After getting Region1 according to the region overlapping

mechanism, the localization area of the mobile node can be
predicted. According to the prediction mechanism, the possi-
ble position area at T moment can be predicted at the moment
T − t . Setting it as Region1′. Region1′ consists of two sets of
overlapping areas(The detail as below description).

a: PREDICTION LOCALIZATION REGION AT T − t MOMENT
According to the positioning step, we can get the position
coordinates of the target node at T − t moment. Using the
moving speed v and the unit time t of the target node, the posi-
tion coordinate region of target node at the time point T is
obtained, i.e., the region whose circle center is target node
coordinate at T−t moment and the radius is v×t . This region
is defined as Region2 (Shown in Fig. 8).

b: PREDICTION OVERLAP REGION AT T − t MOMENT
At the T−t moment, we can get the overlapping region based
on overlapping mechanism. The target node at the moment T
must appear in the next prediction region of T − t moment
overlapping region. We use the centroid weighting algorithm
to get the center of a circle. With the moving speed v and the
unit time t to predict the moment T prediction region Region3
(Shown in Fig. 8).

By overlapping these two regions can get a more accurate
range (Region1′ = Region2∩Region3) of region where target
node may appear.

We use region overlapping mechanism under multi-
network to get Region1 and the prediction mechanism to get
Region1′. Overlapping these two regions to obtain a more
accurate target region Region2′ (Shown in Fig. 8). Therefore,
at the T moment, the target node is most likely to appear in the
region Region2′ (Region2′ =Region1 ∩ Region2 ∩ Region3).

3) CROSS-GRID STRATEGY
The signal strength of different network in the grid is dif-
ferent. So the network positioning error is different. That is,
the weights of same network in different grids are different,
and the weights of different networks in the same grid are
different. Based on this, if the trajectory of the mobile node
cross-grid, there is a problem of re-allocation the weight to
improve the positioning accuracy.

FIGURE 8. The prediction and overlapping region.

FIGURE 9. Cross-grid problem analysis. (a) Not cross the grid. (b) Cross
one grid. (c) Cross two grids. (d) Cross three grids.

A complete cooperative fingerprint database[
Nnet ,N ,Ax ,Norder

]T was established in offline phase.
By querying the fingerprint database, we can get the net-
work name Nnet and the weight Ax of each network in each
grid.

After period t , there are four kinds of situation as shown
in FIGURE 9. Here we use T moment overlapping area as
example to check at T + t moment the target node whether
cross-grid. Assume that there are four grids, the coordinate
of the intersections of grid nodes numbered 1, 2, 3 and
4 is (x0, y0). Nnet is network 1, network 2, . . . , network
n. Mobile target node at number 2 grid at T moment and
coordinate is (x1, y1). The moving speed is v and the moving
unit time is t . Assume that the weights of network 1, net-
work 2, . . . , network n are A1,A2, . . . ,An respectively in the
grid 1. The weights are A1′,A2′, . . . ,An′ respectively in the
grid 2, the weights are A1′′,A2′′, . . . ,An′′ respectively in the
grid 3 and the weights are A1′′′,A2′′′, . . . ,An′′′ respectively in
the grid 4.

The relationship between (x1+v×t, y1+v×t) and (x0, y0)
is discussed as follows:

a: DOES NOT CROSS THE GRID{
x1 + v× t > x0
y1 + v× t > y0

FIGURE 9(a) shows the mobile node does not cross the
gird, the weight for the cooperative positioning keep same as
offline phase.
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b: CROSS ONE GRID{
x1 + v× t > x0
y1 + v× t ≤ y0

or

{
x1 + v× t ≤ x0
y1 + v× t > y0.

Show as FIGURE 9(b): A mobile node may cross from
grid 2 to grid 4 or from grid 2 to grid 1. At time T + t ,
the weight of network i is Ãi:

Ãi =
v× t + (y1 − y0)

2v× t
Ai′ +

v× t − (y1 − y0)
2v× t

Ai′′′, (6)

or

Ãi =
v× t + (x1 − x0)

2v× t
Ai′ +

v× t − (x1 − x0)
2v× t

Ai′′′. (7)

c: CROSS TWO GRIDS{
x1 + v× t ≤ x0
y1 + v× t ≤ y0

and (x1 + v× t)2 + (y1 + v× t)2 ≤ x02 + y02.
Show as FIGURE 9(c): The mobile node may be in the

grid 1, 2, 4 at T + t time point, at this time, the weight of the
network i is Ãi:

Ãi =
v×t−(x1−x0)

2v× t
Ai +

v× t + (x1 − x0)+ (y1 − y0)
2v× t

Ai′

+
v× t − (y1 − y0)

2v× t
Ai′′′. (8)

d: CROSS THREE GRIDS{
x1 + v× t ≤ x0
y1 + v× t ≤ y0

and (x1 + v× t)2 + (y1 + v× t)2 > x02 + y0 2.
Show as FIGURE 9(d): The mobile node may be in the

grid 1, 2, 3, 4 at T+t time point, and the weight of the network
i is Ãi:

Ãi =
(v× t − (x1 − x0))(v× t + (y1 − y0))

4v2t2
Ai

+
(v× t + (x1 − x0))(v× t + (y1 − y0))

4v2t2
Ai′

+
(v× t − (x1 − x0))(v× t − (y1 − y0))

4v2t2
Ai′′

+
(v× t + (x1 − x0))(v× t − (y1 − y0))

4v2t2
Ai′′′. (9)

By using cross-grid strategy, at T − t moment, the weights
of different network at T moment can be re-allocated.

The real measurement coordinate of the target node is:

(x, y) = Ã1 × (x1, y1)+ Ã2 × (x2, y2). (10)

Among it, (x1, y1) is the coordinate measured by network
1. (x2, y2) is the coordinate measured by network 2. Ã1 and
Ã2 are corresponding re-allocation weights of network 1 and
network 2 in the grid.

TABLE 2. Comparison of average localization ability and error.

IV. SIMULATION EXPERIMENT AND ANALYSIS
A. SIMULATION SETUP
For verifying the efficiency of our methods, our simulation
environment with 30 WiFi ANs and 30 wireless sensor nodes
randomly deployed in indoor environment within the area
of 100m × 100m (In reality, the nodes should be evenly
distribution relatively). The communication radius of WiFi
and WSN is 20m. According to [32, Th. 2], the grid length
is 10m, so each grid size is 10m × 10m, total 100 (10 × 10)
grids. The transmission power of AN is 20dBm. Simulations
are carried out using MATLAB.

First, we applied 30 unknown nodes randomly in the area
to check the localizability and positioning accuracy of CLTA
compare with the single network. Then we adopted a mobile
node in the area moving with uniform and accelerated motion
separately under different moving steps. After 30 times of
the experiment, the average accuracy and final results is
concluded.

B. RESULTS ANALYSIS
In this paper, we use improved centroid weighting algo-
rithm to locate unknown nodes in a single network. Each
positioning, according to the RSS values to select the three
nearest ANs which near the unknown nodes as positioning
ANs. If the positioning area can only receive one kind of
network signal, the region degenerates into a single network
localization region. If there is no network signal in the area,
the area can not be located. In the simulation experiment,
the average error of the experiment is calculated according
to Euclidean principle.

First, we evaluated the localizability and positioning accu-
racy of our proposed cooperative target tracking mechanism.
Total 30 unknown nodes randomly distributed in the 100m×
100m area. Fig. 10(a) shows one positioning ability (The
percent of successful positioning points in the total position-
ing points. Such as 100 points, how many points we can
positioning) result of 30 times experiments. Fig. 10(b) shows
each positioning error result of 30 times. Table 2 indicates the
average result of 30 times experiments.

As shown in Table 2, we observed that the cooperative
method can increase localization ability as well as improve
the accuracy performance.

Second, the localization tracking accuracy of the algo-
rithm under different moving steps is compared with the
localization tracking accuracy in single network environment,
as shown in Fig. 11. In the experiment, tracking nodes were
tracked and positioned with 15 steps, 30 steps and 60 steps
separately (In this paper, the moving speed v equals 1.5 m/s).
Table 3 shows the experiment of the average localization
tracking error at different moving steps.
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FIGURE 10. Localization ability and error. (a) Localization ability.
(b) Positioning error.

TABLE 3. Comparison of average tracking error.

As shown in Fig. 11(a), (b), the tracking node moved
15 steps and 30 steps at speed v = 1.5 m/s with uniform
velocity. We can know, from the simulation result, the CLTA
localization error is less than single network WiFi or WSN.

When the numbers of tracking steps are 30 and 60,
the Gaussian noise is added to the experiment (i.e., the start-
ing speed v = 1.5 m/s and with a certain acceleration). The
results are shown in Fig. 11(c), (d). Due to the influence
of Gaussian noise, the cooperative localization and tracking
between networks has a great influence on the localization
results of localization and tracking, which leads to the local-
ization error of cooperative tracking and positioning between
networks is increased but it is acceptable. Furthermore, under
different moving steps, the average tracking error with the
proposed algorithm is less than the average tracking error in
the single network environment. The average localization and
tracking error shown in Table 3.

The simulation shows the proposed algorithm can predict
dynamic trajectory of target node with superior accuracy and
localizability than single-network localization and tracking.
With the increase of the number of moving steps, CLTA
improves the positioning accuracy of tracking by using the
overlapping mechanism, the prediction mechanism and the

FIGURE 11. Localization and tracking under different moving steps.
(a) 15 steps without Gaussian noise. (b) 30 steps without Gaussian noise.
(c) 30 steps with Gaussian noise. (d) 60 steps with Gaussian noise.

cross-grid strategy for trajectory localization and tracking of
the target node in the online phase.

C. REAL EXPERIMENT SETUP
Our experiments were conducted on a laboratory of our
university which covering a 25m × 30m area, there were
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FIGURE 12. The experiment devices.

FIGURE 13. The target node moving tracking.

total 6 WiFi ANs and 6 WSN ANs uniformed distribution
in the environment. WiFi ANs were deployed on the ceiling
and WSN ANs were deployed on the table. The experiment
devices shown in Fig. 12. In the offline phase, we used a
smartphone with android system to collect the received WiFi
signal strength and used a laptop to collect the received WSN
signal strength of 42 positions in the corridor from ANs. The
distance between two adjacent positions is around 1m. The
target moving speed is around 1 m/s.

D. EXPERIMENT RESULTS ANALYSIS
The predicted and actual trajectory as depicted in Fig. 13.
The real path of the target node is shown as a black full
line. The pink and blue full lines represent the measurement
paths of WiFi and WSN respectively. The green full line
represents the measurement path by both WiFi and WSN
with the proposed CLTA which is closer to the real path.
There were more students and obstacles around the main
road which is the middle of the corridor, so the error along
the middle of the corridor is large than other two corridors.
Table 4 provides the comparison regarding the localization
and tracking errors. From the experiment results, we can
know that the CLTA offers an improved accuracy in localiza-
tion and tracking compare with single networkWSN orWiFi.
Table 5 provides the comparison with other algorithms. Com-

TABLE 4. Comparison of average localization and tracking error.

TABLE 5. CLTA compares with other localization methods.

bine Table 5 and Table 4, it shows only with WSN, CLTA
(Localization error: 0.65m) has a higher accuracy then the
method in [27] (Localization error: 0.9753m). It also shows
CLTA performs better compared to other cooperative meth-
ods ( [14] used hybrid AoA/ToA system and [26] proposed an
indoor localization of cooperative WSN using PSO assisted
AKF).

V. CONCLUSIONS
In this paper, we proposed a cooperative tracking and local-
ization algorithm (CLTA) which with three methods (the
overlapping mechanism, the prediction mechanism and the
cross-grid strategy) and the mechanism of selection reliable
nodes for positioning. We demonstrate that networks cooper-
ation can improve the positioning accuracy and localizability.
The simulation results and real experiment results show that
the proposed CLTA enhances the localization and tracking
accuracy effectively compare with single network and it can
achieve more precise positioning to meet higher demands.

For further investigation, we would like to mention several
research points. First, WSN and WiFi techniques are used
in this paper. Our study can be investigated or extended
to more other position techniques. And we are testing and
verifying the WiFi, WSN and Bluetooth these three kinds of
networks with new algorithms. Second, outdoor environment
is broader and changeable than indoor environment, it needs
further effort to apply our study to actual outdoor application
scenarios. Third, how to apply these position techniques to
solve the problem of seamless integration between indoor and
outdoor environment.
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